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Automated Generation of LFT-Based Parametric Uncertainty

Descriptions from Generic Aircraft Models

A. VARGA∗, G. LOOYE, D. MOORMANN, G. GRÜBEL

ABSTRACT

A computer assisted modelling methodology is developed for the generation of lin-
earized models with parametric uncertainties described by Linear Fractional Trans-
formations (LFTs). The starting point of the uncertainty modelling is a class of
generic nonlinear aircraft models with explicit parametric dependence used for simu-
lation purposes. The proposed methodology integrates specialized software tools for
object-oriented modelling, for simulation, and for numerical as well as symbolic com-
putations. The methodology has many generic features being applicable to similar
nonlinear model classes.

Key words: linear fractional transformations, nonlinear systems modelling, software
tools, uncertainty modelling.

1 INTRODUCTION

The dynamical behaviour of many lumped-parameter processes, and in partic-
ular of a flying aircraft, can be described by non-linear dynamic system models
of the form

E(x(t), p)ẋ(t) = F (x(t), u(t), p)
y(t) = G(x(t), u(t), p) (1)

where x, u, y are the state-, input- and output–vectors respectively, and p is a
vector of model parameters. The matrix E(x(t), p) is structurally non-singular
and thus can be inverted if necessary. A generic aircraft model can be seen as
the interconnection of several dynamical and static subsystems describing dif-
ferent parts of the aircraft dynamics and of the interactions of aircraft with its
flight environment. Generic models are useful for obtaining dynamical models
of particular aircraft by appropriately choosing the various component sub-
systems and the corresponding parameter sets. For a particular aircraft model
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different instantiations can be obtained with respect to various flight conditions
and parameter values.

The structured singular value (also called µ) was introduced to study lin-
ear models with structured parametric uncertainties [4], described by linear
fractional transformations (LFTs) [5, 22]. The evolving µ-analysis and synthe-
sis methodology represents a powerful tool for analysis of robustness and for
robust control synthesis (see for instance [6] for a quite complex practical syn-
thesis example). One of the main hurdles in using the µ-analysis and synthesis
techniques is the need to develop LFT-based parametric uncertainty descrip-
tions for the underlying plant models. Obtaining such descriptions is usually a
very tedious, error-prone modelling task and can involve tremendous symbolic
manipulations even for relatively few parameters. Therefore, the availability of
tools to automate the generation of LFT-based parametric uncertainty descrip-
tions is important to complement existing µ-analysis and synthesis software.

In this article we discuss the automatic generation of LFT-based parametric
uncertainty models starting from a generic nonlinear aircraft-dynamics model.
The main problem addressed is how to approximate all linearizations of a non-
linear model of the form (1) over all flight conditions and all parameter values
by a unique linear time-invariant state space model with explicit parametric
uncertainties expressed as LFTs. The proposed computer assisted modelling
methodology integrates many specialized software tools as, for instance, tools
for object-oriented modelling to generate particular aircraft models, tools for
numerical computations to determine equilibrium points or to reduce the order
of LFT descriptions, as well as tools for symbolic computations to perform sys-
tem linearizations and to generate LFT-based uncertainty descriptions. Note
that, although the starting point of our discussion was a particular class of
models, the main steps of the proposed computer assisted methodology are
of generic value being applicable to similar model classes encountered in many
practical applications. As an example, we will discuss the generation of an LFT-
based uncertainty description for the Research Civil Aircraft Model (RCAM)
[16] developed within the GARTEUR Action Group on Robust Flight Control.
The RCAM example served as a benchmark problem for the GARTEUR robust
control design challenge [12].

Physical models of generic aircraft-dynamics have been developed in [16] by
using the object-oriented modelling environment Dymola [7, 8]. The key aspect
of modelling with Dymola is the possibility to obtain nonlinear dynamic models
which exhibit explicit parametric dependencies. This aspect led us to the idea to
investigate the possibility of using the generic Dymola models as starting points
to generate LFT-based parametric uncertainty models in a form directly suited
for µ-analysis [1, 10]. Such an approach involves basically two steps. In the
first step, linear models exhibiting implicit or explicit parameter dependencies
are generated. To be further tractable, these dependencies must be expressed
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exclusively by rational functions in the parameters. In the second step, LFT-
based parametric descriptions are generated from these rational parametric
representations by using multidimensional state space realization algorithms.
A new approach combining a method based on parametric study [18] and the
numerical and symbolic linearization method of [20] is proposed in this article.

The organization of the article is as follows. In chapter 2 we present the
main aspects of the development of generic aircraft models using the object
oriented modelling tool Dymola. Then we discuss in chapter 3 a combined
numerical and symbolic linearization approach of the nonlinear aircraft dy-
namics model for the purpose of generating LFT-based parametric uncertainty
descriptions. A semi-automatic procedure has been developed based on one- or
two-dimensional data fitting to obtain rational parametric expressions for each
matrix element which are valid over the whole flight envelope. In chapter 4
we describe the generation of LFT for system matrices with elements given by
rational expressions of parameters. Appendices A summarizes the system vari-
ables, while in Appendix B we give the complete rational parameter-dependent
system matrices used to generate the LFT uncertainty description for RCAM.

2 DEVELOPMENT OF GENERIC MODELS

2.1 General model building aspects

A generic model based approach for aircraft-dynamics modelling has been de-
veloped in [16]. This approach is based on the object-oriented modelling en-
vironment Dymola [7, 8] and is a versatile methodology to generate nonlinear
aircraft models primarily for simulation purposes. Such models can describe
the whole dynamics of a particular aircraft in all flight conditions. Moreover
models corresponding to particular flight conditions and/or emphasizing only
parts of the aircraft dynamics (e.g. longitudinal dynamics) can be easily gen-
erated. The explicit parametric dependencies present in the generated models
allows to perform various types of parametric studies for simulation, optimiza-
tion, or robustness analysis purposes. A main advantage of the object oriented
modelling approach is that, it allows to describe models of aircraft dynamics
in the notation of aircraft physics (i.e. of flight mechanics). In contrast to this
approach, control system oriented model building tools like Simulink [15] use
signal flows or input-output block diagrams.

Fig. 1 shows the main physical subsystems describing the different physi-
cal parts of the aircraft and the different phenomena influencing the aircraft
aerodynamics.

A simplifying feature of such an approach to aircraft modelling is that each
model component is described in its own coordinate system. Thus gravity,
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Fig. 1. Object diagram of RCAM

wind, and atmosphere are conveniently described in an earth related coordinate
system, aerodynamics in a wind coordinate system, and engines in a body-fixed
coordinate system. This is achieved by using additional objects to describe
coordinate transformations and an object to describe the relationship between
velocity, wind, and airspeed. All necessary components are grouped into an
aircraft objects library as that presented in Fig. 2. Different representations of
one component may be present to allow model building of different complexity
or various functionalities
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Fig. 2. Aircraft model library

An additional feature in object oriented modelling of physical systems is
the encapsulation of objects. The internal implementation of details (e.g. of
the aerodynamics) are not visible, when viewing the RCAM object model as
depicted in Fig. 1. By encapsulation, the implementation of an object can be
changed without affecting the functionality of the entire model. More details
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of aircraft modelling are discussed in [16].
Dymola has a graphical interface which allows an interactive generation

of models by component aggregation. The resulting model contains both
graphical as well as textual information. The graphical information shows the
constituent blocks, the hierarchy of blocks, and the interconnections between
blocks. The textual information describes all the underlying mathematical
details of a block and is provided in the form of ordinary mathematical and
boolean equations.

The symbolic equation handler of Dymola generates a state space model of
the form (1) from the parameter instantiated equations of each object, together
with the equations derived from the interconnection structure. The equations
are sorted and solved according to the specified inputs and outputs. Equations,
which are formulated in an object but not needed for the specified configura-
tion, are removed automatically. The result is a mathematical model with a
minimum number of equations for the specified task.

2.2 Software tools

From the graphical and textual information, Dymola can automatically gen-
erate efficient code for different simulation environments, like Simulink, ACSL
or ANDECS DSSIM. The code for Simulink can be an m-file or a cmex-file.
Fortran or C code can be exported in the DSblock neutral simulation-model
format [17], to be used in any other simulation run-time environment capable
of importing Fortran or C models. This facility, in particular, is used for the
ANDECS control design optimization environment [11].

To obtain the LFT based uncertainty description from the RCAM example
depicted in Fig. 1, a MATLAB code based Simulink model and a C code model
have been generated. The MATLAB code generated as an m-file allows the
conversion to a symbolic model which is processable by symbolic computation
tools. The generated C code model is a cmex-file which is linked directly to
Simulink and mainly serves for a fast trimming of the nonlinear model in vari-
ous equilibrium points. For an increased computational performance, Dymola
could also generate Fortran subprograms to be used by the ANDECS DSSIM
simulation module [11], or by DSSTAT to compute equilibrium points or DSLIN
to perform numerical linearizations.

2.3 RCAM example

In the following we present some particular features of the RCAM example in
Fig. 1. The state vector x, control input vector u and measurable output vector
y have dimensions 12, 5, and 15 respectively. The physical meaning of the com-
ponents of the state, input and output vectors is given in Appendix A. The pa-
rameter vector p in the nonlinear model (1) is defined as p = (m, Xcg, Ycg, Zcg),
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where m is the mass of the aircraft and (Xcg, Ycg, Zcg) represent the three co-
ordinates of the center of gravity of the aircraft. These parameters have the
following ranges of variation:

m ∈ [ 100000 kg, 150000 kg ]
Xcg ∈ [ 0.15c̄, 0.31c̄ ]
Ycg ∈ [−0.03c̄, 0.03c̄ ]
Zcg ∈ [ 0, 0.21c̄ ],

where c̄ = 6.6 m is the mean aerodynamic chord [2]. The nominal values of
parameters used throughout this article are mnom = 120000 kg, Xcgnom =
0.23c̄, Ycgnom = 0, Zcgnom = 0.0c̄.

In the next chapters we present as an example the generation of the LFT-
based uncertainty description for the linearized RCAM in symmetric horizontal
flight defined by constant air speed VA = 80 m/s and ycg = 0. Note that no
parameter variation will be included with respect to the parameter ycg, but we
will consider VA as an additional uncertain parameter with the following range
of variation:

VA ∈ [ 1.23Vstall , 90 m/s ].

Vstall is defined from the following equilibrium relation: mg = 1
2ρV 2

stallCLmax ,
where CLmax = 2.75 and ρ is the density of air.

3 PARAMETER DEPENDENT LINEARIZATION

3.1 General aspects

As already mentioned, our aim is to obtain a linear time-invariant state space
model with explicit parameter dependencies, which satisfactorily approximates
all linearizations of the nonlinear model (1) over all flight conditions and all
parameter values. For this purpose there are several approaches possible with
various degrees of conservativeness.

The first approach at hand is to repeatedly perform numerical linearizations
of the nonlinear model (1) in several equilibrium points (x(i), u(i)), i = 1, . . . , N,
corresponding to particular values p(i) of the physical parameters. The resulting
linear models form a so called multi-model state description

δẋ(t) = Aiδx(t) + Biδu(t)
δy(t) = Ciδx(t) + Diδu(t) , i = 1, . . . , N , (2)

where Ai, Bi, Ci, Di, for i = 1, . . . , N, are constant real matrices of appropriate
dimensions. For each entry in one set of the above system matrices it is easy
to determine the corresponding lower and upper bounds. For instance, let
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Amin and Amax be the matrices containing the lower and upper bounds for
the entries of state matrices. Then all (i, j) entries can be replaced by a single
entry of the form aij = a0

ij + slp
A
l , where a0

ij = (amin
ij +amax

ij )/2 is the nominal
value, sl = (amax

ij − amin
ij )/2 is the slope corresponding to element (i, j). If

sl 6= 0, then pA
l is an uncertain parameter which varies between -1 and 1. The

index l corresponds to the column stacked vector representation of the state
matrix. We can attach such a parametric uncertainty to each varying entry of
the matrices Ai and finally we can define the parameter dependent state matrix

A(pA) = A0 + pA
1 A1 + · · ·+ pA

kA
AkA ,

where A0 has the entries a0
ij and Al is a rank one matrix of the form Al = sleie

T
j ,

with ei being the i-th column of the identity matrix. Analogously, we can define
the matrices B(pB), C(pC) and D(pD), and we can replace the multi-model
(2) by an affine parameter-dependent representation of the form

δẋ(t) = A(pA)δx(t) + B(pB)δu(t)
δy(t) = C(pC)δx(t) + D(pD)δu(t). (3)

Note that all parameters appearing in the above defined linear system are
artificially introduced and thereby reflect the uncertainties of the physical pa-
rameters p1, . . . , pk only implicitly. Although the parametric linear model (3)
certainly covers all possible linearizations arising from the nonlinear model (1),
this representation of physical uncertainties is conservative because of ignoring
possible joint parameter dependencies in the model. Thus, using this modelling
approach as the basis for a µ-analysis or synthesis may lead to difficulties in
designing robust controllers or in assessing their robustness [18].

A second approach to obtain a linear parametric representation suitable to
generate an LFT-based uncertainty description is by using symbolic lineariza-
tion in a nominal flight condition. For nominal values of the model parameters
pnom it is possible to compute numerically an equilibrium point of the system
{x̄, ū} satisfying the the system of nonlinear equations

0 = F (x̄, ū, pnom) . (4)

Let F̄ (δx, δu, p) and Ḡ(δx, δu, p) be

F̄ (δx, δu, p) := [E(x̄ + δx, p)]−1F (x̄ + δx, ū + δu, p)
Ḡ(δx, δu, p) := G(x̄ + δx, ū + δu, p) (5)

corresponding to “the right hand sides “ of the ordinary differential equations
arising from (1). By symbolic linearization of the nonlinear model (1) in the
neighbourhood of an equilibrium point {x̄, ū} we obtain a linear time-invariant
model of the form

δẋ = A(p)δx + B(p)δu
δy = C(p)δx + D(p)δu,

(6)
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where the system matrices are given by

A(p) = ∂F̄ (δx, δu, p)
∂(δx)

∣∣∣ δx=0
δu=0

, B(p) = ∂F̄ (δx, δu, p)
∂(δu)

∣∣∣ δx=0
δu=0

,

C(p) = ∂Ḡ(δx, δu, p)
∂(δx)

∣∣∣ δx=0
δu=0

, D(p) = ∂Ḡ(δx, δu, p)
∂(δu)

∣∣∣ δx=0
δu=0

.

(7)

We can assume that any non-rational parametric expressions in the elements of
the state space model matrices are replaced by polynomial or rational approx-
imations. Thus the model (6) represents a linearized system arising from the
nonlinear model (1) in a rationally parameter-dependent representation with
the matrices A(·), B(·), C(·) and D(·) having only entries which are rational
functions of the physical parameters p1, . . . , pk. Notice that, if necessary, it is
possible to enlarge the parameter vector p with some components of the equi-
librium point vectors in order to account for dependencies of the entries of the
system matrices on particular linearization points.

The main advantage of this approach is that it allows an exact description
of joint parametric dependencies in the model, and thus it can be used for
an accurate modelling of the parametric uncertainties. The main limitation of
this approach follows from the fact that the elements of the system matrices
depend on the equilibrium point and on the nominal parameter values for which
the linearization was performed. Thus, the resulting approximate linear model
(6) is valid only in a small neighbourhood around the linearization point and
therefore, such a model is generally not appropriate to be used in a µ-analysis
and synthesis methodology if large parametric variations are involved, or if the
controller to be designed must be robust in all flight conditions.

Obtaining a unique linear model, based on an LFT description of the uncer-
tainties, which covers all flight conditions and all possible parameter variations,
is obviously a difficult model building task. In what follows we offer a kind of
compromise solution to this problem, by combining the two approaches men-
tioned above in such a way that the conservativeness of the first approach is
reduced and the validity of the obtained model (6) is increased over the whole
range of flight conditions and parameter variations.

The method which we propose can be seen as an updating procedure of an
already existing model of the form (6). By using symbolic linearization in an
arbitrary trimming point, it is possible to figure out which entries of the system
matrices depend explicitly on the components of the trimming point vectors
x̄ and ū. Entries with no explicit dependence on state and input components
don’t need any corrections. However, the entries with explicit dependence on
state and input components need to be corrected to take into account the
dependence on trimming conditions. If the trimming could be performed sym-
bolically by solving the nonlinear equations (4) for x̄ and ū, we would obtain



AUTOMATED LFT GENERATION 9

these vectors as explicit functions of parameters p and possibly of some addi-
tional trimming parameters. Thus we could obtain explicit expressions of all
elements of the system matrices as (possibly non-rational) functions of system
and trimming parameters. Unfortunately, for complicated models like that of
an aircraft, symbolic trimming is not generally feasible. Thus, in general a
multi-dimensional curve fitting for the elements of the system matrices is nec-
essary to find approximate rational or polynomial relations on the trimming
parameters.

To perform parameter fitting, the linearization data obtained for the multi-
model representation (2) can be employed. For particular entries sometimes it
is possible to use parameter fitting with respect to a reduced set of parameters
only. For instance, in the case of an aircraft, textbook information (see [2])
provides useful hints to guess the proper form of the parametric dependencies.
This approach, however, is strongly limited by the availability of reliable general
purpose multi-dimensional parameter fitting procedures. Fortunately, in the
case of RCAM, all necessary parameter fitting for the aircraft model can be
done by using one- and two-dimensional parameter fitting.

The proposed approach is significantly more complicated than the two ap-
proaches previously discussed. Besides repeated linearizations, it involves also
multi-dimensional curve fittings to update selected entries of the system matri-
ces obtained for the nominal flight conditions and nominal parameter values.

3.2 Software tools

To determine the matrices of the multi-model (2) we performed repeated trim-
ming and numerical linearizations for various flight conditions and parameter
values by using the Simulink C-mex model generated by Dymola.

For the generation of the matrices of the linearized model (6) we can start
with the Simulink m-file generated for RCAM by Dymola and convert it first
to a Maple readable form. Note that Maple [9] is a very popular and powerful
symbolic computation tool, having a command syntax which is very similar to
the syntax of MATLAB commands. A standard interface between MATLAB
and Maple is provided from both MATLAB side as well as from Maple side.
By using symbolic manipulations within Maple (differentiation, polynomial and
rational approximation), symbolic expressions of the system matrices (6) can be
obtained and can then be used to generate LFT-based parametric uncertainty
models. Here we discuss only some details of the conversion to the Maple
format.

The Simulink m-file is actually a text file written in the MATLAB language
devised to evaluate “the right hand sides “ in (5) of the ordinary differential
equations, which arise from (1) for a given equilibrium point {x̄, ū}. The well
structured layout of the MATLAB interface allows the automatic processing
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of this text file to transform it into a source file conforming with the syntax
of Maple. The only real difficulty is caused by the presence of if-then-else
constructs in the generated MATLAB code. However, because all decisions
implied by these constructs are well defined in the computed equilibrium points,
all if-then-else constructs can be eliminated. Note that the resulting symbolic
model (5) is only valid in the neighborhood of the equilibrium points. The
automatic elimination of if-then-else constructs was done with the help of a
special MATLAB script, which simultaneously executes and writes the executed
code to an external file. Then a simple text processing routine written in
MATLAB converts this file into a Maple readable form. These two conversion
steps produce explicit Maple readable symbolic expressions for F̄ (δx, δu, p)
and Ḡ(δx, δu, p), to serve further for symbolic evaluation of the matrices of
the linearized model.

For one- and two-dimensional parameter fitting, the PUM-toolbox [13] pro-
vides an interactive fitting routine which allows also to introduce an additional
uncertain parameter to account for the approximation error. For the RCAM ex-
ample, all parameter fitting can be carried out by a single routine, fit rcam.m.
In this routine, first all linearizations are read and all required data are col-
lected. Next the fitting routine of PUM is called for each parameter to be
approximated by a polynomial. The resulting polynomials are stored in the
PUM-database as specially structured matrices. Since these polynomials need
to be substituted in the parametric linear model in Maple, a function is avail-
able to translate these matrices into polynomials in string-format, readable by
Maple. Using this function, fit rcam.m writes the symbolic expressions of the
polynomials into a Maple script. When executed, this script loads the obtained
expressions of the polynomials and calculates symbolically the matrix elements
of the parametric state-space model which need to be replaced. This replace-
ment of the matrix elements depending on the trimming point takes place by
calling the above Maple script after executing the symbolic linearization step.

3.3 RCAM example (continued)

For the RCAM example, let us consider the (7,7) element in the state matrix
A. A large set of linearization has been created to cover the whole flight
envelope for steady symmetric horizontal flight. From a global search over
these linearizations, the maximum and minimum values of the (7,7) element
are found as: amin

77 = −0.0489 and amax
77 = −0.0193. Thus to cover all possible

values, we can express a77 as

a77 = −0.0341 + 0.0148δa77,

where δa77 is an uncertain parameter which may take any value between -1 and
1. As mentioned before, the major disadvantage of this approach is that this
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perturbation element has no direct physical meaning. Following this approach
for each varying element in the matrices, we obtain as many parameters as
there are varying elements, while in reality the elements change in a certain
pattern due to joint variations of a limited number of physical parameters.

The symbolic linearization with Maple, at a fixed trim condition defined
by constant air speed VA and symmetric horizontal flight, gives the following
expression for the (7,7) element of A:

a77 = −48.784
VA

m
(8)

Unfortunately the expression (8) of a77 is not valid over the whole flight en-
velope because generally a77 depends on the trimming point. However this
expression is still a very good approximation in a small neighbourhood of the
equilibrium point for small deviations of the parameters from their nominal
values. The situation is quite different for other elements, as for instance the
(1,1) element of A, which do not depend on the trimming point. For example,
the resulting rational expression

a11 = −1900.1
VA

m
(9)

is valid with a very good accuracy over all flight conditions involving trimmed
airspeed.

Now we show how to find improved rational parametric expressions for those
elements of the system matrices which depend on the trimming point. As an
example we consider again a77 and try to determine a rational expression for
it, which covers all possible linearizations. From a textbook approximation we
find (neglecting effects of the Mach-number) the following expression for a77,
as the Xu-element in a linear approximation of aircraft equations of motion [2]:

a77 = Xu = −q̄
S

m

2
VA

(CD − αCL) = −VA

m
ρS(CD − αCL), (10)

where q̄ = 1
2ρV 2

A is the dynamic pressure, CD is the drag coefficient, CL is the
lift coefficient and α is the angle of attack. All these values correspond to the
chosen trimming conditions. We immediately see that Xu not only depends
on mass and speed, but also on the trimmed aerodynamic state of the aircraft.
Only the VA/m relation has been recognized by symbolic linearization at a
fixed trimming point.

We can put the expression for a77 in the form

a77 = − g
1
2ρS

ρS(CD − αCL)
CW VA

= −0.061601
ã77

CW VA
, (11)
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where CW = mg
ρ/2V 2

A
S

and ã77 = ρS(CD−αCL). For an aircraft the aerodynamic
parameters α, CD and CL depend on the parameters mass, speed and center of
gravity location. In fact it is known that ã77 = f(CW , Xcg), where f(CW , Xcg)
depends at most quadratically of CW and Xcg. However in the case of ã77 it
was possible to obtain a quite accurate approximation with the second order
polynomial in CW

ã77 = 1.5667Cw
2 − 16.241Cw + 65.449.

Similar and even more simpler dependencies can be obtained for the analogous
subexpression ã79, ã97 and ã99 of the elements a79, a97 and a99, respectively.

The good approximation by a second order fit can be observed from Fig. 3,
where the curve in the middle represents the actual fit.
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Fig. 3. Polynomial fit of a77 ∗m/VA with CW

In this figure we immediately see, that for each CW there is some vertical
variation. This is mainly caused by the variation of the horizontal center of
gravity location, Xcg. The computed second order approximation is sufficiently
accurate to even allow extrapolation outside the flight envelope. The drawn
bounds give an indication of the resulting approximation error if the depen-
dence on Xcg is neglected. However, the largest deviation is within 2% of the
corresponding function value and thus the influence of Xcg is almost negligible.
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Lower and upper bounds are drawn below and above the fitted curve, rep-
resenting minimal translations of this curve such that all data points lie in
between. If the fitted curve is the function f0(CW ), then we can cover all data
points by a function of the form

f(CW ) = f0(CW ) + sfδf

where sf is an appropriate scaling and δf is a new parameter which varies
between -1 and 1. Although this approximation seems a bit conservative, espe-
cially at lower values of CW , in this way we can, with an additional uncertain
parameter, also cover the fitting errors and thus all possible linearizations. Note
however, that δf is an uncertain parameter without any direct physical inter-
pretation. Before we make use of such a parameter, we could try to get a better
expression for f0 by two-dimensional curve-fitting with CW and Xcg. The mag-
nitude of sf will then reduce to a very small value. On the other hand, we don’t
want the expression to become too complicated. For this reason, we decided to
keep the one-dimensional fit by neglecting the influence of Xcg on this entry.
Substitution of m = 120000 kg and VA = 80 m/s gives a77 = −0.03252, which
is equal to the value resulting by numerical linearization at identical conditions.

The single parameter approximation is not valid for other entries like a27,
a29, a38, b72 or α. a38, b72 and α can be approximated accurately using a two-
dimensional fitting with respect to CW and Xcg. For two elements, a27 and a29,
a three-dimensional fitting was determined, each element being determined in
the form f(CW , Xcg)Zcg + c with c a constant. For each of these two elements
we determined first f(CW , Xcg) by using a two-dimensional parameter fitting
with a fixed Zcg and then we performed a one-dimensional fit with Zcg as
free parameter to determine c. The expressions of all the resulting matrices
depending rationally on the parameters are given in Appendix B.

At this point another issue arises. That is the choice of parameters in the
description of the linear model. Naturally we choose m, Xcg, Zcg and VA.
However, it will be clear that this will lead to a huge ∆-block in the LFT-
realisation, even after order reduction. Each occurrence of a parameter in a
polynomial, multiplied with its degree, adds an extra element to the ∆-block.
Where CW ∼ m/V 2

A occurs, one element is added for m and two for VA.
We can do something about this by choosing CW and VA as independent

parameters, so that each occurrence of CW adds only one element to the ∆−
block.
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4 GENERATION OF LFT DESCRIPTIONS

4.1 General aspects

In this chapter we present an approach to convert parametric description of a
linear system of the forms (3) or (6) into LFT-based uncertainty descriptions.
Because an affinely dependent function is a particular class of rational function,
the approach presented in this chapter is applicable for both types of models.
Note however, that for the affine parameter-dependent representation (3), a
more efficient approach is to use the special techniques described in [23].

We assume that the elements of the matrices of the linearized system (6)
depend only on the parameters pi, i = 1, . . . , q. (As mentioned before, the
vector p optionally can include some components of the equilibrium point (x̄,
ū).) Any uncertainty in a parameter pi expressed as pi ∈ [ pi, p̄i ] can be
transcribed in a normalized form pi = pi0 + si0δpi with |δpi| ≤ 1, pi0 = (pi +
p̄i)/2 and si0 = (p̄i−pi)/2. This local parameter uncertainty is then expressed
as an elementary upper LFT

pi = Fu

([
0 si0

1 pi0

]
, δpi

)
.

Recall that for a partitioned matrix M

M =
[

M11 M12

M21 M22

]
∈ IR(p1+p2)×(q1+q2)

and for ∆ ∈ IRq1×p1 , the upper LFT Fu(M, ∆) is defined as

Fu(M, ∆) = M22 + M21(I −∆M11)−1∆M12.

If all elements of matrices A, B, C and D are rational functions in parame-
ters pi, i = 1, . . . , q, then the parametric uncertainties at the components level
can be transformed to structured uncertainties at the level of system matri-
ces by using the properties of LFTs [5]. Thus for the system matrices, LFT
uncertainty models can be generated in the form

A(p) = Fu

([
A11 A12

A21 A0

]
, ∆A

)
, B(p) = Fu

([
B11 B12

B21 B0

]
,∆B

)
,

C(p) = Fu

([
C11 C12

C21 C0

]
, ∆C

)
, D(p) = Fu

([
D11 D12

D21 D0

]
, ∆D

)
,

where ∆A, ∆B , ∆C and ∆D are diagonal matrices having on the diagonals
the normalized uncertainty parameters δp1, δp2, . . . , δpq. Notice that A0, B0,
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C0 and D0 are the nominal values of the respective matrices (for all δpi set to
zero).

Procedures to generate LFT-based uncertainty descriptions have been pro-
posed in [19] and [3]. The resulting LFT-based parametric descriptions are
generally non-minimal. The construction of minimal order descriptions is es-
sentially a multidimensional minimal realization problem, which even for the
2-D case is a difficult problem to solve. Without special concern for minimiza-
tion of the orders of the generated LFTs, the resulting LFTs have usually a
much higher order than the minimal order. An ad-hoc procedure suggested in
[19] can be used for reducing the order of individual repeated blocks. The pro-
cedure essentially solves 1-D minimal realizations problems for each repeated
block. Although there is no guarantee for minimality, this procedure is appar-
ently effective on many practical examples. A more involved approach based
on model reduction techniques for LFT systems can be also used [21]. The use
of the latter procedure involves the solution of Lyapunov-type linear matrix
inequalities (LMIs).

4.2 Software tools

For the approach proposed in [19] MATLAB implementations are also available
in the PUM software package [13]. Our approach is based on the recently de-
veloped interface between the Maple symbolic parametric description and the
PUM software. The Maple procedure maple2pum was implemented to generate
a MATLAB script file which allows the complete automation of the genera-
tion of the LFT representations for the system matrices with rational entries.
This script simply performs all operations which are usually manually done to
run the PUM software, that is, loading the symbolic information about each
rational matrix entry into the PUM database MUNCMOD, running PUM to
generate the LFT description and order reduction, and performing optionally
the update or storing of the generated LFT model. The main problem with the
usage of the PUM software is the usually high order of the generated LFT mod-
els. Although some improvement of the original software has been performed
to lower the orders of generated intermediary LFTs, the final LFTs have some-
times excessively large orders which lead to numerical difficulties during order
reduction or in using the µ-analysis software.

An alternative approach which potentially leads to lower order LFT models
is to use Maple instead of MATLAB, to generate the LFT-based parametric
descriptions. This approach is attractive because the matrices of the linearized
model are already available symbolically in Maple and thus further manip-
ulations of systems matrices can easily be performed to reduce the order of
generated LFTs. For instance, the separation of common expressions in sev-
eral elements can drastically reduce the resulting orders. Such an approach can
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be efficiently combined with the alternative realization procedure proposed in
[3]. Another possibility to exploit is the optimization feature present in Maple
to minimize the number of multiplications in evaluating polynomials in several
variables. The usage of this feature, in conjunction with the generation of LFT
descriptions within Maple, leads implicitly to the minimization of the orders
of all generated intermediary LFT descriptions of the individual entries of the
system matrices. This in turn contributes to reduce the order of the global
LFT description for the entire matrices.

4.3 RCAM LFT models

We generated three LFT-based uncertainty models of RCAM, starting from the
rational system matrices presented in Appendix B by using appropriate sub-
stitutions. The generated models correspond to a symmetric horizontal flight
at constant air speed of VA = 80 m/s. In the first model the air speed value
was assumed exactly known (no uncertainty on air speed). This model served
mainly for the post-design assessment of the stability robustness of RCAM
controllers [14]. More involved LFT descriptions have been obtained by adding
the air speed as an uncertain parameter. The second model was obtained by
taking CW as uncertain parameter instead of m. The advantage of this model
is its lower order in comparison with the third model, where m and VA are
used as uncertain parameters. The orders of blocks of the LFT models are
summarized in the following table:1

Parameters m CW Xcg Zcg VA Order of ∆
Model I 17 0 15 3 0 35
Model II 0 43 19 5 23 90
Model III 50 0 41 8 204 303

Note that the obtained orders correspond almost certainly to non-minimal
realizations of the corresponding LFTs. However, this redundancy doesn’t
practically influence the usability of the generated models for robustness anal-
ysis and robust synthesis purposes.

5 CONCLUSION

It has been shown that a computer aided generation of LFT-based parametric
uncertainty descriptions from a generic aircraft-dynamics model with explicit
parametric uncertainties is possible by using various specialized numerical and

1LFT-models available on request (mat-file), please contact first author.



AUTOMATED LFT GENERATION 17

symbolic software tools. The resulting models are well suited to be immediately
used in available µ-analysis and synthesis software tools [1]. The proposed ap-
proach is also of generic value, being applicable to similar model classes encoun-
tered in practice. To problems with non-explicit parameter dependencies, as
for example those with parameters defined by table look-up procedures, the pro-
posed approach is applicable provided rational approximations can be found to
replace all non-analytical functional dependencies. Interesting open problems
are the minimal realization and the order reduction of LFT representations.
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A. NOMENCLATURE FOR RCAM: STATES,
INPUTS, OUTPUTS, PARAMETERS

The nomenclature used and detailed information on RCAM can be found in
[12]. The following tables summarize this nomenclature, as it is used for the
formulation of the RCAM. In these tables, FE denotes the earth-fixed reference
frame, FB denotes the body-fixed reference frame, FV denotes the vehicle-
carried vertical frame, and FM denotes the measurement reference frame (see
[12]).

The state variables of the nonlinear RCAM are expressed in SI units and
are defined in Table 1. In this table, ‘CoG’ denotes ‘Centre of Gravity’.

The control inputs to the model are given in Table 2. The outputs from the
model are given in SI units and are shown in Table 3. Only the model outputs
labeled as ‘measured’ can be assumed to be available as inputs to the controller
that is to be designed. The ‘simulation’ outputs are only intended to be used
for evaluation and should not be used in the final controller.

The parameters used in RCAM are given in Table 4. The parametric
changes for RCAM are defined in Table 5.

Table 1. States definitions
Symbol Name Unit

p x(1) = roll rate (in FB) rad/s
q x(2) = pitch rate (in FB) rad/s
r x(3) = yaw rate (in FB) rad/s
φ x(4) = roll angle (Euler angle) rad
θ x(5) = pitch angle (Euler angle) rad
ψ x(6) = heading angle (Euler angle) rad
uB x(7) = x component of inertial velocity in FB m/s
vB x(8) = y component of inertial velocity in FB m/s
wB x(9) = z component of inertial velocity in FB m/s
x x(10) = x position of aircraft CoG in FE m
y x(11) = y position of aircraft CoG in FE m
z x(12) = z position of aircraft CoG in FE m
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Table 2. Inputs definitions

Symbol Name Unit
δA u(1) = aileron deflection rad
δT u(2) = tailplane deflection rad
δR u(3) = rudder deflection rad

δTH1 u(4) = throttle position of engine 1 rad
δTH2 u(5) = throttle position of engine 2 rad

Table 3. Outputs definitions

Symbol Name Unit
Measured

q y(1) = pitch rate (in FB) = x(2) rad/s
nx y(2) = horizontal load factor (in FB) = Fx

mg -
nz y(3) = vertical load factor (in FB) = Fz

mg -
wV y(4) = z component of inertial velocity in FV m/s
z y(5) = z position of aircraft CoG in FE = x(12) m

VA y(6) = air speed m/s
V y(7) = total inertial velocity m/s
β y(8) = angle of sideslip rad
p y(9) = roll rate (in FB) = x(1) rad/s
r y(10) = yaw rate (in FB) = x(3) rad/s
φ y(11) = roll angle (Euler angle) = x(4) rad

uV y(12) = x component of inertial velocity in FV m/s
vV y(13) = y component of inertial velocity in FV m/s
y y(14) = y position of aircraft CoG in FE = x(11) m
χ y(15) = inertial track angle rad

Simulation
ψ y(16) = heading angle (Euler angle) = x(6) rad
θ y(17) = pitch angle (Euler angle) = x(5) rad
α y(18) = angle of attack rad
γ y(19) = inertial flight path angle rad
x y(20) = x position of aircraft CoG in FE = x(10) m
ny y(21) = lateral load factor (in FB)= Fy

mg -
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Table 4. Parameters definitions
Symbol Name Default Unit
Mass Parameters

m = aircraft total mass 120 000 kg
Xcg = x position of the CoG in FM 0.23 c̄ m
Ycg = y position of the CoG in FM 0 m
Zcg = z position of the CoG in FM 0 m

Aerodynamic Parameters
c̄ = mean aerodynamic chord 6.6 m
S = wing planform area 260.0 m2

Table 5. Possible parameter choices in RCAM

Parameter Bounds
m : 100 000 kg < m < 150 000 kg

Xcg : 0.15 c̄ ≤ Xcg ≤ 0.31 c̄
Ycg : −0.03 c̄ ≤ Ycg ≤ 0.03 c̄
Zcg : 0.0 c̄ ≤ Zcg ≤ 0.21 c̄
VA : 1.23 Vstall ≤ VA ≤ 90 m/s

In the above table Vstall is defined from the following equilibrium relation:

mg =
1
2
ρV 2

stallCLmax ,

where CLmax = 2.75 and ρ is the air density.
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B. RATIONAL PARAMETER-DEPENDENT
SYSTEM MATRICES

A(p) =




−117.05 1
Cw VA

0 50.807 1
Cw VA

0 0 0

0
0.70528Zcg−96.507+24.879 Xcg

Cw VA
0 0 0 0

4.8192 1
Cw VA

0 −48.116 1
Cw VA

0 0 0

1.0 0 α 0 0 0

0 1.0 0 0 0 0

0 0 1.0004 0 0 0

0
−1.9860 b̃72−1.0 VA

2α Cw

Cw VA
0 0 −9.8061 0

VA α 0 −VA 9.8061 0 0

0 −241.25+0.0040000 Cw VA+VA
2Cw

Cw VA
0 0 −9.8100 α 0

0 0 0 0 0.000043244 0

0 0 0 −VA α 0 VA

0 0 0 0 −VA 0

0
−2.2278−0.054189Xcg+2.5880 Zcg

Cw VA
0 0 0 0

0.061601
ã27

Cw VA
0 0.061601 ã29

Cw VA
0 0 0

0 0.061601 ã38
Cw VA

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−0.061601
ã77

Cw VA
0 −0.061601

ã79

Cw VA
0 0 0

0 −15.697 1
Cw VA

0 0 0 0

−0.061601
ã97

Cw VA
0 −0.061601 ã99

Cw VA
0 0 0

1 0 α 0 0 0

0 1 0 0 0 0

−α 0 1 0 0 0



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B(p) =




−0.97053
Cw

0
0.33355+0.008129 Xcg−0.38821 Zcg

Cw
301.18 1

Cw VA
2 −301.18 1

Cw VA
2

0
0.02188 Zcg−2.9935+0.77170Xcg

Cw
0

2152.8+7478.4 Zcg

Cw VA
2

2152.8+7478.4 Zcg

Cw VA
2

−0.02032
Cw

0
−0.41990+0.15568Xcg−0.008129Zcg

Cw
5768.4 1

Cw VA
2 −5768.4 1

Cw VA
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −0.00077
b̃72VA

Cw
0 72517.0

Cw VA
2

72517.0
Cw VA

2

0 0 2.3545 1
Cw

0 0

0 −7.48317 1
Cw

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




with Cw = mg
1
2 ρV 2

A
S

and

ã27 = 2.1451Xcg Cw
2Zcg + 0.058556Xcg Cw Zcg − 20.291Xcg Cw + 1.1425Xcg Cw

2

−0.90635Cw
2 − 9.5334 + 9.2389Cw + 18.030Xcg − 5.7399Zcg − 5.6075Cw

2Zcg

−0.97164Xcg Zcg + 5.7418Cw Zcg

ã29 = 1.6726Xcg Cw
2Zcg − 0.17230Xcg

2Cw − 3.9324Xcg Cw Zcg − 0.28903Xcg
2Cw

2Zcg − 46.850
−0.070972Xcg

2Zcg + 0.29652Xcg
2Cw Zcg + 4.9667Xcg Cw − 2.7036Xcg Cw

2 + 0.58292Cw
2

−0.25564Xcg
2 − 1.3439Cw + 100.13Xcg − 14.251Zcg − 1.9116Cw

2Zcg + 1.1243Xcg Zcg

+24.656Cw Zcg + 0.45703Xcg
2Cw

2

ã38 = 0.096425Xcg
2Cw − 0.086069Xcg

2 + 1.6082Xcg Cw − 16.591Xcg − 7.0577Cw + 18.418
ã77 = 1.5667Cw

2 − 16.241Cw + 65.449
ã79 = −201.39Cw + 121.84
a97 = 144.91Cw + 171.66
ã99 = 24.355Cw

2 + 6.0937Cw + 962.75
α = −0.041088Xcg Cw − 0.0053886Xcg + 0.17559Cw − 0.16287

b̃72 = 4.9092Xcg Cw + 0.73956Xcg − 21.270Cw + 19.721
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C(p) =




0 1.0 0 0 0 0

0 −0.20245
b̃72

Cw VA
0 0 0.00040155 0

0 −24.593+0.00040000Cw VA
Cw VA

0 0 0 0

0 0 0 0 −VA 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1.0 0 0 0 0 0

0 0 1.0 0 0 0

0 0 0 1.0 0 0

0 0 0 0 0.000043244 0

0 0 0 −VA α 0 VA

0 0 0 0 0 0

0 0 0 −α 0 1

0 0 0 0 0 0

−0.0062794
ã77

Cw VA
0 −0.0062794

ã79

Cw VA
0 0 0

−0.0062794
ã97

Cw VA
0 −0.0062794 ã99

Cw VA
0 0 0

−α 0 1 0 0 0

0 0 0 0 0 1.0

1 0 α 0 0 0

1 0 α 0 0 0

0 V−1
A 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 α 0 0 0

0 1 0 0 0 0

0 0 0 0 1.0 0

0 V−1
A 0 0 0 0



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D(p) =




0 0 0 0 0

0 −0.0000785VA b̃72
Cw

0 7392.15
Cw V 2

A

7392.15
Cw VA

2

0 − 0.76281
Cw

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



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