DLR Logo
  Home|Textversion|Impressum   English
  Sie sind hier: Home:Internationales Jahr der Astronomie - IYA2009
Astronomische Frage der Woche

Wie schnell muss eine Rakete sein, um in den Weltraum zu gelangen?

Woche 6

 Mögliche Flugbahnen um die Erde
zum Bild Mögliche Flugbahnen um die Erde

Startet eine Rakete von der Erdoberfläche, dann muss sie mindestens 7,9 Kilometer pro Sekunde schnell werden, um in eine Erdumlaufbahn vorzudringen. 7,9 Kilometer pro Sekunde ist die so genannte erste kosmische Geschwindigkeit – das ist mehr als das 20-fache der Schallgeschwindigkeit. "Kosmische Geschwindigkeiten" wurden zu Beginn des Raumfahrtzeitalters einige für die Raumfahrt wichtige Geschwindigkeiten genannt. Eine Rakete oder ein anderes Geschoss mit der ersten kosmischen Geschwindigkeit gelangt in eine niedrige Kreisbahn um die Erde (Bahn C im Bild). Daher spricht man auch von Kreisbahngeschwindigkeit. Ist das Geschoss langsamer, so fällt es zur Erde zurück (Bahnen A und B im Bild).

Die zweite kosmische Geschwindigkeit ist die "Fluchtgeschwindigkeit" von der Erde: 11,2 Kilometer pro Sekunde. So schnell muss eine Rakete sein, damit sie das Schwerefeld der Erde verlassen kann, um zu anderen Planeten zu fliegen (Bahn E im Bild). Aufgrund der Gesetze der Flugbahnmechanik ist die zweite kosmische Geschwindigkeit (11,2 km/s) gleich der Kreisbahngeschwindigkeit (7,9 Kilometer pro Sekunde) mal 1,414 (also der Quadratwurzel aus 2).

Wer schnell genug ist, kann auch die Milchstrasse hinter sich lassen.

Die dritte kosmische Geschwindigkeit gibt an, welche Geschwindigkeit ein Raumschiff erreichen muss, damit es das Sonnensystem verlassen kann. Diese Fluchtgeschwindigkeit aus dem Sonnensystem beträgt rund 42 Kilometer pro Sekunde (das ist 0,14 Promille der Vakuumlichtgeschwindigkeit). Die vierte kosmische Geschwindigkeit ist die Fluchtgeschwindigkeit aus unserer Galaxie - der Milchstrasse. Sie liegt bei rund 320 Kilometern pro Sekunde.

Wichtig ist, dass die kosmischen Geschwindigkeiten idealisierte Werte sind. Zum Beispiel berücksichtigen sie nicht den Geschwindigkeitsverlust durch den Luftwiderstand beim Start einer Rakete. Zudem beziehen sich die angegebenen Werte auf die Erde beziehungsweise unser Sonnensystem und gelten nicht im gesamten Universum.


Kontakt
Dr.-Ing. Christian Gritzner
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Raumfahrt-Management
, Extraterrestrik
Tel.: +49 228 447-530

Fax: +49 228 447-706


Zuletzt geändert am: 30.01.2009 14:00:51 Uhr