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Abstract: We propose a numerically reliable computational approach to design least order
fault detectors using descriptor system techniques. This approach is based on a new numer-
ically stable algorithm to compute least order rational nullspace bases of rational matrices.
The main computation in this algorithm is the orthogonal reduction of the system pencil
matrix to a Kronecker-like form. The proposed approach can be combined with coprime
factorization techniques to determine stable rational bases. Least order fault detectors can be
determined by selecting an appropriate linear combination of basis vectors by eliminating
non-essential dynamics. The proposed approach is applicable to both standard and descriptor
system descriptions.

Keywords: Fault detection, rational matrices, minimal rational basis.

1. INTRODUCTION filters (Varga, 2002). For an efficient implementation
and operation of a residual generator (or a bank of

: : . such devices), it is generally desirable to keep the or-
In the model based fault diagnosis, the fault detection der of the fault detector(s) as low as possible. Thus, the

task is achieved by detecting discrepancies betweenCI . f fault detect ith ible least d ical
the outputs of the monitored plant and the predictions esign of fault detector with possiole feast dynamica
obtained with a mathematical model. These discrep-o.rder Is an important aspect from practical point of
ancies - called alsresiduals- are indications of faults

and are produced by special devices callesidual Although there are many approaches proposed in the
generatorsFrom a system theoretic point of view, the literature to design fault detectors (Chen and Pat-
residual generators are physically realizable systemston, 1999; Patton and Hou, 1998; Hou, 2000), only
having as inputs the measured outputs and the controlery few of them address explicitly the design of least
inputs of the monitored system, and as output the order detectors. In what follows we restrict ourselves
generated residual. The residual generators are usuallyo comment the works (Frisk, 2000; Frisk and Ny-
implemented as parts of control algorithms or as inde- berg, 2001), where a design approach of least order
pendent monitoring procedures. detectors is proposed by using polynomial matrix ma-

A residual generator has at least two basic functions: nipulations.

(1) generating zero residuals in the fault-free case; (2) The main computational problem in (Frisk and Ny-

generating nonzero residuals when any fault occursberg, 2001) is the numerical computation of a minimal
in the system. A more advanced functionality, like polynomial basis for the left nullspace of a certain

fault isolation (i.e., exact location of faults) can be rational matrix. The method advocated to be used is
often achieved by designing a bank of fault detectors based on a polynomial echelon form (Kailath, 1980).
(Gertler, 1998) or by direct design of fault isolation



However, this method, as well as similar polynomial 2. DESIGN OF LEAST ORDER DETECTORS
manipulation based approaches, contrary to what is

said in (Frisk and Nyberg, 2001), are in general nu- Consider the linear time-invariant system described by
merically unstable. Even the numerically more reli- the input-output relations

able algorithm of Beelen (1987), implemented in the

SLICOT library (Benneet al,, 1999), has limitations y(A) = Gp(Mu(d) + Gr(NEN) + Ga(N)d(N),
from numerical point of view, because it involves
matrix multiplications and inversions. Although there
exist reliable algorithms for many basic polynomial
computations, there are two basic limitations for the
usefulness of the polynomial approach to solve large
order problems.

wherey (), u()), £f(A), andd(A) are Laplace- or
Z-transformed vectors of thg-dimensional system
output vectory(t), m-dimensional plant input vector
u(t), g-dimensional fault signal vectof(t), andr-
dimensional disturbance vectd(t), respectively, and
where G,(\), Gy(X) and G4(\) are thetransfer-
The first limitation is theintrinsic ill-conditioning function matrices(TFMs) from the plant inputs to
of polynomial representations because of possible ex-outputs, fault signals to outputs, and disturbances to
tremely wide range of polynomial coefficients. It is outputs, respectively. According to the system type,
not uncommon to arrive to polynomial models for X\ = s in the case of a continuous-time system or
which the range of magnitudes of the coefficients ex- \ = z in the case of a discrete-time system.

ceeds the interval& s, 1), or (1,1/e5s), or both of
them, where , is the relative machine precision (e.g.,
em ~ 10716 for double precision computations on
many machines). For such models, applyamy algo- y(N)
rithm (including numerically stable ones) can lead to r(A) = R(}) [u()\)}
a complete loss of accuracy, thus to a complete failure.

A linear residual generator (or detector) of least dy-
namical order is sought having the general form

1)

The second limitation, pointed out by Van Dooren Such that:(i) »(t) = 0 when f(t) = 0; and (ii)
(1981), is that many algorithms based on polynomial ”(t) # 0 when fi(t) # 0, fori = 1,...,q. Besides
manipulations ar@umerically unstable. The reason ~ (he requirement that the TFM of the deteciti) has

for that is simple: typical operations like choosing !€@st possible McMillan degree, it is also necessary,
pivots are determined by powers of the polynomial for Physical realizability, that?()) is a proper and
indeterminate rather than by the numerical values of Stable TFM. As detector, we can always chodte)
coefficients. Thus, algorithms to compute minimal S & rational row vector.

polynomial bases (e.g., algorithms based on the Her-Transcribing the conditioty), we get
mite normal form or on the polynomial echelon form

(Kailath, 1980)), frequently lead to numerical insta- R(ANG(A) =0 (2)
bility. Therefore, the computed results for large order

systems tend to be very inaccurate. where

Avoiding the above mentioned difficulties was our GO\ = {Gp()\) Gd@\)} , 3)
main motivation to investigate alternative state-space I 0

methods to compute least order nullspaces of rational o _
matrices. Our approach to design least order detectorgvhile the condition(ii) requires

(see Section 2) is based on a new numerically stable ()

: : Gy'(N) ;
algorithm to compute least order rational nullspace R\ | 7/ £0, i=1,....q (4)
bases of rational matrices (see Section 3 ). The main 0

computation in this algorithm is the orthogonal re-

duction of the system pencil matrix to a Kronecker- WhereGgf)(/\) is thei-th column of G £ ()).

like form, which allows to obtain, practically with- S . o

out any additional computation, a least order rational From (2) it appears thafz()) is a left annihila-
nullspace basis. This approach can be combined withfor of G(}), thus one possibility to determing())
coprime factorization techniques to determine stable S 0 compute first a left minimal basiy'z () for
rational bases. Least order fault detectors can be ob/Vz(G(2)), the left nullspaceof G()), and then
tained by selecting an appropriate linear combination 1€ build @ rational and stable detector &\) =

of the basis vectors by eliminating non-essential dy- X (\)Vz(A), representing a linear combination of the
namics (see Section 4). The proposed overall approacfOWs 0f VL (}), such that conditions (4) are fulfilled.
is applicable to both standard or descriptor systems NS approach has been successfully employed by

and represents a numerically reliable alternative to the FTisk and Nyberg (2001) to obtain, in several partic-
polynomial approach used in (Frisk, 2000). ular cases, least order detectors from computed poly-
nomial bases. We show that a similar approach is pos-

sible starting from a computed rational basis, with the
obvious advantage of using reliable numerical tech-
nigues based on state-space computations.



The following procedure summarizes our approach for Our method exploits the simple fact (Vergheste

designing a least order detect®()): al., 1979) thatN () is a nullspace basis @F()\) iff
1.Compute a least McMillan degree bagig (\) for [%8))} is a nullspace basis of the system matrix

the left nullspace of7(\) defined in (3).

2.Find a partition ofNy (\) as S(A) = A-XE B
N o C D’
NLO‘) = NLJE)\;
LAYE:2 Thus to computéV () we can determine equivalently
such that a nullspace basi¥ (\) for S(A) and thenN()) sim-
o ply results asN(A\) = [0 I, ]Y(\). N(\) can
Nia(V) Ggf)(A) £0, i=1,....q be computed (s_ee bellow) by employing linear pencil
’ reduction algorithms based on orthogonal transforma-
) tions. Bases with special properties (e.g., stable) can
If Nz.1()) is empty, STOP (no solution exists). be obtained by postprgvcessim‘g(A), using the fact
3.Determine a rational matriX (\) such that that if N(A\) = N(A)M~1()) is aright coprime

factorization(RCF), then the numerator matriX(\)

R(A) := Np1(A) + X(A)Np 2(N) can be equally employed as nullspace basi§ ©f).

has the least possible McMillan degree. The main advantage of this approach is that the com-
4.Define R(\) as the numerator factor of the stable putation of the nullspace can entirely be done by ma-
left coprime factorizatiorﬁ()\) = M1 (M\)R(). nipulating state space matrices instead of manipulat-

o ) ] ing polynomial models. The resulting nullspace is ob-
In what follows, we describe in details reliable numer- tained in a descriptor system representation which can
ical methods to perform Steps 1 and 3 of the above pe jmmediately used in applications. In what follows

procedure. we describe in detail our approach.
Let @ and Z be orthogonal matrices (for instance,
3. COMPUTATION OF LEAST ORDER determined by using the algorithms of (Beelen, 1987;
RATIONAL NULLSPACE BASES Varga, 1996)) such that the transformed pef¢i) :=

QS (M) Z is in the Kronecker-like staircase form

B.|A, = AE, Ay, —AE,,
0 ‘ 0 Areg,c - >\Ereg,c (6)

In this section we propose a computational approach

to determine least order rational nullspace bases of §(/\) =
a rational matrix. Besides applications in fault detec-

tion, the nullspace computation has many system the- ) )
oretical applications in model matching, observer de- Where the descriptor paiiB,, A, — AE.) is control-
sign, system inversion (Wang and Davison, 1973; For- 1able, E;. is non-singular, andi,.cy,c — AEr . has full
ney, 1975). A numerically reliable algorithm to com- column rank excepting possibly a finite set of values
pute minimal polynomial bases using state-space tech-0f A (i-e, the invariant zeros of (A)). It follows that
niques has been developed by Beelen (1987) startingve can choose the nullspakg)) of S()) in the form
from the ideas of Forney (1975). However, the compu-

tation of !east order_rationz_al bases has been apparently )7()\) _ [ (AE, — zl‘h)_lBr

not considered yet in the literature. 0

For convenience, we present a method for the compu-

tation of aright nullspace basis of a rational matrix Then the nullspace daf()\) is

G(\). To compute deft nullspace basis ofi(\) (as ~

necessary in the previous section &f\) defined in NA)=[0 In]2Y(})

(3)), the same approach can be applied to the trans-

posed matribxG” (\). and if we partition[0 I,,,]Z = [D, C, C,.]in

We assume thaG()\) is a p x m rational matrix accordance with the row partition &f()), we obtain

of rank r, having an observable descriptor system N(\) =C.(\E, — A,)"'B, + D, @)
representatioA — AE, B, C, D) satisfying
G(\) = C(\E — A)*lB D Thus,(A, — AE,, B,.,C,., D,.), with E,. nonsingular,

is a descriptor system representation f6(\). Note
that, to obtain this nullspace basis, we performed
exclusively orthogonal transformations on the system
matrices. We can prove that all computed matrices
are exact for a slightly perturbed original system. It
follows that the algorithm to compute the nullspace
GAN(A\) =0 (5) basis isnumerically stable.

We consider the problem to computena x (m —

r) rational matrix V() whose columns represents a
basis for the right nullspace 6f(\). ThusN (\) must
satisfy



We can show that the rational basis above has actuallyof A — AE. Since these eigenvalues appears in the
the least possible McMillan degree. Consider for this subpencil4,.; . — AE,¢4,. (being part of invariant

the detailed structure of the full row rank subpencil zeros), each of the first two block columns of the
[ B,|Ar — AE, |. We can assume that this subpencil second matrix must have full column rank. Therefore,

is in the following controllability staircase form

Aro| A1 —AE1 1| | Aie— AE1y
= ' ®
RRV.VIRWEDV.VY,
Avtip

WhereAZ-H,i S ]].:{Vixyifl, with Vo i=m—71,Vpp1 =
0, are full row rank matrices, far=0, ..., /+1. Note

that this form is obtained by using the pencil reduction

we have that

A, — \E,

rank [ c.

|-

and thus the paifA, — \E,., C,.) is observable. O

The TFMN () in (7) representing the nullspace basis
of G(A) is in general not stable. To computetable
rational basis, we can replacéV(\) by N()\) deter-

mined from a stable RCEV()\) = N(A\)M~1(\) in

algorithms described in (Beelen, 1987; Varga, 1996). € form

It follows that the order of the realization (7) is

1
Ny 1= g Vi
i=1

_ A, + B,F, — \E,| B,
N’()\) = Cr + D’I“F’I“ DT (9)
M(X) F, I

where F,. is determined such that all generalized

possible one.

Theorem 1.The rational matrixV () in (7) is a ratio-
nal nullspace basis @¥(\) of least McMillan order.

Proof. Using the staircase form (8), it is shown in

(Beelen, 1987) that a minimal polynomial basis can

be computed by selecting_; — v; polynomial basis
vectors of degreé — 1, fori = 1,...,¢ + 1. This

For this purpose, recursive coprime factorization tech-

nigues, as those proposed in (Varga, 1998), can be
used. The dual of this approach can be employed at
Step 4 of the proposed procedure in Section 2 to obtain
a stable detector.

4. DETECTOR ORDER REDUCTION

basis can be used to construct a minimal rational basisin the procedure in Section 2 we have to solve at
by making each column proper with appropriate order Step 3 the following problem: given the partitioning

denominators. The least order of such a basis is
£+1

> Wica —wi)(i—1)

i=1

Ty

But this is exactlyn,., since

{41 {41
=Y vie(i—1) = vi(i—1)
=1 i=1
£ V4
= ZuiifZVi(i—l) —Zuz

To finish the proof, we need to show additionally that
the realization (7) is minimal. The pdaiB,., A, —\E,.)

is controllable, by the construction of the Kronecker-
like form (6). To show it is also observable, observe
that

"A_\E B
{%910] c D|z=
m 0o I,

B, A, —AE, A..—\E,,
0 0 Areg,c - >\Ereg,c
Dr Cr Creg,c

has full column rank, excepting those values Jof

which belong to the unobservable set of eigenvalues

of rows of the left nullspace basi§;, (\) asNy, 1(\)
and Ny »(A), determine a rational matriX (\) such
that Nz, 1 (A) + X (A)Ng 2(A\) has least McMillan de-
gree. In a dual formulation we have the problem: for
Ni(A) == N, (A) and Na(A) == Nf,(N), deter-
mine the rational matrixX (\) such thatNy(\) +
N2 (M) X (X) has least McMillan order.

The set of solutions to our problem can be written as

S(\) = {N1 (M) + Na(N)X (V)| for all X (M)}

and the partitioned matrikN;(A\) Na(\)] is called
agenerator of S(\). Note that by construction, each
solutionZ(\) € S(\) satisfies the consistency condi-
tion GT(X\)Z()\) = 0. To be a solution to the detector
design problemZ(\) must also satisfy; (\)Z(\) #

0, fori = 1,...,q, wherey;(\) is thei-th row of
Y(A) =[G} (N) 0]

Assume[ N1 (A) Nz(\)] has the state space realiza-
tion
_ Ar — )\Er ‘ Br,l Br,2

[ Ni(A) N2(N) | = Cr  |Dy1 Dyp

(10)

We have the following straightforward extension of
the result of Morse (1976):



Lemma 2.1f [ N1(A\) Na()) ] with state-space realiza-  staircase form (8) and all structural information are
tion (10) generateS (), then so doe[s]\Afl (A) Na(A) ] already available, the computations do not involve any
defined by rank determinations and merely amount to update this
form according to the desired column permutation
N\ ﬁz(/\)] = {AT + BroFry = AE|Bry Br,ﬂ of B,. With additional block permutations and block
Cr+ Dr2Fr2  [DraDrp row/column transformations, we can bring the trans-
formed system matrices in the followirsgecial form

From Lemma 2 it follows that if Ny(A) Na(N)] i B
in (10) generates(\) then for anyF, » and L,., the Q(A, — \E)Z = | =1 * 11 *
system Aay|Azo 0 |Ea2

Ar + BT,QFT,2 - AET‘BT‘,I + BT,QLT BT,Q 0 §12 ~ ~

[ Gt DraFra Dt DeaLe Dra| D QB2 Bl = | 522, G2 =[C1 ]G]

with TFM [Nl(x) +N2(A)L2} generatesS()\) as

I where the pair$§12,ﬁn — )\En) and(ézl,ﬁgg —
well. Be B

)\Egg) are controllable, and the submatridés,, Boo
Using this result we can try to determing. and andA,; have the particular structure

F, » to achieve a pole-zero cancellation by making a

maximum number of eigenvalues df. + B, > F,.» — [ By Bao Agy | = {
AE, uncontrollable viaB, 1 + B, 2 L,. This problem

has been theoretically solved in (Morse, 1976). To

apply the main result of (Morse, 1976) we need the With Bz, having full row rank. Thus, by takind.,

Boy Bay Aoy
0 0 0

following straightforward result: such thatBy; L + Bs» = 0 and
Lemma 3.The system (11) is observable for &ll 5. Fro= [Fél 8} Z1

Morse (1976) has shown that a least order solution can,; c e SN

ith F1; satisfying Ba1 F}
be obtained by solving a minimal order dynamic cover 1 fying B> i
design problem. Consider the set

+ 121\21 = 0, we achieve
the cancellation of the maximum number of uncon-
trollable eigenvalues. The resulting system of least

J={V:ImB,1 +A, Y CImB,»+V} McMillan order is

where (211 — AEy;, B2, C) + Dr72ﬁ117 D, 1+ D,2L;)
(Z’MET,IaET,Qa) = (Er_lAm Er_lBT,la Er_lBr,Q)
5. NUMERICAL EXAMPLES

Let J* denote the set of subspacgs of least di- ]
mension. IfY € J* then a pair(F,,, L,) can be  The proposed method to compute rational nullspace

determined such that bases has been implemented MarLAB m-function
L o - snull , based on the computation of orthogonal
(Ay + By 2F.2)V +1m (B, 1 + BsL,) CV Kronecker-like forms available in thBESCRIPTOR

TooLBox (Varga, 2000). The minimal cover algo-
Thus, determining a minimal dimensidhis equiva- rithm of Varga (2003) has been implemented in the
lent to a Type Il minimal order cover design problem, m-functionsmcover2 , which relies on a special or-
and a conceptual approach to solve it has been indi-thogonal controllability form algorithm (implemented
cated by Morse (1976). The outcome of his method as a Fortran 77fnexfile) and on a non-orthogonal
is, besidesV, the pair (F, 2, L) which achieves a  reduction (implemented iMATLAB). The results pre-
maximal order reduction by pole-zero cancellations. sented in this section have been computed using the

function fd implementing the proposed least order
The approach suggested by Morse (1976) can bedetector design procedure. Besidgmill andsm-

turned into a numerically reliable procedure. In what
- cover ,fd also calls other tools of thBESCRIPTOR
follows, due to space restrictions, we only sketch the - o :
TooLBOx as the minimal realization of generalized

proposed compt_;tahongl approach o determinig systems, finite-infinite/stable-unstable spectral separa-
andL,.. The details of this procedure will be presented . . o
tions, coprime factorization, etc.

in another paper (Varga, 2003). The general idea is to
perform a preliminary orthogonal similarity transfor- To illustrate the applicability of the proposed approach
mation on the system matrices in (10) by applying a to high order systems, we generated random standard
special version of the controllability staircase form al- continuous-time systems with state vector dimensions
gorithm of Varga (1989) to the paif B, 2 B, 1], A, — n = 5,10, 20, 40, 80, 160 and fixed input and output
AE,). Since this pair is already in the controllability vectors dimensions afig = 2, my = 9, mq = 1,



p = 5. For each system we determined a least order Circuits (B. N. Datta, Ed.), Vol. 1., pp. 499-539.
detectorR(s) which detects the occurrence of each Birkhauser.

of the 9 faults and decouples any influences from Chen, J. and R. J. Patton (199Bpbust Model-Based
the command and disturbance inputs. To assess the  Fault Diagnosis for Dynamic Systemkluwer
effectiveness of the resulting detectors, we computed Academic Publisheres, London.

in each case the quantities Forney, G. D. (1975). Minimal bases of rational vector
spaces with applications to multivariable linear
ny = ’R(s) [Gfo(s)} H >0, systemsSIAM J. Controll3, 493-520.
0o Frisk, E. (2000). Order of residual generators — bounds
- HR(S) [Gd(s) Gp(s):| H 0 and algorithmsPrepr. IFAC Symp. SAFEPRO-
P ) I - CESS’2000, Budapest, Hungapp. 599-604.

Frisk, E. and M. Nyberg (2001). A minimal poly-
The results are summarized in Table 1, whefg.. is nomial basis solution to residual generation for
the order of the resulting detector. Note that for these fault diagnosis in linear system@\utomatica
randomly generated models the order of the rational 37,1417-1424.
nullspace is generically, this being also the order of  Gertler, J. (1998)Fault Detection and Diagnosis in
detectors computed using the methods of Patton and Engineering Systemblarcel Dekker. New York.

Hou (1998) and Hou (2000). Hou, M. (2000). Fault detection and isolation for
N ngeee nas descriptor systems. Iissues of Fault Dyagnosis
5 1 5951 7.7010-10 for Dynamic System@. J. Patton, P. M. Frank
10 2 1.45 1.31-10"15 and R. N. Clark, Eds.), Springer Verlag, London,
20 5 6.62 2.31-107%4 pp. 115-144,
40 10 4.64  3.75- 10:? Kailath, T. (1980)Linear SystemsPrentice Hall, En-
80 20 4.80 ~3.01-10 glewood Cliffs, N.J.

160 40 2,326 3.13-1077 . :
Morse, A. S. (1976). Minimal solutions to transfer

Table 1. Computational results matrix equationslEEE Trans. Autom. Control
21, 131-133.
Patton, R. J. and M. Hou (1998). Design of fault
6. CONCLUSION detection and isolation observers: a matrix pencil

_ _ approachAutomatica34, 1135-1140.
We proposed a numerically sound computational ap-\van Dooren, P. (1981). The generalized eigenstructure

proach to design least order fault detectors. The in- problem in linear systems theorfEEE Trans.
volved main computational ingredients are: (1) the Autom. ControR6, 111-129.

computation of a rational nullspace basis of a rational varga, A. (1989). Computation of irreducible general-
matrix; (2) the reduction of the dynamical order of ized state-space realizatiomgbernetika26, 89—
the detector. For the computation of rational nullspace 106.

bases, a new numerically stable algorithm, based onvarga, A. (1996). Computation of Kronecker-like
orthogonal pencil reduction, has been proposed. For forms of a system pencil: Applications, algo-
the order reduction of the detector, a method has rithms and softwareProc. CACSD’96 Sympo-
been proposed able to determine least order detectors  sjum, Dearborn, Mipp. 77-82.
starting from a given generator of all solutions. This varga, A. (1998). Computation of coprime factor-
method is based on determining least order dynami- izations of rational matriced.in. A|g & App]
cal covers using methods derived from computation 271, 83-115.
of controllability staircase forms (Varga, 2003). We varga, A. (2000). A descriptor systems toolbox for
believe that the overall approach to design least order MATLAB. Proc. CACSD'2000 Symposium, An-
detectors is a viable alternative to polynomial bases chorage, Alaska
based approaches. Numerical examples illustrate theyarga, A. (2002). Computational issues in fault-
potential of this approach to handle in a numerically detection filter designProc. of CDC'2002, Las
reliable way large order systems. Vegas, Nevada

Varga, A. (2003). Reliable algorithms for com-

puting minimal dynamic covers. (submitted to

7. REFERENCES CDC’2003)

Beelen, Th.G.J. (1987). New Algorithms for Comput- Verghese, G., P. Van Dooren and T. Kailath (1979).
ing the Kronecker structure of a Pencil with Ap- Properties of the system matrix of a generalized
plications to Systems and Control Theory. Ph. D. state-space systeimt. J. Control30, 235-243.
Thesis. Eindhoven University of Technology. Wang, S.-H. and E. J. Davison (1973). A minimization

Benner, P., V. Mehrmann, V. Sima, S. Van Huffel algorithm for the design of linear multivariable
and A. Varga (1999). SLICOT — a subroutine systemsIEEE Trans. Autom. Contral8, 220-
library in systems and control theory. I#p- 225.

plied and Computational Control, Signals and



