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Abstract — Most of the algorithms used in grasp
planning, force optimization and control of multi-
fingered hands need information about the points of
contact with a grasped object as well as the normal
of the surface in the contact point. With no image
processing, this information is gained from tactile sen-
sor arrays, multidimensional force/torque sensors or
a priori knowledge. This paper presents a method for
those cases, when no good quality sensors are present
or measurements are to be improved by sensor fusion.
An algorithm is developed to determine the contact
points and inherently the surface normal from only
joint angle sensors and a geometric description of the
fingertip in the 3D case. This is done by observing
the constrained motion of fingers securely grasping an
object.

1. Introduction

Grasping with dextrous hands has been a topic
of research for the last two decades and several dex-
trous robotic maipulators have been constructed in the
meantime [6, 7, 1], c.f. figure 1. Hereby, research is
performed mostly in two areas, first the exploration
and modelling of an unknown object and second grasp-
ing and manipulation of a known object. In the first
area, strategies have been developed to explore the ge-
ometry of an object [16, 10], to model an object from
measured data [8, 9] or to exploit and interprete infor-
mation obtained from a tactile sensor [23, 2]. On the
other hand, methods to synthesize appropriate grasps
have been developed adressing the problem in quite
different ways [12, 13, 4]. In order to control the posi-
tion of objects, several control schemes have been in-
troduced [19]. To determine the optimal force to apply
to the object, several algorithms have been presented
[5]. Either of these algorithms, however, needs infor-
mation about the contact between the object and the
fingers of the hand. Of particular interest is hereby the
exact position and the normal direction of the object’s
surface to cope with Coulomb friction constraints for
maintaining stable contact. Considering contact mod-
els like rolling contacts, this information may vary over

time. Particularly with respect to the latter, a full ob-
ject exploration is neither feasible nor necessary since
only local exteroceptive [8] information is required. In
literature, there exist two different methods to gain
this information and eventually information about ob-
ject pose and motion, on the one hand through an
array-type tactile measurement [2, 14, 18] or on the
other hand through intrinsic measurement of forces
and torques and reconstruction of the contact point
[19, 3, 24]. Only little research has been done gain-

Figure 1. DLR Hand II grasping an object

ing information from kinematic constraints through
the contact of multiple fingers with the object. In
general, this idea relies on motion between the indi-
vidual fingers and the object, which can be achieved
by compliance control of the fingers and moving the
object through another finger or interaction with the
environment. This methodology can be used when nei-
ther intrinsic nor array-type sensors are present as in
simple grippers or to gain additional contact informa-
tion for a higher precision by sensor fusion. It can
also be applied, when the contact between finger and
object admits some torque tangential to the contact
surface as in grasps with flat, soft, human-like fingers.
Previous work [15] detects the point of contact from
intersection of two different positions in space of the
same link. This is extended with a position correction
term and a spherical geometry in the finger tip by [11].
[20] determines the contact location from joint position
and torque measurements while disturbing the grasp
infinitesimally.

This paper presents a way of estimating the position
of contact and the normal of the contact surface, using
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only joint position and velocity measurements, apply-
ing hand kinematics proposed in [22] and exploiting
constraints on motion between finger and object when
having a stable contact. This method additionally re-
quires only a geometric description of the finger tips
in contact, which usually is available. This method
is valid for any type of contact providing enough con-
straints and any convex finger geometry. Section 2 of
this paper revisits the kinematics of contact. From
here the contact point is identified in section 3. An
observer to track the contact point on the fly during
manipulation is proposed in section 4. Results of sim-
ulation are presented in 5.

Throughout this paper, small bold letters represent
vector and capital letters matrix quantities. The sub-
scripts w, o and f mean world, object and finger re-
lated quantities, fc, and oc mean contact on either
finger or object side. An additional number or i re-
lates the quantity to the respective finger, whereas an
additional h means finger quantities stacked to a vec-
tor or matrix resulting in hand quantities.

2. Kinematics of Contact

In this chapter, a formula (c.f. eqn. 3) is derived,
which relates the unknown object velocity to a mea-
sured finger velocity and an unknown relative velocity
between finger and object. This equation is used in
subsequent chapters to estimate the position of contact
on the finger surface. The kinematics of one or mul-
tiple fingers grasping an object can best be described
as presented in [22]. As shown in figure 2, the kine-
matic chain from a chosen world frame Sw to an object
frame So consists, for each finger i individually, of two
partial chains. The first chain describes the position

x
y

z Sw

x
y

z
So

x
y

z Sfc1

yz

Sf2

x

x
yz Soc1

a) Coordinate Frames

Sw

Sfc,i

Soc,i

So

Sf,i

θi

Φi

uf,i

uo,i

ψi

chain 2
chain 1

b) Kinematic Chains

Figure 2. Kinematics of Contact

and motion of a fixed point of the finger tip, the origin
of Sf,i, e.g. the center of the tip’s sphere. This chain
can be formulated by the standard kinematic methods
and depends only on the measurable joint angles θi.

The second subchain relates the position of Sf,i with
that of the object So. This subchain itself may be con-
sidered as a series of three joints: One joint with two
degrees of freedom, describing the position uf,i of the
contact point on the surface of the finger tip. A joint
with one degree of freedom, describing the rotation ψ
between the two surfaces in contact. And another 2D
joint describing the contact position uo,i on the sur-
face of the grasped object, c.f. figure 2 b). In the
absence of image processing or tactile sensors the joint
angles and velocities of the second subchain are not
measurable directly.

Following the methodology of [22], the surface of
finger tip i and of the object are both represented
as orthogonally parameterized functions <2 → <3 :
ff,i(uf,i) and fo(uo,i). The first is known, the latter is
unknown and eliminated from the equations. The x–
and y–axis of two coordinate systems Sfc,i and Soc,i

attached to the finger and the object side of the con-
tact, c.f. figure 2 a), point into the direction of the
partial derivative of the respective surface function f
with respect to u1 and u2, the z−axis points outwards
on the surface:

x(u) =
∂f

∂u1
/ ‖

∂f

∂u1
‖,

y(u) =
∂f

∂u2
/ ‖

∂f

∂u2
‖,

z(u) = x(u)× y(u) (1)

Equation (1) is valid for both sides of the contact, fin-
ger and object. Using (1), both 2D joints of chain 2

can be described as homogeneous transforms Tfc,i
f,i and

Toc,i
o from the contact systems Sfc,i and Soc,i to sys-

tems Sf,i and So, carrying the surfaces. The 1D joint
relates both contact systems Soc,i and Sfc,i to each

other through T
oc,i
fc,i:

T
fc,i
f,i =

[

xf,i(uf,i) yf,i(uf,i) zf,i(uf,i) ff,i(uf,i)
0 0 0 1

]

Toc,i
o =

[

xo,i(uo,i) yo,i(uo,i) zo,i(uo,i) fo,i(uo,i)
0 0 0 1

]

Toc
fc =







cos(ψi) − sin(ψi) 0 0
− sin(ψi) − cos(ψi) 0 0

0 0 −1 0
0 0 0 1






(2)

For each finger i, the generalized relative velocity
vo = [vo,x, vo,y, vo,z, ωo,x, ωo,y, ωo,z]

T of So with re-
spect to Sw can be expressed in coordinates of Sw as
sum of the velocity of the finger tip vf,i in the first
and the velocity along the contact vc,i in the second
subchain. Generally, vc,i can be expressed in either of
the contact systems. However, to relate vc,i to a finger
independent coordinate system Sw or So, a combina-
tion of transforms of (2) has to be used, which all de-
pend on the contact parameters uf,i, ψi and uo,i. For
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further computations, however, only uf,i is of interest.
Therefore, the system Sfc,i was chosen as base for vc,i.

vo = vf,i + γ−1
2 (Tf,i

w (θi)T
fc,i
f,i (φi))vc,i

= Jf,i(θi)θ̇i + Jc,i(θi,φi)vc,i (3)

with φi = [uf,i, ψi,uo,i]
T

γ−1
2 :

[

R d
0 1

]

→

[

R (∗d)R
0 R

]

(4)

∗ :





x
y
z



→





0 −z y
z 0 −x
−y x 0





where Jf,i and Tf,i
w are the finger Jacobian and the

homogeneous transform from Sw to Sf,i. The contact
Jacobian Jc,i transforms velocities from the respective
contact frame Sfc,i to Sw. The vector φi contains
the contact joint parameters. The adjoint transfor-
mation γ−1

2 (TB
A) performs a change of coordinates for

velocities from system B to system A and the Hodge
operator ∗ represents a vector cross product in matrix
form as ∗d x = d × x. Equation (3) describes the
dependency of the object speed on the joint angles θi

and velocities θ̇i on the one hand and the contact joint
parameter φi and the contact speed vc,i on the other
hand. The first two can be measured, the latter two
are assumed unknown.

3. Contact point Identification

3.1. Interpretation of the Kinematics of Contact

In this section, from (3) a system of equations is
derived in order to solve for the unknown φi and vc,i.
In n-fingered grasps, the unknown object speed vo can
be computed using any finger. Therefore it is possible
to eliminate vo by closing a loop over two fingers i and
k along the way Sw, Sf,i, So, Sf,k and back to Sw.

Choosing n−1 independent loops, a set of equations
can be obtained:

0 = Jf,1(θ1)θ̇1 + Jc,1(θ1,φ1)vc,1 −

Jf,i(θi)θ̇i − Jc,i(θi,φi)vc,i

with 1 < i ≤ n (5)

Now, terms depending on the unknown contact joint
parameters φi and contact velocity vc,i are brought
on one side. Due to the choice of coordinates for vc,i

the contact Jacobian Jc,i depends only on uf,i instead
of the full φi. All n − 1 equations are then stacked,
forming the vector equation:

Jf,h(θh)θ̇h = Jc,h(uf,h)vc,h (6)

where vc,h = [vc,1, ...vc,n]
T
, θh, θ̇h and uf,h are de-

fined analogously. The measurement vector ∆vf,h =

Jf,h(θh)θ̇h represents the relative finger velocity, Jf,h

and Jc,h are block matrices containing the respective
matrices of each finger stacked in a way as depicted in

figure 3 for the three finger case. In the n finger case,
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Figure 3. Structure of Jc,h and −Jf,h

(6) represents a set of 6(n− 1) equations with 6n un-
known contact velocities vc,h and 2n unknown contact
joint parameters uf,h. However, the fingers grasping
the object obey certain conditions in order to keep
contact. These conditions describe the type of contact
and can best be formulated in terms of the contact
velocities vc,i of each finger. A sliding contact is char-
acterized by vz,i = ωx,i = ωy,i = ωz,i = 0, plain rolling
by vx,i = vy,i = vz,i = ωz,i = 0 and rolling with twist
by vx,i = vy,i = vz,i = 0. The l contact conditions ren-
der nl additional equations, in the plain rolling case
4n and in the case allowing twist 3n. Incorporating
these contact conditions into (6), vc,h is reduced to
its non–zero components ṽc,h and Jc,h is adjusted ap-

propriately as J̃c,h. In order to compute the contact
joint parameters uf,i and therefore the contact point
of each finger with the object and direction of the sur-
face normal, (6) has to be solved for ṽc,h and uf,h. The
adjusted system of (6) then represents a set of 6(n−1)
equations in (6−l)n+2n unknowns. Considering that,
when performing small finger movements or returning
to the starting position after a test motion, the contact
joint parameters uf,h behave like state variables and
vary only little, it is possible to increase the number
of equations by repetitively moving the fingers locally
around a test configuration in different directions and
sampling ∆vf,h. The dependency between the ∆vf,h

and ṽc,h is linear, whereas uf,h has a nonlinear depen-
dency. This suggests that, for the solvability of (6),
there exist three different cases:

- First, the system is completely solvable or overde-
termined in all, linearly and nonlinearly dependent un-
knowns.

- Second, the system is overdetermined in the
rapidly varying linearly dependent ṽc,h, however un-
derdetermined in general, thus several samples have to
be evaluated.

- Third, even with an arbitrarily large number of
samples, the system remains underdetermined.

The three cases are summarized in table 1 along
with examples for a 3-fingered setup and a scenario
of rolling with twist, which in the sequel is the exam-
ple setup. As can be seen from this table, in common
dextrous manipulation setups neither case 1 nor case
3 can usually be achieved. The first is irrelevant due
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case condition description n = 3 l = 3
1 l n ≥ 6 + 2n generally (over-) determined l ≥ 4 n ≥ 6
2 6 < l n < 6 + 2n overdetermined in v̂c 2 < l < 4 2 < n < 6
3 6 ≥ l n generally underdetermined l ≤ 2 n ≤ 2

Table 1. Solvability of Contact Equation

to the large number of fingers and contact constraints,
the second due to the small number of fingers and mo-
tion constraints. The most common case 2 is therefore
investigated here.

3.2. Formulation as Optimization Problem

Considering case 2 of table 1, it is possible to in-
terprete (6) as a mapping Γ from the space C =
<(6−l)n of reduced contact velocities ṽc,h to the space

F = <6(n−1) of relative finger velocities ∆vf,h, where
dim(F) > dim(C). Thus, the mapping Γ has a left
nullspace L which is the orthogonal complement of
range(Γ) = range(J̃c,h) in F . In a strict sense, ∆vf,h

and ṽc,h contain values with different units rendering
a scalar product impossible. In the sequel these val-
ues are considered weighted by an appropriate factor.
In formulas given, this weighting is omited for clarity.
One possible map Γ−1 from F to C is the left pseudoin-
verse J̃+c,h, which returns in the sense of least squares
the best possible estimate v̂c,h for a measured ∆v∗f,h.
Both mappings are shown in figure 4. They depend on
the unknown contact joint parameters uf,h. As can be

∆v
f
* 

 
ε F

0

J
c,h

~

J
c,h

+~

v
c,h

 ε C^

left nullspace

column
space

row space

kernel = 0

F
C

L

Figure 4. Mappings of the Contact Jacobian

seen from figure 4, the relative velocity ∆v∗f,h has usu-
ally components from either of the two subspace of F .
When mapping ∆v∗f,h to C, its components parallel to
L are projected to 0. These are the components that
cause an error to occur in the least squares fit of J̃+c,h.
The components of ∆v∗f,h orthogonal to L are mapped
to its unique image v̂c,h in C. Projecting v̂c,h back to
F results in the original components of ∆v∗f,h orthog-
onal to L. With this result the components of ∆v∗f,h

parallel to L can be computed:

ef,h = ∆v∗f,h − J̃c,hJ̃
+
c,h∆v

∗

f,h (7)

In a consistent setup, the mapping Γ−1 is bijective
for the space of actual measurements ∆v∗f,h, which

then lie in the range of J̃c,h, and therefore ef,h = 0.
Taking any norm of ef,h renders a measure L for this
inconsistency of the mapping Γ−1. Since the mappings
Γ and Γ−1 depend on the contact joint parameters
uf,h, so does ef,h and consequently L:

L(uf,h,∆v
∗

f,h) = eT
f,h(uf,h)ef,h(uf,h) (8)

With m different measurements of ∆v∗f,h, it is possible
to solve not only for v̂c,h but also get a better estimate
ûf,h for uf,h by minimizing L over uf,h:

ûf,h : L(ûf,h) = min
uf,h

m
∑

i=1

L(uf,h,∆v
∗

f,h,i) (9)

As shown above, several measurements are always re-
quired. One single measurement only causes signif-
icant errors L along a particular direction of uf,i,
whereas in other directions L varies only little. From
here, with estimates of the contact parameter ûf,i and
the contact velocity v̂c,i, the desired exteroceptive in-
formation, the position of the contactpoint rc,i, the
normal direction on the contact surface nc,i and the
object velocity vo can be computed:

rc,i = Tf,i
w (θi)ff,i( ˆuf,i)

nc,i = Tf,i
w (θi)T

fc,i
f,i (ûf,i) [0, 0, 1, 0]

T

vo = Jf,i(θi)θ̇i + Jc,i(θi,φi)v̂c,i (10)

4. Observer Based Correction

On individual or multiple measurements with the
actual contact parameters not varying, section 3.2 pro-
vides a measure of how inaccurate an estimate ûf,h

of the contact joint parameters is. However, in the
presence of measurement disturbances or a violation
of the condition of a nearly constant uf,h an observer
will render better results for ûf,h. An observer con-
cept dual to Kalman-filtering is proposed, as shown
in figure 5. This, in a first step, minimizes a given
χ-function. This function first puts a penalty on the
mismatch between the measurement ∆v∗f,h and the

estimate Jc,hv̂c,h, c.f. (6), and second on a mismatch
between a previous estimate ûf,h(t) and the recent es-
timate ūf,h(t). The contact velocity is also compared
to it’s previous value to suppress unlikely large changes
but is weighted little. From here we get an estimate for
vc,h(t) and an improvement of the previous estimate
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of ûf,h(t). To perform the minimization a Levenberg-
Marquard algorithm is used. In a second, dynamic
step, the improved estimate ūf,h(t) is propagated to
time t + 1 using kinematics from [21]. The unknown
surface parameters of the object are approximated as
a plane. This is reasonable for common objects with
a curvature not too large.

Levenberg-Marquard step:

χ(uf,h,vc,h) =

1

2

(

∆v∗f,h(t)− J̃c,h(uf,h)vc,h

)T

C−1
m

(

∆v∗f,h(t)− J̃c,h(uf,h)vc,h

)

+
1

2

(

[vc,h(t),uf,h(t)]
T
− [v̂c,h(t− 1), ûf,h(t)]

T
)T

C−1
s (t)

(

[vc,h(t),uf,h(t)]
T
− [v̂c,h(t− 1), ûf,h(t)]

T
)

[v̂c,h(t), ūf,h(t)] : min
v̂c,h(t),ūf,h(t)

χ(v̂c,h(t), ūf,h(t))

Dynamic step for each finger:

ûf,i(t+ 1) = M−1
f,iKf , i

−1Sv̂c,i∆t+ ūf,i(t)
0

S =

[

0 0 0 0 −1 0
0 0 0 1 0 0

]

Cs(t+ 1) =
d2χ

d
(

[v̂c,h(t), ûf,h(t)]
T
)2 +Cz (11)

where Cm, Cs and Cz are the measurement, the sys-
tem and the state covariance matrix respectively, S is
a selection matrix, Mf,i and Kf , i are the metric and
curvature matrix of the finger as defined in [21].

z−1

min(χ)
v

f,h
* v

c,h

^

uf,h
^

uf,h
−

z−1
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−1Kf,i
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D
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...

M
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v
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^

D
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Figure 5. Structure of Observer

5. Results of Simulations

The algorithms previously presented have been
tested using a kinematic simulation of the 4-finger
DLR Hand II, neglecting the ring finger for simplicity.
The finger tips have been modeled as spheres using a
parameterization in sphere coordinates with the longi-
tude uf1,i = 0 centered on the palm side of each finger
i and the latitude uf2,i = 0 being at the north pole of
the sphere. The contact allows rolling with twist and

has thus all 3 rotational degrees of freedom, restrict-
ing translations. A grasp as shown in figure 6 has been

x

y

z
So

Figure 6. DLR-Hand grasping an Object

performed with the contact joint parameters being lo-
cated at [0, 60◦, 0, 30◦, 0, 30◦]T . First, to illustrate the
nature of the error landscape produced by (8), the er-
ror function was evaluated for different estimates of
the contact parameters. Hereby the grasped object
was moved in either of the three rotational degrees of
freedom. For evaluation, an optimized algorithm simi-
lar to Gram-Schmidt orthogonalization was used, wich
needed about 1 ms for each point to be computed. For
reduction to a two dimensional landscape, the longitu-
dinal parameter estimates ûf1,i were kept at their real
values uf1,i, and the latitudes of fingers 2 and 3 ûf2,i

were kept identical. The results have been depicted as
density plots with L being evaluated logarithmically
due to large changes in magnitude in figure 7. As can
be seen, for all motions the landscape is valley like,
with one direction being rather flat and the minimum
of L being at the true value of uf,h. Those motions
of the object (a,b) causing rolling of the fingers across
latitude lines, result in a distinct valley in the cho-
sen 2D error landscape, which is more distinct in (b)
because here the motions orthogonally cross latitudes,
whereas in (a) a crossing of latitudes is under a smaller
angle. Other motions (c), causing twist, do exhibit
only a small dip. In the flat direction, evaluation of L
obviously returned only little information. However,
depending on the object velocity, the direction of the
valley changes. Thus an observer can find the intersec-
tion of all these valleys when suitable object motions
are performed.

Now, the performance of the observer was exam-
ined under different object velocities. The simulation
was run on a SGI Onyx II with R10K 195 MHz pro-
cessor. For the minimization a Levenberg-Marquard
algorithm was used which relies on SVD of dimension
15 for equation solving and an inversion of 12 for com-
putation of time variant C−1

m , in the dynamic step two
matrix inversions of dimension 15 and 6 respectively
are necessary for update of C−1

s . After the first run the
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Figure 7. Error Landscape with Different Object Velocities
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number of iterations in the L/M algorithm settles at
1. The average execution time for a whole cycle of the
observer then was around 5 ms. The grasped object
was moved in space for a total duration of 30s with
several sinusoidal velocities of a frequency of 1/7.5Hz
for 7.5s each. The different translational and angular
velocities varied in amplitude and direction. In the
simulation, the sampling rate was 25ms. For a bet-
ter visibility in the plots, here uf2,2 started at 33◦.
In figure 8, the true uf,h and the estimated ûf,h lat-
itudinal contact parameters are depicted over time as
dark and bright lines respectively. One can observe
that, while following the general motion of the true
values, the estimates converge to a neighborhood of
about 5◦ − 7◦ to its real value. Some motions can
be tracked better than others, thus convergence rate
changes with different vo. This was predicted in sec-
tion 3.2. The difference between true and estimated
contact parameters is depicted in figure 9. It can be
seen that, during some object motions, no information
about the contact point error can be obtained. Thus
the evolution of ûf,h completely relies on extrapolation
and the difference between true and estimated values

increases again. The remaining error in the longitu-
dinal direction settles at about 20◦. This translates
to an estimation which lies in an area of only 2mm2

around the true position due to the spherical coordi-
nate system.

6. Conclusions

In this paper, based on the kinematics of contact,
a method has been proposed, to determine the error
in an estimate of the contact joint parameters. With
these estimates, the position of the contact point be-
tween finger and object on the fingersurface and the
normal direction on the object surface can be com-
puted. Second, an observer structure dual to a Kalman
filter has been proposed, which allows computation
of these exteroceptive information on the fly during
grasping and thus observe the rolling motion of the
fingers on the object. This information can for exam-
ple be applied to methods used for synthesizing grasps,
grasp control and grasp force optimization. The valid-
ity of the taken approach has been verified in simu-
lations. Further work has to be done, examining the
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observer with respect to sensitivity to noise, develop-
ing optimal object motions for detection, applying the
proposed algorithms to an experimental setup and ex-
amine the applicability for enhanced object controllers
used for manipulation.

References

[1] A. Bicchi and V. Kumar. Robotic grasping and con-
tact: A review. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation April
2000, San Francisco, California, pages 348 – 353,
2000.

[2] A. Bicchi, A. Marigo, and D. Prattichizzo. Dexterity
through rolling: Manipulation of unknown objects. In
Proceedings of the IEEE International Conference on
Robotics and Automation May 1999, Detroit, Michi-
gan, pages 1583 – 1588, 1999.

[3] A. Bicchi, J. K. Salisbury, and D. L. Brock. Con-
tact sensing from force measurements. International
Journal of Robotics Research, 12(3), 1993.

[4] C. Borst, M. Fischer, and G. Hirzinger. A fast and
robust grasp planner for arbitrary 3d objects. In
Proceedings of the IEEE International Conference on
Robotics and Automation May 1999, Detroit, Michi-
gan, pages 1890–1896, 1999.

[5] M. Buss and T. Schlegl. Multi-fingered regrasping us-
ing on-line grasping force optimization. In Proceedings
of the IEEE International Conference on Robotics and
Automation, April 1997, Albuquerque, New Mexico,
pages 998 – 1003, 1997.

[6] J. Butterfaß, M. Grebenstein, H. Liu, and
G. Hirzinger. DLR-hand II: Next generation of a dex-
trous robot hand. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation May
2001, Seoul ,Korea, 2001.

[7] J. Butterfaß, S. Knoch, H. Liu, and G. Hirzinger.
DLR’s multisensory articulated hand part I: Hard-
and software architecture. In Proceedings of the IEEE
International Conference on Robotics and Automa-
tion May 1998, Leuven, Belgium, pages 2081 – 2086,
1998.

[8] S. Caselli, C. Magnanini, F. Zanichelli, and E. Caraffi.
Efficient exploration and recognition of convex ob-
jects based on haptic perception. In Proceedings of the
IEEE International Conference on Robotics and Au-
tomation, April 1996, Minneapolis, Minnesota, 1996.

[9] M. Charlebois, K. Gupta, and S.Payandeh. Shape
description of curved sufaces from contact sensing us-
ing surface normals. International Journal of Robotics
Research, 18(8):779–787, August 1999.

[10] R. S. Fearing. Tactile sensing for shape interpreta-
tion. In S. Venkataraman and T. Iberall, editors,
Dextrous Robot Manipulation, chapter 10. Springer-
Verlag, 1990.

[11] R. A. Grupen and M. Huber. 2-d contact detection
and localization using proprioceptive information. In
Proceedings of the IEEE International Conference on
Robotics and Automation 1993, 1993.

[12] S. Haidacher, T. Schlegl, and M. Buss. Grasp eval-
uation based on unilateral force closure. In Proceed-
ings of the IEEE/RSJ Intl. Conference on Intelligent
Robots and Systems 1999, Kyongju, Korea, pages 424
–429, 1999.

[13] L. Han, J. C. Trinkle, and Z. Li. Grasp analysis as
linear matrix inequality problems. In Proceedings of
the IEEE International Conference on Robotics and
Automation May 1999, Detroit, Michigan, pages 1261
– 1268, 1999.

[14] Y. B. Jia and M. Erdmann. Pose and motion from
contact. International Journal of Robotics Research,
18(5):466 – 490, May 1999.

[15] M. Kaneko and K. Tanie. Contact point detection
for grasping of an unknown object using self-posture
changeability (spc). In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation
1990, 1990.

[16] R. L. Klatzky and S. Lederman. Intelligent explo-
ration by the human hand. In S. Venkataraman
and T. Iberall, editors, Dextrous Robot Manipulation,
chapter 4. Springer-Verlag, 1990.

[17] H. Liu and G. Hirzinger. Cartesian impedance control
for the DLR hand. In Proceedings of the IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems
1999, Kyongju, Korea, pages 106 – 112, 1999.

[18] H. Maekawa, K. Tanie, and K. Komoriya. Tactile
sensor based manipulation of an unknown object by
a multifingered hand with rolling contact. In Pro-
ceedings of the IEEE International Conference on
Robotics and Automation, May 1995, Nagoya, Japan,
1995.

[19] M. T. Mason and J. K. Salisbury. Robot Hands and
the Mechanics of Manipulation. The MIT Press, Cam-
bridge, MA, 2 edition, 1986.

[20] N. Mimura and Y. Funahashi. Parameter identifi-
cation in the grasp of an inner link mechanism. In
Proceedings of the IEEE International Conference on
Robotics and Automation 1993, 1993.

[21] D. J. Montana. The kinematics of contact and grasp.
International Journal of Robotics Research, 7(3):17 –
32, June 1988.

[22] D. J. Montana. The kinematics of multi-fingered ma-
nipulation. IEEE Transactions on Robotics and Au-
tomation, 11(4):491 – 503, August 1995.

[23] A. M. Okamura and M. R. Cutkosky. Haptic explo-
ration of fine surface features. In Proceedings of the
IEEE International Conference on Robotics and Au-
tomation May 1999, Detroit, Michigan, 1999.

[24] T. Schlegl, S. Haidacher, M. Buss, F. Freyberger,
F. Pfeiffer, and G. Schmidt. Compensation of discrete
contact state errors in regrasping experiments with
the TUM-hand. In Proceedings of the IEEE/RSJ Intl.
Conference on Intelligent Robots and Systems 1999,
Kyongju, Korea, pages 118 – 123, 1999.

1603


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	footer: 
	header: 


