Luftfahrt | 12. Juni 2015 | von Falk Dambowsky

Rendezvous in Keflavik

Wenn man am internationalen Flughafen in Keflavik/Island fern des Passagierterminals durch die Räumlichkeiten des lokalen Handling-Agenten South-Air schreitet, findet man, eingerahmt an den Wänden, das Who-is-Who deutscher und amerikanischer Luftfahrtforschung. Normalerweise sind Geschäftsflieger hier auf der Durchreise zwischen den Kontinenten. Während ihre Business-Jets betankt werden, haben die Reisenden Gelegenheit bei Kaffee und Keksen die Bilder der berühmten Luftfahrzeuge und die darauf stehenden Widmungen zu bestaunen.

Quelle: DLR (CC-BY 3.0)
Erinnerungen an vergangene DLR-Forschungsmissionen mit Falcon und HALO in Island

Allein zweimal findet man die DLR-Falcon in Erinnerung an größere Forschungsaufenthalte (2003 und 2009). Das vom DLR betriebene deutsche Atmosphärenforschungsflugzeug HALO war 2012 hier, als es auf einer Mission von Pol zu Pol unterwegs war. Daneben finden sich Forschungsflieger der NASA, so das legendäre Höhenforschungsflugzeug ER-2, dessen Piloten wie Astronauten anmuten, wenn sie im Druckanzug ins Cockpit steigen und 21 Kilometer hoch über der Erdoberfläche weit in die Stratosphäre vordringen.

Quelle: DLR (CC-BY 3.0)
Bild des NASA-Höhenforschungsflugzeugs ER-2 mit Widmung des Piloten

Daneben eine Gulfstream C-20A, die mit spezieller Radartechnik ausgestattet ebenfalls im Mai 2015 in Island war. Und nun auch die DC-8 der NASA, die bei den aktuellen Flugversuchen Seite an Seite mit der Falcon flog. Dabei ist diese DC-8 mittlerweile ein Unikat als letzte ihrer Art, die noch nicht zum Frachter umgebaut oder außer Dienst gestellt wurde.

Quelle: DLR (CC-BY 3.0)
Ankunft der Do-228 CFFU in Keflavik. Im Hintergrund steht die DC-8 der NASA

Bei der schon besonderen Zweisamkeit von Falcon und DC-8 sollte es allerdings nicht bleiben. Kurz vor Ende der ADM-Mission stieß die Do-228 CFFU des DLR dazu. Sie war zuvor mehrere Wochen auf Grönland im Einsatz, um ein neues Radargerät zu testen, das Eis und dessen Struktur bis zu 50 Meter tief erfassen kann. Um in der arktischen Polarregion über Grönland für alle Fälle gerüstet zu sein, hatte die Crew immer die passende Notfallausrüstung dabei, Kälteschutzanzüge inklusive.

Quelle: DLR (CC-BY 3.0)
Polare Notfallausrüstung an Bord der Do-228 CFFU

Für den Überflug nach Island fiel diese Ausrüstung so ins Gewicht, dass die lange Strecke über Wasser ohne Tankstopp nur mit minimierter Crew möglich war. Die beiden Piloten und der Bordtechniker reisten an Bord der Do-228, die wissenschaftlichen Kollegen mussten über eine Linienverbindung den Weg nach Island mit einigen Tagen Verspätung finden.

Quelle: DLR (CC-BY 3.0)
Die Piloten Steffen Gemsa und Thomas van Marwick vor der Do-228 CFFU

Während Falcon und DC-8 ihre Mission beenden, bleibt die Do-228 noch etwas am international beliebten "Forschungsflughafen" in Keflavik. Für die Crew schließt sich nach ihrem Grönlandaufenthalt eine kürzere Flugkampagne auf Island an, bei der das Wissenschaftsteam um Ralf Horn vom DLR-Institut für Hochfrequenztechnik und Radarsysteme verschiedene Lavafelder befliegt. Das neue Radarsystem soll neben der Fähigkeit, Eisstrukturen zu offenbaren, auch zeigen, wie es die Rückstreueigenschaften und Topographie erstarrter Lava erfassen kann.

Quelle: DLR (CC-BY 3.0)
Blick aus dem Fenster der Do-228 CFFU im Anflug auf den Flughafen Keflavik

Dafür ist Island als großflächige vulkanische Insel der ideale Ort. Bei ihren irdischen Messungen haben die Forscher handfeste außerirdische Anwendungen im Blick. Die neue Radartechnik soll eines Tages auf einer NASA-Raumsonde zur Venus fliegen und per Radar durch die optisch undurchdringlichen Schwefelsäure-Wolken hindurch, neue Erkenntnisse über die vulkanisch geprägte Kruste unseres Nachbarplaneten liefern.

Quelle: DLR (CC-BY 3.0)
Blick auf ein isländisches Lavafeld


 

Luftfahrt | 02. Juni 2015

ARCTIC15 - Erste Kampagnenphase erfolgreich beendet

SAR-Daten
Quelle: DLR / Martin Keller (CC-BY 3.0)
Eine erste SAR-Aufnahme des Testgeländes in Kangerlussuaq. Die Farben stellen die Intensität in unterschiedlichen Polarisationen dar. Der Flughafen ist deutlich in Schwarz zu erkennen. Von der Mitte des Bildes aus verläuft der Fjord in südwestliche Richtung, wo Ski-Doo-Spuren zu sehen sind, die ins nächste Dorf führen.

Drei Kalibrierungsflüge, zehn Überflüge der verschiedenen Testgebiete, mehr als 100 Radardatensätze und somit 4,8 Terabyte an SAR-Daten: Das sind die Zahlen, die hinter der Arbeit unseres Teams in den letzten zwei Wochen stehen. Dies schloss auch die Änderung der Antennenkonfiguration (von X-C-S-L-Band zu P-Band) mit ein. Schlechtes Wetter hatte das Team zum Glück nur einmal in dieser ersten Phase.

Das DLR-Flugzeug Do-228, ausgestattet mit dem F-SAR System, kam am Freitag, dem 24. April 2015 in Kangerlussuaq an. Schon am darauffolgenden Montag startete das Team, bestehend aus zwei Piloten, einem Flugingenieur und zwei Wissenschaftlern, die das Radar bedienen, den ersten Kalibrierungsflug. In den ersten beiden Wochen ist die Antennenkonfiguration für die X-, C-, S- und L-Frequenzbänder auf dem Flugzeug installiert. Dieses Frequenzspektrum ermöglicht es uns, Radaraufnahmen mit unterschiedlichen Eindringtiefen in Schnee und Eis zu vergleichen. Das Team erhob SAR-Daten über allen Untersuchungsgebieten, die wir mit Radarreflektoren ausgestattet hatten. Außerdem wurde das Gelände im Umkreis des Flughafens von Kangerlussuaq zu Kalibrierungszwecken überflogen und mit sieben Reflektoren ausgestattet. Es scheint, als hätten sich die Anwohner schnell an die eigenartigen Metalldinger in ihrer Stadt gewöhnt.

Quelle: DLR / Ralf Horn (CC-BY 3.0)
Das DLR Do-228 mit dem F-SAR-Radarsystem an Bord, nachdem es am Flughafen Ilulissat (Grönland) wieder aufgetankt wurde. Der X-C-S-L-Antennenaufsatz ist hinten am Flugzeug zu erkennen.

In den ersten Tagen nach den Kalibrierungsflügen hatte unser F-SAR-Team zwar kleinere und größere Probleme zu lösen, mit denen während eines solchen Projektes immer gerechnet werden muss - von fehlenden Adaptern für die Sauerstoffbetankung bis hin zu instabilen Elektronikteilen des Radarsystems. Aber wir konnten alle Fehler beheben, ohne dass außerplanmäßige Verzögerungen entstanden. Ich muss zugeben, dass ich wirklich besorgt war, eines der Testgelände aufgrund der technischen Probleme zu verlieren, allerdings konnten bisher nahezu alle Messungen wie geplant aufgenommen werden. Derzeit können wir sagen, dass die X-C-S-L-Phase erfolgreich war und uns zahlreiche wissenschaftliche Daten eingebracht hat.

Quelle: DLR / Georg Fischer (CC-BY 3.0)
Das F-SAR-Team trifft Vorkehrungen zur Entfernung der X-C-S-L-Antenne von der Seite des Do-228.

Gestern wurde die Änderung zur P-Band-Antennenkonfiguration abgeschlossen. Die P-Band-Wellenlänge ist die Längste, die wir im Rahmen dieses Projekts nutzen werden, und dringt mehrere Dutzende Meter ins Eis ein. Wir sind schon ganz gespannt, welche Eigenschaften wir in den tieferen Schichten des Eises beobachten werden.

Während ich dies schreibe, fliegt das F-SAR-Team für die ersten P-Band-Erfassungen gerade über den K-Transekt. Wir sind zu diesem Zeitpunkt sehr optimistisch bezüglich der bevorstehenden Projektphasen. Und währenddessen kommt hier in Grönland der Frühling bei sonnigen +8 Grad Celsius.

Luftfahrt | 01. Juni 2015

Ein Wollknäuel für die Wissenschaft

Tanken in Grönland
Quelle: DLR (CC-BY 3.0)
Tanken in Grönland vor dem Air Greenland Hangar

Für mich als Forschungspilot ist es eher ungewöhnlich, ein Flugzeug wie derzeit die DLR-Falcon einfach nur wie einen Passagierflieger von A nach B zu fliegen. Unsere Flugwege folgen anderen Zielen, die uns die Wissenschaft immer wieder vorgibt. Meist startet man an einem Ort um verschiedene Ziele nacheinander anzufliegen, um dann am Ende des Tages wieder zurück an der "Basis" einer Forschungsflugkampagne, wie hier in Kevlavik/Island, anzugelangen. In der aktuellen Kampagne "ADM" werden Islandtiefs gemessen. Manchmal kann es auch passieren, dass man zwischenlanden muss, meist zum Tanken wie derzeit hin und wieder in Kangerlussuaq auf Grönland, um anschließend den Forschungsflug fortzusetzen.

Schaut man sich dann nach einem bewegten Forschungsflugtag einmal den per GPS aufgezeichneten Weg am Himmel an, sieht man manchmal erstaunliche Muster: Oft ist es nur ein eher wirres Gekrakel, manchmal entdeckt man aber auch fast schon künstlerische Strukturen. Am 16. Mai ergab sich so ein ästhetisches Bild über Grönland.

Quelle: DLR (CC-BY 3.0)
GPS-Track des Fluges vom 16. Mai 2015

Auf dem Bild sieht man einen Ausschnitt des Flugweges der DLR-Falcon, mit der wir hintereinander zweimal für jeweils etwa eine halbe Stunde mit einer konstanten Querneigung von 20 Grad gekreist sind. Dies taten wir, weil der Laser des Lidars in dieser Zeit senkrecht nach unten strahlen sollte. Wir kamen von Norden in das Messgebiet geflogen und begannen südwestlich mit dem Manöver (im Bild unten links). Durch den Wind, der unser Flugzeug etwas abtrieb, entstand schließlich der spiralförmige Flugweg, ganz ähnlich einem Wollknäuel.

Eine besondere Herausforderung ist es, ein solches Manöver mit den Flugsicherungsstellen abzustimmen. Schon unter "normalen" Bedingungen, also in Gebieten mit regulärer Radarabdeckung über den Kontinenten, ist dies nicht ganz einfach. Bedenkt man, dass dieses Wollknäuel über dem Grönländischen Inlandeis entstand, wo der zuständige Fluglotse keine Unterstützung durch ein Radarbild hat und zusätzlich auch noch die Kollegen der NASA DC-8 im gleichen Gebiet unterwegs waren, ist es umso anspruchsvoller sich zu koordinieren. Dies ist nur durch eine aufwändige Abstimmung mit den verschiedenen Flugsicherungsstellen vor dem Flug und einer intensiven Kommunikation mit den Fluglotsen und den DC-8 Piloten während des Fluges möglich. So entsteht in gemeinsamer Arbeit über Grenzen hinweg solch ein erstaunlich geordnetes Muster, das uns in der Forschung ein Stückchen mehr Erkenntnis bringt.

Weitere Blogeinträge zur Kampagne gibt es auf dem ESA-Blogportal "campaigns at work".