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Abstract: We propose a numerically reliable computational approach to design least order
fault detectors using descriptor system techniques. This approach is based on a new numer-
ically stable algorithm to compute least order rational nullspace bases of rational matrices.
The main computation in this algorithm is the orthogonal reduction of the system pencil
matrix to a Kronecker-like form. The proposed approach can be combined with coprime
factorization techniques to determine stable rational bases. Least order fault detectors can be
determined by selecting an appropriate linear combination of basis vectors by eliminating
non-essential dynamics. The proposed approach is applicable to both standard and descriptor
system descriptions.
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1. INTRODUCTION

In the model based fault diagnosis, the fault detection
task is achieved by detecting discrepancies between
the outputs of the monitored plant and the predictions
obtained with a mathematical model. These discrep-
ancies - called alsoresiduals- are indications of faults
and are produced by special devices calledresidual
generators. From a system theoretic point of view, the
residual generators are physically realizable systems
having as inputs the measured outputs and the control
inputs of the monitored system, and as output the
generated residual. The residual generators are usually
implemented as parts of control algorithms or as inde-
pendent monitoring procedures.

A residual generator has at least two basic functions:
(1) generating zero residuals in the fault-free case; (2)
generating nonzero residuals when any fault occurs
in the system. A more advanced functionality, like
fault isolation (i.e., exact location of faults) can be
often achieved by designing a bank of fault detectors
(Gertler, 1998) or by direct design of fault isolation

filters (Varga, 2002). For an efficient implementation
and operation of a residual generator (or a bank of
such devices), it is generally desirable to keep the or-
der of the fault detector(s) as low as possible. Thus, the
design of fault detector with possible least dynamical
order is an important aspect from practical point of
view.

Although there are many approaches proposed in the
literature to design fault detectors (Chen and Pat-
ton, 1999; Patton and Hou, 1998; Hou, 2000), only
very few of them address explicitly the design of least
order detectors. In what follows we restrict ourselves
to comment the works (Frisk, 2000; Frisk and Ny-
berg, 2001), where a design approach of least order
detectors is proposed by using polynomial matrix ma-
nipulations.

The main computational problem in (Frisk and Ny-
berg, 2001) is the numerical computation of a minimal
polynomial basis for the left nullspace of a certain
rational matrix. The method advocated to be used is
based on a polynomial echelon form (Kailath, 1980).



However, this method, as well as similar polynomial
manipulation based approaches, contrary to what is
said in (Frisk and Nyberg, 2001), are in general nu-
merically unstable. Even the numerically more reli-
able algorithm of Beelen (1987), implemented in the
SLICOT library (Benneret al., 1999), has limitations
from numerical point of view, because it involves
matrix multiplications and inversions. Although there
exist reliable algorithms for many basic polynomial
computations, there are two basic limitations for the
usefulness of the polynomial approach to solve large
order problems.

The first limitation is theintrinsic ill-conditioning
of polynomial representations because of possible ex-
tremely wide range of polynomial coefficients. It is
not uncommon to arrive to polynomial models for
which the range of magnitudes of the coefficients ex-
ceeds the intervals(εM , 1), or (1, 1/εM ), or both of
them, whereεM is the relative machine precision (e.g.,
εM ≈ 10−16 for double precision computations on
many machines). For such models, applyingany algo-
rithm (including numerically stable ones) can lead to
a complete loss of accuracy, thus to a complete failure.

The second limitation, pointed out by Van Dooren
(1981), is that many algorithms based on polynomial
manipulations arenumerically unstable. The reason
for that is simple: typical operations like choosing
pivots are determined by powers of the polynomial
indeterminate rather than by the numerical values of
coefficients. Thus, algorithms to compute minimal
polynomial bases (e.g., algorithms based on the Her-
mite normal form or on the polynomial echelon form
(Kailath, 1980)), frequently lead to numerical insta-
bility. Therefore, the computed results for large order
systems tend to be very inaccurate.

Avoiding the above mentioned difficulties was our
main motivation to investigate alternative state-space
methods to compute least order nullspaces of rational
matrices. Our approach to design least order detectors
(see Section 2) is based on a new numerically stable
algorithm to compute least order rational nullspace
bases of rational matrices (see Section 3 ). The main
computation in this algorithm is the orthogonal re-
duction of the system pencil matrix to a Kronecker-
like form, which allows to obtain, practically with-
out any additional computation, a least order rational
nullspace basis. This approach can be combined with
coprime factorization techniques to determine stable
rational bases. Least order fault detectors can be ob-
tained by selecting an appropriate linear combination
of the basis vectors by eliminating non-essential dy-
namics (see Section 4). The proposed overall approach
is applicable to both standard or descriptor systems
and represents a numerically reliable alternative to the
polynomial approach used in (Frisk, 2000).

2. DESIGN OF LEAST ORDER DETECTORS

Consider the linear time-invariant system described by
the input-output relations

y(λ) = Gp(λ)u(λ) + Gf (λ)f(λ) + Gd(λ)d(λ),

wherey(λ), u(λ), f(λ), and d(λ) are Laplace- or
Z-transformed vectors of thep-dimensional system
output vectory(t), m-dimensional plant input vector
u(t), q-dimensional fault signal vectorf(t), and r-
dimensional disturbance vectord(t), respectively, and
where Gp(λ), Gf (λ) and Gd(λ) are the transfer-
function matrices(TFMs) from the plant inputs to
outputs, fault signals to outputs, and disturbances to
outputs, respectively. According to the system type,
λ = s in the case of a continuous-time system or
λ = z in the case of a discrete-time system.

A linear residual generator (or detector) of least dy-
namical order is sought having the general form

r(λ) = R(λ)
[
y(λ)
u(λ)

]
(1)

such that:(i) r(t) = 0 when f(t) = 0; and (ii)
r(t) 6= 0 whenfi(t) 6= 0, for i = 1, . . . , q. Besides
the requirement that the TFM of the detectorR(λ) has
least possible McMillan degree, it is also necessary,
for physical realizability, thatR(λ) is a proper and
stable TFM. As detector, we can always chooseR(λ)
as a rational row vector.

Transcribing the condition(i), we get

R(λ)G(λ) = 0 (2)

where

G(λ) =
[

Gp(λ) Gd(λ)
Im 0

]
, (3)

while the condition(ii) requires

R(λ)

[
G

(i)
f (λ)
0

]
6= 0, i = 1, . . . , q (4)

whereG
(i)
f (λ) is thei-th column ofGf (λ).

From (2) it appears thatR(λ) is a left annihila-
tor of G(λ), thus one possibility to determineR(λ)
is to compute first a left minimal basisNL(λ) for
NL(G(λ)), the left nullspace of G(λ), and then
to build a rational and stable detector asR(λ) =
X(λ)NL(λ), representing a linear combination of the
rows ofNL(λ), such that conditions (4) are fulfilled.
This approach has been successfully employed by
Frisk and Nyberg (2001) to obtain, in several partic-
ular cases, least order detectors from computed poly-
nomial bases. We show that a similar approach is pos-
sible starting from a computed rational basis, with the
obvious advantage of using reliable numerical tech-
niques based on state-space computations.



The following procedure summarizes our approach for
designing a least order detectorR(λ):

1.Compute a least McMillan degree basisNL(λ) for
the left nullspace ofG(λ) defined in (3).

2.Find a partition ofNL(λ) as

NL(λ) =
[

NL,1(λ)
NL,2(λ)

]

such that

NL,1(λ)

[
G

(i)
f (λ)
0

]
6= 0, i = 1, . . . , q

If NL,1(λ) is empty, STOP (no solution exists).

3.Determine a rational matrixX(λ) such that

R̃(λ) := NL,1(λ) + X(λ)NL,2(λ)

has the least possible McMillan degree.

4.DefineR(λ) as the numerator factor of the stable
left coprime factorizatioñR(λ) = M−1(λ)R(λ).

In what follows, we describe in details reliable numer-
ical methods to perform Steps 1 and 3 of the above
procedure.

3. COMPUTATION OF LEAST ORDER
RATIONAL NULLSPACE BASES

In this section we propose a computational approach
to determine least order rational nullspace bases of
a rational matrix. Besides applications in fault detec-
tion, the nullspace computation has many system the-
oretical applications in model matching, observer de-
sign, system inversion (Wang and Davison, 1973; For-
ney, 1975). A numerically reliable algorithm to com-
pute minimal polynomial bases using state-space tech-
niques has been developed by Beelen (1987) starting
from the ideas of Forney (1975). However, the compu-
tation of least order rational bases has been apparently
not considered yet in the literature.

For convenience, we present a method for the compu-
tation of aright nullspace basis of a rational matrix
G(λ). To compute aleft nullspace basis ofG(λ) (as
necessary in the previous section forG(λ) defined in
(3)), the same approach can be applied to the trans-
posed matrixGT (λ).

We assume thatG(λ) is a p × m rational matrix
of rank r, having an observable descriptor system
representation(A− λE, B,C, D) satisfying

G(λ) = C(λE −A)−1B + D

We consider the problem to compute am × (m −
r) rational matrixN(λ) whose columns represents a
basis for the right nullspace ofG(λ). ThusN(λ) must
satisfy

G(λ)N(λ) = 0 (5)

Our method exploits the simple fact (Vergheseet
al., 1979) thatN(λ) is a nullspace basis ofG(λ) iff[

M(λ)
N(λ)

]
is a nullspace basis of the system matrix

S(λ) =
[

A− λE B
C D

]
.

Thus to computeN(λ) we can determine equivalently
a nullspace basisY (λ) for S(λ) and thenN(λ) sim-
ply results asN(λ) = [ 0 Im ]Y (λ). N(λ) can
be computed (see bellow) by employing linear pencil
reduction algorithms based on orthogonal transforma-
tions. Bases with special properties (e.g., stable) can
be obtained by postprocessingN(λ), using the fact
that if N(λ) = Ñ(λ)M̃−1(λ) is a right coprime
factorization(RCF), then the numerator matrix̃N(λ)
can be equally employed as nullspace basis ofG(λ).

The main advantage of this approach is that the com-
putation of the nullspace can entirely be done by ma-
nipulating state space matrices instead of manipulat-
ing polynomial models. The resulting nullspace is ob-
tained in a descriptor system representation which can
be immediately used in applications. In what follows
we describe in detail our approach.

Let Q and Z be orthogonal matrices (for instance,
determined by using the algorithms of (Beelen, 1987;
Varga, 1996)) such that the transformed pencilS̃(λ) :=
QS(λ)Z is in the Kronecker-like staircase form

S̃(λ) =
[

Br Ar − λEr Ar,x − λEr,x

0 0 Areg,c − λEreg,c

]
(6)

where the descriptor pair(Br, Ar − λEr) is control-
lable,Er is non-singular, andAreg,c−λEreg,c has full
column rank excepting possibly a finite set of values
of λ (i.e, the invariant zeros ofS(λ)). It follows that
we can choose the nullspaceỸ (λ) of S̃(λ) in the form

Ỹ (λ) =




I
(λEr −Ar)−1Br

0


 .

Then the nullspace ofG(λ) is

N(λ) = [ 0 Im ]ZỸ (λ)

and if we partition[ 0 Im ]Z = [ Dr Cr Cr,x ] in
accordance with the row partition of̃Y (λ), we obtain

N(λ) = Cr(λEr −Ar)−1Br + Dr (7)

Thus,(Ar − λEr, Br, Cr, Dr), with Er nonsingular,
is a descriptor system representation forN(λ). Note
that, to obtain this nullspace basis, we performed
exclusively orthogonal transformations on the system
matrices. We can prove that all computed matrices
are exact for a slightly perturbed original system. It
follows that the algorithm to compute the nullspace
basis isnumerically stable.



We can show that the rational basis above has actually
the least possible McMillan degree. Consider for this
the detailed structure of the full row rank subpencil[
Br Ar − λEr

]
. We can assume that this subpencil

is in the following controllability staircase form



A1,0 A1,1 − λE1,1 · · · A1,` − λE1,`

A2,1
. . .

...
. . . A`−1,` − λA`,`

A`+1,`




(8)

whereAi+1,i ∈ IRνi×νi−1 , with ν0 := m− r, ν`+1 =
0, are full row rank matrices, fori = 0, . . . , `+1. Note
that this form is obtained by using the pencil reduction
algorithms described in (Beelen, 1987; Varga, 1996).
It follows that the order of the realization (7) is

nr :=
∑̀

i=1

νi

and we show below that this order is equal to the least
possible one.

Theorem 1.The rational matrixN(λ) in (7) is a ratio-
nal nullspace basis ofG(λ) of least McMillan order.

Proof. Using the staircase form (8), it is shown in
(Beelen, 1987) that a minimal polynomial basis can
be computed by selectingνi−1 − νi polynomial basis
vectors of degreei − 1, for i = 1, . . . , ` + 1. This
basis can be used to construct a minimal rational basis
by making each column proper with appropriate order
denominators. The least order of such a basis is

nr =
`+1∑

i=1

(νi−1 − νi)(i− 1)

But this is exactlynr, since

nr =
`+1∑

i=1

νi−1(i− 1)−
`+1∑

i=1

νi(i− 1)

=
∑̀

i=1

νii−
∑̀

i=1

νi(i− 1) =
∑̀

i=1

νi

To finish the proof, we need to show additionally that
the realization (7) is minimal. The pair(Br, Ar−λEr)
is controllable, by the construction of the Kronecker-
like form (6). To show it is also observable, observe
that

[
Q 0
0 Im

] 


A− λE B
C D
0 Im


 Z =




Br Ar − λEr Ar,x − λEr,x

0 0 Areg,c − λEreg,c

Dr Cr Creg,c




has full column rank, excepting those values ofλ
which belong to the unobservable set of eigenvalues

of A − λE. Since these eigenvalues appears in the
subpencilAreg,c − λEreg,c (being part of invariant
zeros), each of the first two block columns of the
second matrix must have full column rank. Therefore,
we have that

rank

[
Ar − λEr

Cr

]
= nr

and thus the pair(Ar − λEr, Cr) is observable. 2

The TFMN(λ) in (7) representing the nullspace basis
of G(λ) is in general not stable. To compute astable
rational basis, we can replaceN(λ) by Ñ(λ) deter-
mined from a stable RCFN(λ) = Ñ(λ)M̃−1(λ) in
the form

[
Ñ(λ)
M̃(λ)

]
=




Ar + BrFr − λEr Br

Cr + DrFr Dr

Fr I


 (9)

where Fr is determined such that all generalized
eigenvalues of the pair(Ar + BrFr, Er) are stable.
For this purpose, recursive coprime factorization tech-
niques, as those proposed in (Varga, 1998), can be
used. The dual of this approach can be employed at
Step 4 of the proposed procedure in Section 2 to obtain
a stable detector.

4. DETECTOR ORDER REDUCTION

In the procedure in Section 2 we have to solve at
Step 3 the following problem: given the partitioning
of rows of the left nullspace basisNL(λ) asNL,1(λ)
andNL,2(λ), determine a rational matrixX(λ) such
thatNL,1(λ) + X(λ)NL,2(λ) has least McMillan de-
gree. In a dual formulation we have the problem: for
N1(λ) := NT

L,1(λ) and N2(λ) := NT
L,2(λ), deter-

mine the rational matrixX(λ) such thatN1(λ) +
N2(λ)X(λ) has least McMillan order.

The set of solutions to our problem can be written as

S(λ) = {N1(λ) + N2(λ)X(λ)| for all X(λ)}

and the partitioned matrix[N1(λ) N2(λ) ] is called
a generator of S(λ). Note that by construction, each
solutionZ(λ) ∈ S(λ) satisfies the consistency condi-
tion GT (λ)Z(λ) = 0. To be a solution to the detector
design problem,Z(λ) must also satisfyyi(λ)Z(λ) 6=
0, for i = 1, . . . , q, whereyi(λ) is the i-th row of
Y (λ) := [GT

f (λ) 0 ].

Assume[ N1(λ) N2(λ) ] has the state space realiza-
tion

[
N1(λ) N2(λ)

]
=

[
Ar − λEr Br,1 Br,2

Cr Dr,1 Dr,2

]
(10)

We have the following straightforward extension of
the result of Morse (1976):



Lemma 2.If [ N1(λ) N2(λ) ] with state-space realiza-
tion (10) generatesS(λ), then so does[ N̂1(λ) N̂2(λ) ]
defined by

[
N̂1(λ) N̂2(λ)

]
=

[
Ar + Br,2Fr,2 − λEr Br,1 Br,2

Cr + Dr,2Fr,2 Dr,1 Dr,2

]

From Lemma 2 it follows that if[ N1(λ) N2(λ) ]
in (10) generatesS(λ) then for anyFr,2 andLr, the
system
[
Ar + Br,2Fr,2 − λEr Br,1 + Br,2Lr Br,2

Cr + Dr,2Fr,2 Dr,1 + Dr,2Lr Dr,2

]
(11)

with TFM
[

N̂1(λ) + N̂2(λ)L2

]
generatesS(λ) as

well.

Using this result we can try to determineLr and
Fr,2 to achieve a pole-zero cancellation by making a
maximum number of eigenvalues ofAr + Br,2Fr,2 −
λEr uncontrollable viaBr,1 + Br,2Lr. This problem
has been theoretically solved in (Morse, 1976). To
apply the main result of (Morse, 1976) we need the
following straightforward result:

Lemma 3.The system (11) is observable for allFr,2.

Morse (1976) has shown that a least order solution can
be obtained by solving a minimal order dynamic cover
design problem. Consider the set

J = {V : Im Br,1 + ArV ⊂ Im Br,2 + V}

where

(Ar, Br,1, Br,2, ) := (E−1
r Ar, E

−1
r Br,1, E

−1
r Br,2)

Let J ∗ denote the set of subspacesJ of least di-
mension. IfV ∈ J ∗ then a pair(Fr,2, Lr) can be
determined such that

(Ar + Br,2Fr,2)V + Im (Br,1 + Br,2Lr) ⊂ V

Thus, determining a minimal dimensionV is equiva-
lent to a Type II minimal order cover design problem,
and a conceptual approach to solve it has been indi-
cated by Morse (1976). The outcome of his method
is, besidesV, the pair (Fr,2, Lr) which achieves a
maximal order reduction by pole-zero cancellations.

The approach suggested by Morse (1976) can be
turned into a numerically reliable procedure. In what
follows, due to space restrictions, we only sketch the
proposed computational approach to determineFr,2

andLr. The details of this procedure will be presented
in another paper (Varga, 2003). The general idea is to
perform a preliminary orthogonal similarity transfor-
mation on the system matrices in (10) by applying a
special version of the controllability staircase form al-
gorithm of Varga (1989) to the pair([ Br,2 Br,1 ], Ar−
λEr). Since this pair is already in the controllability

staircase form (8) and all structural information are
already available, the computations do not involve any
rank determinations and merely amount to update this
form according to the desired column permutation
of Br. With additional block permutations and block
row/column transformations, we can bring the trans-
formed system matrices in the followingspecial form

Q(Ar − λEr)Z =

[
Â11 ∗
Â21 Â22

]
− λ

[
Ê11 ∗
0 Ê22

]

Q[ Br,2 Br,1 ] =

[
0 B̂12

B̂21 B̂22

]
, CrZ = [ Ĉ1 | Ĉ2 ]

where the pairs(B̂12, Â11 − λÊ11) and(B̂21, Â22 −
λÊ22) are controllable, and the submatricesB̂21, B̂22

andÂ21 have the particular structure

[ B̂21 B̂22 Â21 ] =
[

B21 B22 A21

0 0 0

]

with B21 having full row rank. Thus, by takingLr

such thatB21Lr + B22 = 0 and

Fr,2 =
[

F̂11 0
0 0

]
Z−1

with F11 satisfyingB̂21F̂11 + Â21 = 0, we achieve
the cancellation of the maximum number of uncon-
trollable eigenvalues. The resulting system of least
McMillan order is

(Â11 − λÊ11, B̂12, Ĉ1 + Dr,2F̂11, Dr,1 + Dr,2Lr)

5. NUMERICAL EXAMPLES

The proposed method to compute rational nullspace
bases has been implemented in aMATLAB m-function
snull , based on the computation of orthogonal
Kronecker-like forms available in theDESCRIPTOR

TOOLBOX (Varga, 2000). The minimal cover algo-
rithm of Varga (2003) has been implemented in the
m-functionsmcover2 , which relies on a special or-
thogonal controllability form algorithm (implemented
as a Fortran 77mex-file) and on a non-orthogonal
reduction (implemented inMATLAB ). The results pre-
sented in this section have been computed using the
function fd implementing the proposed least order
detector design procedure. Besidessnull andsm-
cover , fd also calls other tools of theDESCRIPTOR

TOOLBOX as the minimal realization of generalized
systems, finite-infinite/stable-unstable spectral separa-
tions, coprime factorization, etc.

To illustrate the applicability of the proposed approach
to high order systems, we generated random standard
continuous-time systems with state vector dimensions
n = 5, 10, 20, 40, 80, 160 and fixed input and output
vectors dimensions ofmd = 2, mf = 9, md = 1,



p = 5. For each system we determined a least order
detectorR(s) which detects the occurrence of each
of the 9 faults and decouples any influences from
the command and disturbance inputs. To assess the
effectiveness of the resulting detectors, we computed
in each case the quantities

ηf =
∥∥∥∥R(s)

[
Gf (s)

O

]∥∥∥∥
∞

> 0,

ηd,p =
∥∥∥∥R(s)

[
Gd(s) Gp(s)

O I

]∥∥∥∥
∞

= 0

The results are summarized in Table 1, wherendetec is
the order of the resulting detector. Note that for these
randomly generated models the order of the rational
nullspace is genericallyn, this being also the order of
detectors computed using the methods of Patton and
Hou (1998) and Hou (2000).

n ndetec ηf ηd,p

5 1 2.21 7.70·10−16

10 2 1.45 1.31 · 10−15

20 5 6.62 2.31 · 10−14

40 10 4.64 3.75 · 10−14

80 20 4.80 3.01 · 10−11

160 40 2,326 3.13 · 10−7

Table 1. Computational results

6. CONCLUSION

We proposed a numerically sound computational ap-
proach to design least order fault detectors. The in-
volved main computational ingredients are: (1) the
computation of a rational nullspace basis of a rational
matrix; (2) the reduction of the dynamical order of
the detector. For the computation of rational nullspace
bases, a new numerically stable algorithm, based on
orthogonal pencil reduction, has been proposed. For
the order reduction of the detector, a method has
been proposed able to determine least order detectors
starting from a given generator of all solutions. This
method is based on determining least order dynami-
cal covers using methods derived from computation
of controllability staircase forms (Varga, 2003). We
believe that the overall approach to design least order
detectors is a viable alternative to polynomial bases
based approaches. Numerical examples illustrate the
potential of this approach to handle in a numerically
reliable way large order systems.
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