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Abstract

One of the main difficulties in applying modern control
theories for designing robust controllers for linear un-
certain plants is the lack of adequate models describing
structured physical model uncertainties. We present a
systematic approach for the generation of uncertainty
models described by linear fractional transformations
(LFTs) and report on recently developed symbolic and
numerical software to assist the generation of low order
LFT-based uncertainty models. The kernel of the sym-
bolic software is a Maple library for generation and ma-
nipulation of LFT models. Additional numerical tools
for order reduction of LFT models are based on MAT-
LAB and FORTRAN implementations of numerically
reliable algorithms. Three examples of uncertainty mod-
eling of aircraft dynamics illustrate the capabilities of
the new software to solve high order uncertainty model-
ing problems.

1. Introduction

To apply robust control design methodologies or to per-
form robustness analysis it is important to have ade-
quate descriptions of model uncertainties. An impor-
tant class of modeling uncertainties are the real para-
metric uncertainties present in virtually every physical
model. Nonlinear parametric uncertain models (PUMs)
are often given in the form

w(t) = fz(t), u(t), p) (1)
y(t) = g(z(t), u(t), p),
where x, u, y are the state-, input- and output—vectors
respectively, and p is a vector of model parameters. Such
models which explicitly depend on the real physical pa-
rameters in p are well suited for nonlinear simulations
and parametric studies (e.g., worst-case parameter anal-
ysis).
The nonlinear PUMs of the general form (1) have found
little use in design methodologies for robust controllers.

However, since parametric dependencies are explicit,
these models can serve to generate linearized parame-
ter dependent uncertainty models of the form

¥ = Alp)i+B)u
7 = C(p)F+ D), @)

where Z, © and y are small variations of the state-, input-
and output-vectors with respect to their equilibrium val-
ues. The model (2) is a linear PUM describing locally
the effects of parametric uncertainties. We can assume
that any non-rational parametric expressions in the el-
ements of the state space model matrices A(p), B(p),
C(p) and D(p) can be replaced by polynomial or rational
approximations. Furthermore, to account for dependen-
cies of the entries of the system matrices on particular
equilibrium points (or trim conditions), it is possible to
enlarge the parameter vector p by adding to it some
components of the equilibrium point vectors.

The linear rational PUM of form (2) can be converted
to a so-called linear fractional transformation (LFT)
model, which is the required uncertainty representation
to be used within modern linear robust control design
methodologies like p-synthesis [16]. This conversion is
essentially a multidimensional (n-D) state space realiza-
tion problem. Since this problem is not even theoreti-
cally completely solved, there are no general procedures
to compute minimal n-D realizations. In practice, ad-
hoc procedures involving a lot of heuristic are used to
construct LFT models and often the resulting LF'T mod-
els have orders which are too high to be of practical use.
Therefore, generating low order LFT models and reduc-
ing the order of LFT models are issues of paramount
importance for the successful usage of modern synthesis
techniques as p-analysis and p-synthesis.

In this paper we present a systematic approach for gen-
eration of lower order uncertainty models described by

LFTs starting from linear PUMs of form (2). Further-
more, we describe recently developed symbolic and nu-



merical software tools for generation and reduction of
LFT models. The core of our software is a symbolic
computation library implemented in Maple to generate
low order LF'T models. This is complemented by several
numerical MATLAB-tools for order reduction of LFT
models. These latter tools are based on robust numer-
ical software available in the control library SLICOT
[5]. We present three examples of increasing complexi-
ties illustrating the capabilities of the new software on
basis of the linear PUM of the Research Civil Aircraft
Model (RCAM) derived in [15]. This model was used in
the GARTEUR robust flight control benchmark prob-
lem [11].

2. Generation of low order LFT models

In what follows we sketch very briefly the approach to
convert a parametric description of a linear system of
the form (2) into an LFT-based uncertainty description.
Recall first that for a partitioned matrix M

My1 Mo (r1+72) % (q1+q2)
M = c R 2 q1Tq2
[ M1 Maa }

and for A € R™*™ | the upper LFT F, (M, A) is defined
by the feedback-like formula [10]

Fu(M,A) = My + My (I — AMy1) P AMs.

Any uncertainty in a parameter p; expressed as p; €
[p,, P;] can be transcribed in a normalized form p; =
Ppio + Si00; with |5z| <1, pio = (Bz +]31)/2 and s;0 =
(p; — p;)/2. This local parameter uncertainty can be
then expressed as an elementary upper LFT

ren([mle) e

Since all elements of matrices A, B, C and D are ratio-
nal functions in parameters p;, i = 1,...,q, the struc-
tured parametric uncertainties at the components level
can be transformed into structured parametric uncer-
tainties at the level of system matrices by using the
basic coupling formulas for LFT models [10]. Specifi-
cally, products, sums, divisions of individual variables,
can be directly represented by series, parallel or feed-
back couplings of the corresponding elementary LFTs of
form (3). The same is true for the corresponding opera-
tions with more general rationally dependent parametric
expressions. Finally, elementary matrix constructs like
row and column concatenations, or diagonal stacking are
immediately expressible by equivalent LFT constructs.
Thus, for all system matrices, LFT uncertainty models
can be readily generated using elementary LFT opera-
tions.

It follows that if we write the state space description (2)
in the form

RGN AN

then we can express S(p) as an LFT

S Si2
S(p) = Fu A 4
w== (|5 52 a) (@
where the diagonal matrix
A= diag[61]n1,52[n27 s ,6qInq ]

has on its diagonal the normalized uncertainty parame-

ters 01, 02, ...,d4. Note that
| Ay Bo
522 - |: CO DO :| )

where Ay, By, Co and Dgy are the nominal system ma-
trices (for all §; set to zero). The order of the LFT un-
certainty description of the system (2) is na = Y ¢_, n,
where n; is the order of the block in A corresponding to
the uncertain parameter p;.

A systematic procedure to generate LFT-based uncer-
tainty descriptions has been described in [12]. How-
ever, the LFT models obtained by using the accom-
panying MATLAB tools relying on this approach (the
PUM Toolbox), have typically very large orders and nu-
merically sensitive order reductions are necessary to be
performed both during LFT generation as well as after
obtaining the LFT model. The interlaced symbolic and
numeric manipulations are hazardous since they involve
many tolerance dependent rank decisions. A single er-
roneous rank decision could lead to useless results. In
what follows we discuss several enhancements of the ap-
proach of [12] with the help of symbolic manipulations
of rational functions and we describe alternative order
reduction tools for LFT models which successfully com-
plement the symbolic computations.

Since the construction of minimal order LFT descrip-
tions of rational functions or matrices (i.e., with least
na) is theoretically still open, we concentrated our ef-
forts on implementing n-D realization methods which
tend to minimize the orders of generated LFTs. The ba-
sic computation in our approach is the low order realiza-
tion of multivariate polynomials and rational functions.
For polynomials, it is easy to see that the minimal or-
der of LFT realization is directly related to the minimal
number of operations (additions and multiplications) re-
quired to evaluate the polynomial. T'wo approaches have
been considered for generating low order LFTs for poly-
nomials. The first approach exploits common expres-
sions in polynomials and thus provides an ”optimal” al-
gorithm to evaluate a multivariate polynomial with the
”least” number of operations. The implementation of
this approach suffers from the fact that operations with
constants are also counted, and thus the method does
not always ensure the least operation count. The sec-
ond approach is along the lines of methods used in [6] to



evaluate multivariate polynomials using nested Horner
schemes. In many cases, the Horner scheme leads to less
operations than the optimization method, and thus to
lower order LFTs. Frequently, these methods are able
to generate LFT realizations which are almost minimal.
The construction of LFT realizations of rational func-
tions amounts to generate low order LFT realizations
for the quotient of numerator and denominator poly-
nomials. To ensure low order realizations of rational
functions, symbolic partial order reduction can be addi-
tionally performed (see below).

The above approach ensures basically that individual el-
ements of system matrices are realized with almost min-
imal order LFTs. However, the assembled LFTs for the
whole matrices can be of much higher order than the
minimal realization because of possible common expres-
sions among the matrix elements. Thus, our approach
could be complemented at matrix level by additional
heuristic as proposed in [7], [4], [8] to extract common
expressions in the underlying system matrices or to ar-
rive at factored or additively decomposed expressions.
All these methods often lead to substantially lower order
LFT realizations, because the source of non-minimality
in the generated LFTs is in most cases of structural na-
ture.

Order reduction of LFT models is important to obtain
lower order LFT realizations if the original realization is
not minimal. For a recent survey of existent methods see
[2]. A possible numerical approach is the exact model
reduction technique for LFT systems as proposed in [3].
This procedure extends the exact Balance & Truncate
(B&T) model reduction approach of 1-D discrete sys-
tems to n-D systems. From computational point of view
it involves the seeking of minimum rank non-negative
definite block diagonal solutions of two Lyapunov-type
linear matriz inequalities (LMIs). It is presently ques-
tionable if this approach can be turned into an efficient
procedure to derive minimal realizations of LF'T descrip-
tions, since no efficient procedures exist to find singular
structured solutions of large LMIs. On the other side,
this approach can be potentially employed to generate
lower order LFT approximations by using balancing re-
lated multi-dimensional truncation techniques [3].

An effective alternative approach for exact order re-
duction of high order LFTs is to use block-diagonal
similarity transformation matrices of the form T =
diag [T, ...,T,], which commute with the uncertainty
structure of A (i.e. TA = AT), to remove un-
controllable/unobservable parts.  Recently, a mini-
mal realization procedure based on n-D controllabil-
ity /observability forms has been proposed in [9]. This
approach appears to be well suited to be turned into a
reliable numerical procedure. Significant reductions of
order can often also be often by using sequential 1-D

reduction techniques based on orthogonal controllabil-
ity /observability canonical forms computed separately
for each block of A [12]. Alternatively, sequential 1-
D order reduction procedures for standard discrete-time
systems can be employed to obtain approximate low or-
der LFT models. The numerical examples presented in
this paper confirm the potential usefulness of this ap-
proach in obtaining low order approximate LFT models.

One additional particular aspect worth to be mentioned
in this context is the possibility to exploit that frequently
the S11 matrix in the resulting LFT description (4) has
most of its eigenvalues equal to zero (all eigenvalues
are equal to zero if S(p) is a polynomial matrix in p).
Since many of these eigenvalues are uncontrollable or un-
observable, a special order reduction procedure can be
devised to remove in a first step only those uncontrol-
lable/unobservable eigenvalues which are zero. This can
be done easily by using numerical singular value decom-
positions on the block rows/columns of the LFT realiza-
tion or even symbolic LU-like rank revealing decomposi-
tions. Since not all locally uncontrollable/unobservable
zero eigenvalues can be removed in this way, the pro-
cedure, although effective in practice, does not always
provide the maximum achievable reduction.

3. Software Tools

A library of basic functions for symbolic generation and
manipulation of LFT models, called 1£ft1ib, has been
implemented in the computer algebra language Maple.
The operations are performed on LFT objects which
can be either a parametric matrix or an LFT model
defined by a quadruple of matrices and a variables list.
Thus all matrix-matrix, matrix-LFT and LFT-LFT op-
erations can be performed transparently using the same
basic functions. The functions allow the generation and
manipulation of symbolic LFT models. The main advan-
tage of this feature is the possibility to construct LFT
realizations only for subsets of parameters. This allows
the usage of a unique original model even if different
uncertain parameter sets are considered. This feature
also supports experiments for an incremental genera-
tion of LFT models, by successively generating LFT re-
alizations for distinct subsets of uncertain parameters.
In contrast, approaches based on MATLAB (e.g., the
PUM-software [12]) always require the definition of the
complete uncertain parameter set and the specification
of numerical values for the rest of parameters, since the
manipulated LF'T descriptions always have to be numer-
ical.

The library 1ft1ib! contains over 20 functions grouped
in several categories:

IThe authors thank Dr. D. Kaesbauer from DLR-Oberpfaffen-
hofen for expert help in implementing the first versions of several
routines of this library.



e Functions for generation of LFT models

— for multivariate polynomials
— for rational functions

— for rational matrices
e Functions for basic LF'T manipulations

— LFT couplings (e.g., series, parallel)
— row/colums concatenations

— inverse/dual of an LFT model

— symbolic order reduction

— lower-upper LF'T conversions

— LFT to rational matrix conversion
— similarity transformation

— variable substitution

e Auxiliary functions
(e.g., sorting, scaling, interface to MATLAB).

The most basic function of the library generates an LF'T
model for a multivariate polynomial, converted previ-
ously to a special form by an expression evaluation func-
tion. This conversion can be done either by the common
subexpression optimization function optimize or by the
conversion function convert (with the horner flag set to
obtain a nested Horner-form of multivariate polynomi-
als). The expression evaluations scheme to be employed
as well as the option for order reduction can be specified
by the user with help of global variables. The effects of
these options on obtaining lower order LFT models is
illustrated in Example 1 of the next section.

The general approach which we pursued for implement-
ing numerical software for order reduction of LFT mod-
els was to ensure: (1) high efficiency by exploiting struc-
tural features of the problem, (2) numerical robustness
by preventing unnecessary failures, (3) enhanced numer-
ical accuracy by using numerical reliable algorithms, and
(4) increased user-friendlyness by using an appropriate
computational environment. The efficiency of compu-
tations, numerical robustness, and high accuracy of re-
sults have been achieved mainly by using FORTRAN
based robust implementations of algorithms for all ba-
sic computations. Languages like FORTRAN or C++
allow exploiting all structural features of the problems
with the lowest computational effort and memory usage.
This strongly contrasts with the intrinsic limitations of
popular user-friendly computational environments (e.g.,
MATLAB or MATRIX x), which basically rely on an in-
terpretational mode of work. Probably the best possible
trade-off results by combining the user-friendly opera-
tion of MATLAB with the facilities to use external func-
tions (so called mez-functions) implemented in FOR-
TRAN. For basic computations as system scaling, min-
imal realization or order reduction, mez-functions have
been implemented based on FORTRAN routines from

the LAPACK-based [1] public domain control library
SLICOT? [5]. These mez-functions have been further
used to implement reliable and efficient n-D order re-
duction software in MATLAB.

For numerical order reduction of LFT models two
alternative MATLAB-based software tools are avail-
able. For order reduction based on n-D controllabil-
ity /observability staircase forms [9], the original n-D
systems software® has been enhanced by adding an LFT
scaling facility (using a SLICOT-based mez-function)
and replacing the call to the O(n*) complexity MAT-
LAB function cotrbf by a call to an efficient O(n?) com-
plexity FORTRAN based mez-function for controllabil-
ity staircase form computation. For the sequential 1-
D order reduction we implemented a special m-function
calling optionally two mexz-functions for minimal realiza-
tion based on 1-D controllability /observability staircase
forms [13], or the discrete-time B&T approach for or-
der reduction using enhanced accuracy square-root and
balancing-free algorithms [14]. The usage of this latter
approach allows to compute approximate LFT models
in a similar fashion as in the case of standard systems.

Essential for the application of numerical techniques
based on computing numerically sensitive controllabil-
ity staircase forms or even on balancing related model
reduction techniques is that the underlying LFT mod-
els are well-scaled. It is important to emphasize that
the LE'T models resulting from symbolic manipulations
have often a very wide range of values. For instance, the
norms of matrices of LF'T realizations in the examples
of the next section were sometimes as high as 1032 or
even higher. It is clear that without adequate scaling
procedures all numerical computations on these models
are hopeless. The MATLAB-based scaling procedure
available in the Control Toolbox was not able to achieve
significant norm reductions and therefore the numerical
reduction of LFT models was not possible. In contrast,
with the SLICOT-based mez-functions it was possible to
reduce the norm of all underlying matrices in the LFT
realizations below 10. This spectacular reduction of nu-
merical ranges allowed to obtain very accurate results
even for very high order LFT models.

4. Examples

In this section we present several examples illustrating
the generation of LFT uncertainty models. All employed
symbolic models are available as Maple codes on the
web?,

Example 1. This example is intended to illustrate the
effectiveness of different options available in the sym-
bolic software to achieve lower order LFT models for a

2ftp://ugs.esat.kuleuven.ac.be/pub/WGS/SLICOT/
Shttp://www.mae.cornell.edu/Raff/software/md/md.html
dhttp://www-er.df.op.dlr.de/~varga/1ft/



single rational function. This computation is basic for
generation of LFT models starting from a given linear
PUM (2). As an example we take the most complicated
term agg(p) in the A(p) matrix of the extended enve-
lope RCAM [15]. The four uncertain parameters in the
RCAM are: the mass m, two components of the position
of center of gravity X., and Z.4, and the trimmed air
speed V4. The expression of agg(p) is

aog
= 0.061601
20 CwVA
where C,, = %;"Lfgj 5 and
Gy =  1.6726 X,y C\>Zy — 0.17230 X, 2 C,,

~3.9324 X,y Cyp Zog — 0.28903 Xy Cop? Ze,
—0.070972 Xy Zeg + 0.29652 Xy 2 Cyy Zey
+4.9667 X,y Cypy — 2.7036 Xy C
40.58292 C,,% — 0.25564 X,,> — 1.3439 C,,
+100.13 X,y — 14.251 Z,, — 1.9116 C,,* Z,,,
+1.1243 Xy Zpg + 24.656 Cyy Zeg
+0.45703 Xy C,y® — 46.850

The used uncertainty normalizations are

m = 125000 + 250006m

X,y = 0.23+0.086X,, 5)
Zey = 0.105+0.1056Zc,

Va = 804106V4

where dm, § X4, 6Z.4 and dV4 are the normalized un-
certain parameters.

The following table contains the resulted block struc-
tures for A = {oml,,,0Xcgln,,0Zc91n,,0Valy,} and
the total order na of A for different settings of opti-
mization and order reduction options in Maple:

Optimization | Reduction | {ni,nq,n3,ns} | na
None No 149,72,36,136) | 293
optimize No {19,6, 1,83} 109
horner No {3,6,9,41} 59
optimize Yes {4,4,1,18} 27
horner Yes {3,2,3,18} 26

These results show that the use of symbolic preprocess-
ing functions optimize and convert (with horner op-
tion) allows a substantial reduction of the initial orders
of generated LFTs. In combination with partial order re-
duction, this reduction is particularly effective and leads
to a more than 10 times reduction of the orders of the
symbolically generated LFTs.

The least achieved block orders starting from the last
two entries in the above table have been obtained with
numerical 1-D/n-D reductions and have block structures
{4,4,1,5} and {3,2, 3,7}, respectively. Further, an ap-
proximate LFT model with block structure {3,3,1,3}

has been obtained by using B&T model reduction for
a tolerance of 10~* on the Hankel-singular values. The
corresponding approximation asg of asg shows a very
good agreement over the whole range of values of uncer-
tainties. For a sample of 10* uniformly generated values
of the normalized parameters, the maximum relative er-
ror in asg satisfied

Q29 — Q29

~6-107°.

max

a29

Example 2. This example illustrates the generation of
locally valid LFT models for a realistic, but relatively
simple nonlinear aircraft model RCAM [11]. The linear
PUM model has been obtained by symbolic lineariza-
tion of the nonlinear RCAM in symmetric longitudinal
flight. The uncertain parameters are those in Example
1 and the same uncertainty normalization (5) has been
used. The initial LFT realization of the system matrix
S(p) obtained using symbolic realization with optimize
and with partial order reductions has the block struc-
ture {43,6,8,26} and total order nao = 83. Repeated
numerical 1-D order reductions led to a reduced LFT
model with a block structure {8,4,4,18} and na = 34.
The same block structure has been obtained by using
n-D order reduction. By using the discrete B&T model
reduction technique with a tolerance of 0.01 on the Han-
kel singular values an LFT model with block structure
{8,2,2,10} and na = 22 has been obtained. Monte-
Carlo analysis indicates a .006% agreement of the ap-
proximate LFT model with the original system matrix
S(p). It is interesting to note that for this model, the
original LFT model generated with the method of [12]
has order larger than 200.

Example 3. This example relies on the linear paramet-
ric model in [15] generated for the RCAM. This model
has a substantially increased complexity because of ad-
ditional parameter fitting performed on individual ele-
ments of system matrices. The purpose of this fitting
was to extend the validity of the linear PUM over the
whole flight envelope of RCAM. The initial LFT real-
ization of the system matrix S(p) obtained using sym-
bolic realization with optimize and with partial order
reductions performed on matrix element level has the
block structure {80,28,10,189} and order na = 307.
Partial order reductions applied on matrix level led to a
block structure {73,21, 9,158} and order na = 261. Nu-
merical 1-D (based on discrete B&T method) and n-D
order reductions led to reduced LFT models with block
structures {33, 18,7,66} and {39, 20,8,91}, respectively,
and the corresponding orders nao = 124 and na = 158.
By using the discrete B&T model reduction technique
with a tolerance of 0.001 on the Hankel singular values
an LFT model with block structure {27,11,5,38} and
na = 81 has been obtained. Monte-Carlo analysis indi-
cates a .001% agreement of the approximate LFT model



with the original system matrix S(p).
5. Conclusions

We presented an overview of low order LFT generation
for parametric uncertain linear models. Due to lack
of general minimal realization procedures for n-D sys-
tems, ad-hoc methods based on symbolic LFT realiza-
tion methods as well as on reliable numerical order re-
duction tools are essential for obtaining low order LFT
models. A collection of symbolic Maple-based and nu-
meric MATLAB-based software tools has been imple-
mented which allows the generation of low order LFT
models. Realistic aircraft model examples illustrated
the capabilities of this software to solve high complexity
practical problems.

The symbolic approach for LFT generation has impor-
tant advantages. Since all computations are performed
symbolically (floating-point numbers are represented ex-
actly in rational form), there is no accuracy loss dur-
ing generating the LF'T models. Further, symbolic LFT
models with respect to a subset of parameters can be
easily constructed. Finally, symbolic manipulation tech-
niques open clear perspectives to further improve the
LFT generation process by including more involved tech-
niques at the level of whole matrices, like extracting
common row/column expressions or using multivariate
factorization/decomposition techniques.

Numerical tools are also necessary to further reduce the
order of generated LFT models or even to generate ap-
proximate low order LFT models. Since the order of
realistic LFT models is usually relatively high, the nu-
merical software must be robust and accurate. More-
over, of fundamental importance for employing numeri-
cal sequential 1-D or n-D order reduction software is the
need for good LFT scaling software. The proposed ap-
proach relying on using reliable numerical software im-
plemented in FORTRAN within the user-friendly envi-
ronment MATLAB is a very promising way to efficiently
solve complex computational problems for systems, like
the generation of low order LFT-based physical uncer-
tainty models.
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