DLR Portal
Home

Textversion

Imprint

Sitemap

Contact

Deutsch
You are here:
Home
:
Departments
:
Numerical Methods
:
Research Areas
Advanced Search
News
Institute
Departments
Combustor
Combustor Simulation
Combustion Test
Fan and Compressor
Numerical Methods
Research Areas
Applications
Publications
Projects
Engine
Engine Acoustics
Engine Measurement
Turbine
Facilities
Publications
Offers
Service & Links
Research and Development
Adjoint Methods
The adjoint method allows the computation of sensitivities (derivatives) of flow variables or quantities derived from them with respect to geometrical parameters. This is more efficient than the direct computation of derivatives from flow solutions, e.g. by finite differences, if the number of parameters is large compared to the number of objective functionals.
More
Acceleration Methods
The increasing model accuracy to describe physical processes like aerodynamics, aeroacoustics, aerothermodynamics, aeroelastics or turbulence as well as their interaction leads to an ever growing complexity of the simulated configurations. For reduction of the required simulation duration different acceleration methods are used.
More
Frequency Domain Methods
Essential physical phenomena occur in the simulation of flow in turbomachinery often with specific frequencies, e.g. at multiples of the rotation frequency or at the eigenfrequencies of blades. In these cases, it is sufficient to calculate the solution of the flow equations for some frequencies only. This is achieved by transforming the flow equations into the frequency domain and solving these equations for selected frequencies. Thus the computation time is reduced by one to two magnitudes compared to a nonlinear, unsteady calculation. In TRACE two types of frequency domain methods are implemented: in a classical timelinearized NavierStokes method and a harmonicbalance method which takes into account a set of frequency and their nonlinear coupling.
More
Pre and PostProcessing
The TRACE suite provides an inhouse, industrial prove process from the grid generation to the postprocessing. Amongst others this includes a tool for the mesh generation, a pre and postprocessingtool. The inhouse tool G3DHEXA generates structured meshes for turbomachine components. PREP is an aeroelastic preprocessor. After the computation of the flow solution the postprocessing tool POST is used to analyze the flow field e. g. with respect to turbomachine performance data.
More
Turbulence and Transition
Virtually all turbomachinery flows involve turbulent phenomena, including transition from laminar to turbulent states. Thus, the adequate representation of transition and turbulence is crucial for the predictive accuracy of the computational method used in the turbomachinery design process.
More
HighOrder Methods
In turbomachinery powerful numerical methods have been developed and used successfully to simulate the flow. However, these classical first and secondorder accurate algorithms for spatial and temporal discretization are inefficient for flow problems with complex physics and geometry. In particular, such applications as computational aeroacoustics (CAA) or turbulent combustion problems require a more accurate prediction of turbulent phenomena than what is attainable with secondorder RANS simulations.
More
Heat Transfer
The understanding of aero and thermodynamics of the turbine is of essential relevance for the design of blade cooling methods. A stateoftheart heat transfer modelling is under development in TRACE to improve the prediction accuracy of the behaviour of thermal and momentum boundary layers.
More
Copyright © 2017 German Aerospace Center (DLR). All rights reserved.