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Abstract—We prove a new necessary and sufficient condition 
for 2D three-finger equilibrium grasps and implement a 
geometrical algorithm for computing force-closure grasps of 
polygonal objects in this article. The algorithm is quite simple 
and only needs some algebraic calculations. An easily 
computable measure of how far a grasp is from losing force-
closure is provided as well. Finally, we implement the 
algorithm and demonstrate its usefulness by an example. 

I. INTRODUCTION 

Research has been directed towards the design and control 
of multifingered dextrous robot hand to increase robot 
dexterity and adaptability.  

A main character of multi-finger stable grasp is force-
closure, such that the contact forces exerted by the fingers 
can balance arbitrary force and torque exerted on the 
grasped object [1, 2, 3]. Salisbury and Roth [4] have 
demonstrated that a necessary and sufficient condition for 
force-closure is that the primitive contact wrenches resulted 
by contact forces positively span the entire wrench space. 
Nguyen [5] proposed a simple test algorithm for two-finger 
force-closure grasps. He characterized two-finger force-
closure grasps by the fact that the line joining the contact 
points must lie within the friction cones at these points. 
Ponce and Faverjon[6] developed several sufficient 
conditions for three-finger equilibrium grasps of polygonal 
objects. The equilibrium of three-finger grasp was achieved 
if the suface normals at three contact points positively span 
the plane and the intersection of the three friction cones at 
these points was not empty or the intersection of the three 
double-sided friction cones is not empty with angles 
between any two normals less than 2  (  is half-
angle of the friction cones). An algorithm has been 
implemented based on linear programming and variable 
elimination in their paper. Since the conditions are not 
necessary, there are always force-closure grasps that don’t 
satisfy the conditions. 

The quantitative test for force-closure grasps provides a 
measure of how far a grasp is from losing force-closure. 
Trinkle [7] formalized the quantitative test as a linear 
programming (LP) problem by checking the existence of any 
positive null vector of the primitive contact wrench matrix. 
Chen and Burdick [8] gave an algorithm for 2D force-
closure grasps based on the convex hull of the wrenches 
generated by the point contact friction cone edge vectors. 
Ferrari and Canny [9] developed a quantitative test for force-
closure using the radius of a maximal ball centered at the 
origin and included in the convex hull of the primitive 

wrenches as a measure of goodness of the grasp. Liu [10] 
formalized qualitative test of 3-D force- closure grasps as a 
LP problem based on the duality between convex hulls and 
convex polytopes. 

In this paper, a new necessary and sufficient condition for 
three-finger equilibrium grasps has been proven, and an 
easily computable algorithm for force-closure grasps of 2D 
objects has been implemented which efficiently reduces the 
amount of computation required. With the algorithm, a 
measure of how far a grasp is from losing force-closure can 
be easily computed. 

II. ALGORITHM FOR EQUILIBRIUM AND FORCE-
CLOSURE GRASPS 

A. Relative Notions 

We restrict our attention to 2D case and assume Coulomb 
friction now. Under Coulomb friction, a contact force is 
constrained to lie in a friction cone centered about the 
internal surface normal at contact point with half-angle .
The tangent of the angle  is called the friction coefficient. 

As shown in Fig.1, a friction cone at C  is bounding by 

vectors  and , and any force  is a nonnegative 

combination of these two vectors. 
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Wrench: A force and a moment m  can be combined 

into a wrench , with  in the case 

of plannar mechanics, and k  in the case of spatial 
mechanics. 
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Fig.1. Coulomb friction. 
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Force-closure: A grasp achieves force-closure when it can 
resist arbitrary forces and torques. 

There are other definitions of force (or form) closure, but 
this one is more useful for our deduction. 

Equilibrium: A set of n  wrenches  is said to 

achieve equilibrium when the convex hull of the points 

 in  contains the origin. 
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Mishra, Schwartz and Sharir [3] have shown that a 
necessary and sufficient condition for a system of wrenches 

to achieve force closure is that the origin of  lies in the 
interior of the convex hull of the primitive wrenches. In 
particular, force closure implies equilibrium but there are 
wrench systems that achieve equilibrium but not force- 
closure. Proposition 1 makes clear the relationship between 
three-finger equilibrium and force-closure grasps. 

k

Proposition 1: A two-dimensional, three-finger grasp that 
achieves nonmarginal equilibrium also achieves force-
closure. 

The proof of Proposition 1 can be found in [6]. We’ll 
extend an algorithm for computing force-closure grasps with 
Proposition 1 in section 3. 

Unit force vector: A unit force vector is a unit vector that is 
in the same direction as a contact force. 

For example, contact force  can be expressed as 

, where a , and n  is the unit force vector 

of .
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B. Necessary and Sufficient Condition for Equilibrium 

  Consider three hard fingers grasp a 2-D object and assume 

point contact with friction. The contact points are C , C ,

and  (refer to Fig.2). The normal at the contact points 

(point to the inside of the object) are n , , and n

respectively. The unit vectors n , , , ,  and 

 bound the three friction cones in pairs. External force 

 and moment 
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F M  acts on the object on a point O.

Proposition 2: A necessary and sufficient condition for 
the existence of three nonzero contact forces, not all of them 
being parallel, which achieve equilibrium is that there exist 

three forces in the friction cones at the contact points which 
positively span the plane and whose lines of action intersect 
at some point. 

See [6] for a proof of this proposition. The proposition 
seems to be well accepted, and there are various forms of 
this result in the literature [2], [3]. 

However there is hardly an algorithm for equilibrium 
grasps using Proposition 2 directly, due to the large amount 
of computation in searching for three contact forces 
satisfying the condition of Proposition 2. 

We’ll substitute the boundary vectors n , , , 

, ,  of the three friction cones for the unknown 

contact forces in Proposition 2, and prove a new proposition 
that suitable to be used in computing three-finger 
equilibrium and force-closure grasps. 
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Fig. 3 Moment equilibrium of contact forces  and .if jf
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First of all, we need a disposition to the three friction 
cones. Consider the three-finger equilibrium grasp shown in 
Fig. 3, in order to achieve moment equilibrium the contact 

forces  and  must satisfying that, if jf

0jjkiik fCCfCC                          (1) 

The friction cone at contact point C  is divided into two 

parts by line 

j

kjCC . Since the direction of moment 

iik fCC  is clockwise, the contact force  must lie in 

the region between n  and 

jf

2j kjCC

jf

. Otherwise there won’t 

be contact forces  and  satisfying (1). Since the 

contact force  cannot lie in the region between n  and 

if

jf 1j

kjCC , that is to say this region has no contribution to the 

equilibrium, we can substitute 
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change the result of equilibrium computation.  
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The direction of a nonzero 2D moment is either clockwise 
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Fig. 2 Frictional three-finger 2D grasps. 
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Fig. 4 Flowchart of the disposition  to the friction cones. 

or anti-clockwise. Denotes the direction of a moment M  by 
symbol , we have )(MSgn

              (2) 
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Define the disposition  to the friction cones: when 

there are )( ik CC 1inSgn 0)( 2iik nCCSgn

k

,

where ,3,2,1,, kji ji , and without losing 

generality suppose 0)( 1ii nCkCSgn , we have (3).

Formula (3) can be expressed as the flowchart in Fig. 4. 
The unnecessary regions of the friction cones have been 

removed when the disposition  is done. We put forward 
the following proposition for three-finger equilibrium 
grasps.

Proposition 3: A necessary and sufficient condition for the 
three-finger equilibrium grasp is that the intersection of the 
three double-side friction cones is not empty while the 
disposition  is done. 

The proof of Proposition 3 can be found in [11]. 

C. The Algorithm 

We now attack the problem of determining whether the 
intersection of the three double-side friction cones is empty 
or not. There are at most 15 points at which the six boundary 
lines of the three double-side friction cones intersect. They 
are points of intersection by two boundary lines of different 
double-side friction cones except for the three contact 
points.  

Proposition 4: The intersection of the three double-side 
friction cones is not empty, if and only if any point of 
intersection by two boundary lines of different double-side 
cones is not outside of the third double-side friction cone. 

According to Proposition 4, we only need to calculate the 
12 points of intersect and determine whether one of them 
lies in a certain double-side friction cone. If there is such a 
point the grasp is equilibrium, otherwise it is not 
equilibrium.  

                   (a)                                   (b)                                    (c)

Fig. 5. Point of intersection Bjk is: (a) in the interior of the double-side 

friction cone at Ci. (b) on the border. (c) external. 

Bjk Bjk Bjk

Let  represent one of the points of intersection by the 

boundary lines of double-side friction cones at C  and .

The positive friction cone at  is bounding by  and 

(refer to Fig. 5). If B  isn’t outside of the double-side 

friction cone at C , there must be 
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Especially, when B  is on the border of the double-side 
friction cone at C , there is 
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According to Proposition 1, a three-finger grasp that 
achieves nonmarginal equilibrium also achieves force- 
closure. The intersection of the three double-side friction 
cone is discrete points or beeline when it is marginal 

equilibrium grasp. In case of B  lies strictly inside the 

double-side friction cone at C , any a point inside the 

infinitesimal neighborhood of B  belongs to the 

intersection of the three double-side friction cones, therefore 
it is nonmarginal equilibrium thus force-closure grasp. 

jk

i
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We modify the inequation (4) to (6),  

)( 1ijki nBCSgn )( 2ijki nBCSgn 0       (6) 

If only a point of intersection satisfying inequation (6), the 
grasp achieves force-closure. 

We summarize the algorithm as follows: 
Step 1: processing the disposition  to the friction cones 

at the three contact points as Fig 4.
Step 2: Calculate the 12 points of intersection by two 

boundary lines of different double-side friction cones. 
Step 3: Calculate the left of (6) for each point. If one of 

them satisfying (6) the grasp is force-closure, otherwise it 
isn’t. 

If all the vertices of the intersection of the three 
abbreviated double-side friction cones are computed using 
the above algorithm, an intersection region can be 
determined. Then we’ll provide a measure of how far a 
grasp is from losing force-closure in the following section. 

III. QUANTITATIVE TEST FOR FORCE-CLOSURE 
GRASPS

From the Proposition 3, there must be an intersection 
region (more than a point) of the three abbreviated double-
side friction cones for a force-closure grasp. Let S represent 

the intersection region and i , 3,2,1i  represent the angle 

of the partial friction cones at three contact points that 

contribute to S (refer to Fig.6). Let ),,min( 321 ,

we take the value of as the force-closure measure. It 
means the minimum angle of friction cone that contribute to 
force-closure.

0 ] ,0[ 0

Fig. 6 Partial friction cones contributed to S, with S shown as a shaded 
polygonal. 
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Obviously there is 0  in the case of non force- 
closure grasps. Suppose that the minimum angle among the 

three friction cones is , and then we have .

If S is a finite region, can be easily computed by use of 
the vertices of S as shown in Fig.6. Otherwise an 
approximate algorithm is adopted in which we substitute 
finite coordinates for infinite ones. For example in the case 
of Fig.8 (a), the intersection region of the three abbreviated 
double-side friction cones is infinite (part of the region 
under the quadrilateral isn’t shown in the figure). Since that 
the coordinates of point A are (3.0, 8.5), there are two points 
(1.0e10, 1.133333e11) and (-1.0e10, -1.133333e11) on the 
lines  and  respectively. The triangular region with its 
vertices on those three points approximates to S. Then we 
have

2L 1L

0.20 .
In the following section we’ll give an example on 

computing and measuring force-closure grasps of a 

(a)                  (b)                          (c)                         (d) 

Fig. 7 Force-closure grasps of a quadrilateral (The gray triangle represent the friction cones at the contact points). 

(a)                (b)                                  (c)                          (d) 

Fig. 8 Quantitative test for the force-closure grasps in Fig7 (shade region represents the intersection of the three abbreviated double-side friction 

cones). The force-closure measure  is (a) 20.0, (b) 2.3, (c) 20.0, (d) 3.7. 
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(a)                   (b)                        (c)                                 (d) 

Fig. 9 Systems of six wrenches corresponding to the force-closure grasps shown in Fig. 7 respectively, with their convex hull shown as a 

polyhedron. The radius of a maximal ball centered at the origin and included in the convex hull of the primitive wrenches is (a) 0.173, (b) 0.023, 

(c) 0.088, (d) 0.026. 

quadrilateral. 

IV. AN EXAMPLE 

We have computed three-finger force-closure grasps of a 
quadrilateral using the algorithm advanced in Section 2.3. 
The friction cone is set to 20º and the sides of the 
quadrilateral are 3, 3, 3, 6 in length respectively (refer to 
Fig.7). We choose three contact points on the border of the 
quadrilateral at random, and compute 10,000 grasps. 1,394 
force-closure grasps are found in a total of 273ms of CPU 
time on a PIII-800 PC in this example. It takes 0.045ms at 
most in computing a force-closure grasp. The algorithm 
efficiently reduces the amount of computation required, as 
compared to linear programming schemes. 

There are three types of contact configuration for the 
force-closure grasps in this example: three contact points lie 
on the parallelling side of the quadrilateral (Fig. 7(a)); two 
contact points lie on the parallelling side of the quadrilateral 
respectively and one lies on a bevel side (Fig. 7(b)); three 
contact points lie on the two bevel sides and bottom side 
respectively (Fig. 7(c)(d));

We have computed the force-closure measure  for the 
grasps as shown in Fig.7. The result is shown in Fig.8, and 
the measure  is (a) 20.0, (b) 2.3, (c) 20.0, and (d) 3.7. As 
comparing with the measure , the radius of inner ball in 
the convex hull of the primitive wrenches is computed as 
well, we take the scale of moment to force as 1:1 in this 
example, and the result is shown in Fig. 9.  

Because of the non-comparability of forces and moments, 
the radius of inner ball relates to the scale of moment to 
force. And there is no such problem in the computing 
process of measure . From the result of this example, 
there seems to exist some difference between the measures 
of  and the radius of inner ball. For the grasps as shown in 
Fig.7 (a) and (c), the measures of the radius of inner ball 
show that  (a) is ‘better’ than (c) (0.173:0.088 as shown in 
Fig.9), but the measures of show that they are equally 
good as each other.

V. CONCLUSION 

The algorithm developed in this paper is quite simple and 
only needs some algebraic calculations. As comparing to the 

linear programming schemes, it is suitable to be used in real-
time programming. 
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