News Archive

  • Page 1 of 3
  • >>
  • loading with js...

All years

Aeroliner3000 – train concept by DLR and Andreas Vogler Studio impresses in the 'Tomorrow's Train Design Today' competition

18. June 2015

The Aeroliner3000 train concept, jointly developed by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) and the Andreas Vogler Studio (AV Studio) architectural practice, is one of the three finalists in the international 'Tomorrow's Train Design Today' competition.


NASA and DLR to continue cooperation in aeronautics research

18. June 2015

The US aerospace agency NASA and the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) have signed two agreements on further scientific cooperation in the aeronautics sector. Both partners want to work together on the research topics of aircraft noise simulation and the improvement of helicopter aerodynamics.

DLR at the Hannover Messe – Taking energy further

9. April 2015

Batteries and fuel cells for the vehicles of tomorrow, solar thermal power plants, heat storage and smart rotor blades for wind turbines – there are plenty of opportunities to make the energy supply of the future clean and sustainable.

Nocturnal laser measurements – first in-flight aerodynamic analysis on a commercial aircraft

7. January 2015

Researchers at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR), in collaboration with Airbus, have completed a successful world première – for the first time, they have used lasers to visualise the airflow over the wing of a passenger aircraft in flight. They have developed a method that captures the movement of water droplets streaming over the wing, which reveals the smallest movements of the air. These findings will help optimise future wings to enable slower and quieter approach procedures. Another 'laser flight' is scheduled for 8 January 2015.

Noise behind an engine – unique DLR measurements reveal noise-generating structures in engine jets

23. September 2014

Aircraft engine noise is a socially pressing issue with a wide range of causes. Until now, turbulent fluctuations in the exhaust gas stream have not been fully understood as one of the major sources of noise. Researchers at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) have now managed to make these turbulent flow structures in the engine exhaust gases visible using imaging laser measurement technology, and they have measured the overall flow behind the engine with unprecedented quality. Future generations of engines will be able to benefit from this new knowledge.

Researchers solve the mystery of the ‘wing on wheels’

1. August 2014

Seventy-five years ago, flow researchers at the Aerodynamic Research Institute (Aerodynamischen Versuchsanstalt; AVA) in Göttingen unveiled a car that, for many years, was considered the quintessential execution of aerodynamic design in vehicle construction; its name was the Schlörwagen. A large number of myths have arisen about what became of the vehicle. Now the archives at the German Aerospace Center (DLR) – the successor to AVA – have helped shed light on some of the mysteries.

The world seen from a propeller hub – for the first time DLR researchers make the deformation of a propeller blade during flight visible

25. June 2014

Scientists at DLR Göttingen have achieved a world first – showing the deformation of an aircraft propeller blade during flight. They have developed a special camera that can resist the enormous forces exerted during rotation.

DLR tests solar aircraft for round-the-world trip

9. April 2014

To fly once around the world, across continents and oceans – powered by the Sun; this is the unprecedented goal of the Solar Impulse project. The flying venture is expected to take place in 2015, using an extremely lightweight aircraft covered with solar cells and powered by four electrically driven propellers.

Unique wind tunnel test for slower landing approaches

Unique wind tunnel test for slower landing approaches

12. February 2014

Slower landing approaches by aircraft lead to less noise. How slow, steep and hence quiet a modern commercial aircraft can arrive at a destination airport is determined by the performance of the high-lift system with its retractable slats and flaps on the wings. Another advantage of reduced landing speeds is that shorter runways can be used. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has joined with Airbus, and the European Transonic Wind Tunnel (ETW) in the three-part project HINVA (High lift INflight VAlidation), consisting of wind tunnel experiments, flight tests and computer simulations. The aim is to combine computer models and wind tunnel tests to substantially improve predictions of high-lift performance and hence pave the way for slower and quieter approach flights. In early February, the project performed unique wind tunnel experiments at cryogenic temperatures in the ETW in Cologne. Equipped with laser measurement technology and other advanced measurement systems, the researchers achieved hitherto unknown precision in detecting the flowfield around an Airbus A320 with extended landing flaps and slats under flight-representative conditions. The researchers had constructed a high precision wind tunnel model specifically for the tests, based on flow measurements performed during in-flight tests with the DLR A320 ATRA research aircraft.

DLR researchers first to make causes of helicopter noise visible

6. January 2014

Researchers from DLR based at Göttingen and Braunschweig have succeeded for the first time in visualising the main cause of what makes helicopters so noisy while in the air.

  • Page 1 of 3
  • >>