
Rational and Polynomial Matrices 

Each rational matrix R(λ) can be seen as the transfer-function matrix of a continuous- or discrete-time descriptor system. Thus, each 
R(λ) can be equivalently realized by a descriptor system quadruple (A - λE, B, C, D) satisfying 
 
R(λ) = C (λE – A) –1 B + D, 
 
where λ = s or λ = z for a continuous- or discrete-time realization, respectively. It is widely accepted that most numerical operations 
on rational or polynomial matrices are best done by manipulating the matrices of the corresponding descriptor system 
representations. Many operations on standard matrices (such as finding the rank, determinant, inverse or generalized inverses, 
nullspace) or the solution of linear matrix equations have natural generalizations for rational matrices. The conjugate transposition of 
a complex matrix generalizes to the conjugation of a rational matrix, while the full-rank, inner–outer, and spectral factorisations can 
be seen as generalizations of the familiar LU, QR, and Cholesky factorizations, respectively. Many problems for scalar polynomials 
and rational functions (poles and zeros, minimum degree or normalized coprime factorizations, and spectral factorization) have 
nontrivial extensions to polynomial and rational matrices. 
 
System inversion techniques play a fundamental role in several areas such as control theory, filtering, fault detection and coding 
theory. The computation of inverses and generalized inverses of rational matrices can be equivalently formulated as the computation 
of descriptor system realizations whose transfer-function matrices are these inverses. Explicit inverses can be computed only for full 
row/column rank rational matrices. Therefore, to compute various types of generalized inverses special algorithms are necessary. To 
avoid the numerically questionable direct manipulations of polynomial and rational matrices, numerically reliable descriptor systems 
algorithms based on orthogonal reduction of the system pencil to Kronecker-like forms [1] have been developed. Numerically reliable 
algorithms to compute various inverses of rational matrices (e.g., week- or (1,2)-inverses, pseudo-inverses, etc.) have been 
proposed in [1,2]. The algorithms to compute (1,2)-inverses are able to place the resulting spurious poles arbitrarily. Thus stable 
generalized week-inverses can be computed whenever they exist. The week-inverse plays an important role in computing the inner-
outer factorizations of full row rank rational rational matrices [3]. The computation of an appropriate left-inverse is the first step in 
designing residual generators for dynamic inversion based fault detectors.  
 
Many factorization problems of rational matrices can be best solved numerically by employing descriptor systems algorithms. The 
inner-outer factorization and J-lossless-outer factorization play important roles in solving many control related computational 
problems like the stochastic balancing truncation based model approximation, polynomial or rational spectral factorizations, or H-
infinity synthesis problems. The inner-outer factorization problem for arbitrary rational matrices can be solved in the most general 
setting by using the algorithms proposed in [4] for continuous-time systems or in [5] for discrete-time systems. For the full row rank 
case, the more efficient algorithms proposed in [3] can be employed. This algorithm has been extended to solve the J-lossless-outer 
factorization problem in [6].  
 
Coprime factorizations of rational matrices play an important role in solving several categories of model reduction problems (e.g., 
for unstable systems, frequency-weighted, for descriptor systems). Recursive algorithms based on a Schur approach to pole 
assignment have been proposed to compute various coprime factorizations: with stable factors [8], with inner denominator [2,8] or 
J-lossless denominator [6,8,9], or with proper factors [8]. The so-called normalized coprime factorization of an arbitrary rational 

  



matrix can be computed using the algorithms proposed in [4,5] or [10]. Note that this problem has been solved in the most general 
setting in [10].  
 
Nullspace computation of rational matrices is a basic tool to solve the fault detection problem for linear time-invariant systems. The 
recently developed algorithm to compute a minimal rational nullspace basis [11] relies on orthogonal reduction of the system pencil 
to a Kronecker-like form. In conjunction with minimal cover design techniques [12], this algorithm allows to solve the least order 
fault detection (FD) problem in the most general setting. The solution of rational systems of equations is the main ingredient to 
address the design of fault detection and isolation (FDI) filters. The algorithm proposed in [13] allows to compute the least McMillan 
degree solution of a linear rational equation by combining orthogonal pencil reduction algorithms and minimal cover design 
techniques.  
 
For most of above mentioned algorithms for manipulation and factorization of rational matrices robust numerical implementations are 
available in the DESCRIPTOR SYSTEMS Toolbox for MATLAB [14].  
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