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1. Introduction  
 
The present paper gives an overview of current research activities and results which were 
gathered in fundamental research projects on composite analysis as a co-operation between 
DLR and NASA Langley, in DLR internal multidisciplinary research projects on reentry, on 
European future launcher projects, and in National future large aircraft projects. 
Consequently, primary applications are for reentry vehicles, e.g. hot structures, thermally 
protected warm structures, cryogenic tanks, and for aircraft structures, e.g. primary structures 
like wing, fuselage, flaps, stabilizers of transonic and supersonic commercial aircraft. The 
focus is on composite and hybrid composite lightweight structures. Efficient shell analysis 
and design considerations for representative structural components like stringer stiffened 
panels are within the central scope of the paper. 
 
In chapter 2 heat transfer is dealt with. After outlining efficient theories and finite element 
formulations for hybrid composite structures the major problem of representing realistic 
thermal boundary conditions is discussed. Suggestions are made which are then applied to a 
CFRP and a fiber metal structure.  
 
Also chapter 3 starts with novel theories. Here, the emphasis is on an efficient procedure to 
determine 3D thermal stresses as a prerequisite for reliable failure prediction by use of 3D 
failure criteria. After discussing the simple and easily applicable extended 2D-method, 
limitations of the theory especially for prediction of transverse normal stresses are 
investigated and suggestions for improvement are made. The chapter closes with design rules 
for stringer-stiffened panels under combined thermo-mechanical loading. Design and 
optimization suggestions for practical application are made.  
 
2. Heat Transfer in Hybrid Composite Shells  
 
Composite materials like carbon fiber reinforced plastics (CFRP) or fiber metal laminates 
(FML) are increasingly used for primary components of commercial aircraft. Various 
configurations like monolithic or sandwich constructions can possibly be made of composite 
materials. Thermal loads, mainly consisting of solar radiation are comparatively low. 
However, the thermal analysis has to certify that the maximum temperature is kept well below 
the glass transition temperature of the resin. Experimental and numerical tests in the past have 
pointed out that valid design rules are often too conservative. Therefore, to be efficient, there 
is a need to find more realistic thermal loads, thermal boundary conditions and improved 
thermal analysis tools for future composite aircraft structures. Chapter 2.1 deals with the 
development of accurate and fast analysis tools. Since common analysis codes and algorithms 
mainly focus on classical metallic aircraft components, these methods and tools have to be 
customized and validated for all composite aircraft structures. This is even more important as 
primary load bearing substructures will be made of composite materials. Another point of 
interest are new and more efficient numerical analysis methods. Therefore, 2D- finite element 
formulations are developed, since experiences show that 3D-modeling is very time consuming 
and data exchange to stress analysis models (usually 2D-models) is difficult. The second 
crucial aspect, the determination of realistic thermal conditions and loads, is addressed in 
chapter 2.2. Maximum temperatures at moments with critical mechanical stresses heavily 
depend on accurate boundary conditions and modeling. The influence of different colors and 
intensity of convection are only two factors to be mentioned within this context. Chapter 2.3 
is concerned with the application of the newly developed methods and finite elements to 
aircraft structures out of CFRP and Fiber Metal Laminates. 
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2.1 Layerwise Thermal Lamination Theories and Finite Elements 
 
Today the thermal analysis of aerospace structures is frequently carried out by use of the finite 
difference method (FDM). P/THERMAL, IDEAS-TMG, SINDA or ESATAN are examples 
of commercial programmes based on FDM. However, this method has some shortcomings, 
especially if applied to composite structures. Originally, it was designed for radiation 
dominated problems (e.g. satellites). It is faced with severe problems, if heat conduction plays 
the major role, since there is no general procedure for calculating the conduction resistors. 
Even greater problems arise with anisotropic materials (like CFRP). One drawback is, that the 
lamination theory for heat conduction can’t be introduced into this method. Another problem 
arises from inhomogenity (CFRP is built up from different layers, other composites like FML 
consist additionally of different materials). 
 
Growing interest is focused on the Finite Element Method (FEM), which allows to use 
standard 3D finite elements or special 2D elements, based on the lamination theories. For the 
modeling of aircraft composite structures the FEM is strongly recommended in case of 
thermal analyses. This method not only provides special elements, but also avoids the 
modeling uncertainties of the  FDM and eventually allows to use the same model in both, 
thermal and mechanical analysis. Nevertheless it should be mentioned that the FDM has been 
successfully applied by many users. They have gathered broad experience in skilful modeling, 
which can sometimes help to overcome the problem of uncertain conduction resistors. 
 
One main objective of the thermal analysis is to certify that a structure fulfils the thermal 
requirements and to supply the full three-dimensional temperature distribution as input for the 
thermo-mechanical analysis. In the case of monolithic and hybrid composites, like sandwich 
structures or fiber metal laminates, the layers have different thermal conductivities in different 
directions. Figure 1 shows examples of different composites. 
 
In general, finite element thermal analyses are performed using 3D elements of commercially 
available tools. With these elements problems arise due to high computational effort and 
coupling of thermal and mechanical analyses. 
 
2D finite elements overcome these problems. Besides, for thermo-mechanical calculations of 
thin-walled structures a two-dimensional model is generally sufficient. Most commercial 
finite element codes provide two-dimensional finite elements for composite and sandwich 
structures. Therefore it is desirable to have finite elements, based on a two-dimensional 
model, which are able to determine the full three-dimensional temperature distribution. 
Therewith the modeling and numerical effort would be drastically reduced. For laminated 
composites (CFRP) Rolfes [2] has proposed a linear thermal lamination theory which is 
analogous to the first order shear deformation theory (FSDT). However, for local effects the 
heat flux calculated from the derivatives of the temperature field is not well approximated. 
Moreover the linear temperature distribution over the thickness might be too rough in the case 
of transient heat conduction. To overcome these shortcomings a higher order quadratic 
thermal lamination theory and associated finite elements have been developed by the same 
author [7]. Other approaches for multilayered composites are described by Agyris et al. [1] 
and Noor et al. [5]. 
 
Subsequently, new 2D finite element formulations are outlined which are based on layer-wise 
linear or quadratic temperature distributions in thickness direction. This allows to analyze 
composite structures with different thermal conductivity in thickness direction for each layer. 
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These elements can also be used for lightweight structures in very cold or very hot 
environments where layers of load bearing material and isolations with different thermal and 
stiffness properties are combined in one lay-up. It should be mentioned that the finite element 
formulations are well suited for to be used in a concurrent integrated engineering process. Due 
to the two-dimensional data structure of the thermal model it can be coupled much easier to 
mechanical models consisting of shell elements than conventional three-dimensional thermal 
models. This is important for fast and accurate analysis within the preliminary design phase of 
structural parts. 
 
 
2.1.1 Formulation 
 
CFRP, hybrid composites and sandwich structures can be idealized as layered structures, see 
Figure 2. For layers in which all modes of heat transfer (heat conduction, radiation and 
convection) occur (for example honeycomb cores) a thermal homogenization is necessary. 
This homogenization is not a specific requirement for 2D finite elements, but is equally 
needed if a 3D finite element or finite difference model is applied. A layerwise discretisation 
with 3D finite elements is very costly. Therefore different approaches have been proposed to 
reduce the modeling effort. For an overview of these approaches see [4], [6] and [8]. The 
thermal lamination theory (TLT) as developed by Rolfes [2,7] has proven a useful method for 
CFRP structures. It assumes either linear or quadratic temperature distributions over the 
whole laminate thickness. This theory holds under the following conditions: 
 

• Identical thermal conductivity of all layers in the thickness direction 
• No heat-transfer resistance at the interfaces 

 
The linear TLT can then be formulated as 
 
 ( ) ( )

0 0,( , , ) ( , ) ( , )b b
zT x y z T x y z T x y= + ⋅ . ( 1)

 
Non-linear temperature distributions in thickness direction can occur in case of 
 

• large temperature gradients in the thickness direction in conjunction with temperature-
dependent thermo-physical properties 

• transient problems with rapid heating 
• spatially concentrated thermal loads 

 
In such cases, the quadratic TLT is better suited. It assumes 
 
 2

( ) ( ) ( )
0 0, 0,( , , ) ( , ) ( , ) ( , )

2
b b b

z zz
zT x y z T x y z T x y T x y= + ⋅ + . ( 2)

 
For modeling hybrid structures (e.g. metallic multiwall TPS, hybrid composites like fiber 
metal laminates, sandwiches or hot structures) it is necessary to abandon the first condition 
stated above, and to replace it by the assumption of 
 

• different thermal conductivity of each layer in thickness direction. 
 
This leads to the need of layerwise theories. 
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A linear layered theory (LLT) (conf. Figure 2) was first used by Sipetov [9] for steady state 
thermal problems. It assumes for each layer k  
 
 ( ) ( ) ( )

0 0,( , , ) ( , ) ( , )k k k
k zT x y z T x y z T x y= + ⋅ . ( 3)

 
Using two heat transfer equilibrium conditions at each layer interface for the 
 

• temperature and the 
• heat flux in transverse direction 

 
the number of functional degrees of freedom can be made independent from the number of 
layers. This theory was extended to transient problems by Noack and Rolfes [3]. 
 
For the same reasons as stated for the TLT, a quadratic layered theory was formulated for 
transient thermal problems and local heat loads. It reads 
 
 2

( ) ( ) ( ) ( )
0 0, 0,( , , ) ( , ) ( , ) ( , )

2
k k k kk

k z zz
zT x y z T x y z T x y T x y= + ⋅ + . ( 4)

 
By using of a third heat transfer equilibrium condition at each layer interface for 
 

• the change of the heat flux in transverse direction, 
 
again the number of functional degrees of freedom can be made independent from the number 
of layers. This third heat transfer condition is chosen as ( ) ( 1)

, , .k k
z z z zq q const+= =  While this seems 

to be mathematically stringent, there is physically no justification for this interface condition. 
Alternatively, also ( ) ( 1)

, , .k k
zz zzT T const+= =  could be chosen. However, numerical examples have 

shown that the former assumption provides very reasonable results. Based on these theories 
the finite elements QUADLLT and QUADQLT were developed, showing linear or quadratic 
temperature distributions in thickness direction for each layer. 
 
Starting with Fourier’s law for layer k of anisotropic material 
 
 ( ) ( ) ( )(grad )= − ⋅k k kq K T  ( 5)
 
equations (3) and (4) may alternatively be used for the approximation of the temperature T. 
Introducing the above mentioned heat transfer equilibrium conditions at the layer interfaces 
leads to  
 
 ( ) ( ) ( )

0 0,( , , ) ( , ) ( ) ( , )k b b
k zT x y z T x y z z T x y= + ⋅  ( 6)

 
for the linear layerwise approximation and 
 
 ( ) ( ) ( ) 2 ( )

0 0, 0,( , , ) ( , ) ( ) ( , ) ( , ) ( , )k b b b
k z k zzT x y z T x y z z T x y z z z T x y= + ⋅ + ⋅  ( 7)

 

for the quadratic layerwise approximation. The index b denotes the reference layer. The 
values of kz  and kz , which are functions of the thickness-coordinate z, are specified in 
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references [3] and [4]. It should be emphasized that for both formulations the functional 
degrees of freedom remain independent of the number of layers which is crucial for a 
computational efficiency. 
 
Introducing these equations into the three-dimensional weak formulation for linear steady-
state heat transfer 
 
 grad ) grad d d 0

Ω Γ

( Ω + Γ =∫ ∫T Tv K T q nv  ( 8)

allows to separate the integration in z-direction from the integration in x- and y-direction. 
Performing the integration in z-direction analytically, the finite element method can be 
applied to the remaining two-dimensional weak formulation 
 

 d d 0
Γ

+ Γ =∫ ∫T T

A

N KN A q nvϑ . ( 9)
 

In equation (8) v is the test function. The boundary conditions at the edge Γ , considering free 
convection cq  and heat flux q , read 
 

 = +T
cq n q q . ( 10)

 
The integration in z-direction leads to the modified heat conduction matrix K . The shape 
functions and their derivatives are summarized in the matrix N  and the nodal degrees of 
freedom in the vector ϑ . Equation (9) can now be implemented into an ordinary 2D finite 
element formulation. A full elaboration with detailed presentation of all matrices is shown in 
[3] and [4]. 
 
 
2.1.2 Examples 
 
A square plate with a local heat flux of q = 100 kW/m2 is considered. Besides adiabatic 
conditions are assumed at the upper surface. At the bottom of the plate and on the edges a 
convection boundary condition with an ambient temperature of 
 T• = 0 °C and ac = 30 W/m2K is applied. The geometry is shown in Figure 3. 
 
Two different configurations are studied, a sandwich and a hybrid composite plate. The 
sandwich has two facings with three layers each and a honeycomb core. The hybrid composite 
CARE is a fiber metal laminate made up from aluminum and CFRP. The steady state 
temperature distributions in transverse direction at point P are shown in Figure 4. It shows 
comparisons of both new elements with a full 3D analysis using HEXA elements of 
MSC.NASTRAN. The results show a good agreement between 2D and 3D analysis. 
Especially, quadratic layered theory and 3D results match excellently. It is clearly visible that 
QUADQLT is very well capable of describing this phenomenon whereas QUADLLT shows 
slight deviations. It should be kept in mind that strongly concentrated heat flux is a rather 
tough test for the elements. In many applications the thermal loading will be much more 
uniform and the temperature distribution can be kept properly already by the linear element. 
Numerical and modeling effort are drastically reduced by the new finite elements. 
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2.2 Realistic Boundary Conditions for Starting Aircraft 

 
Using fiber composite epoxy for primary aircraft structures has brought about the question of 
thermal effects during the starting phase. Of major concern is that under elevated 
temperatures, composites with epoxy resin may encounter fractions which would result in a 
reduction of stiffness and strength properties. In contrast to classical metallic materials this 
reduction starts at temperatures which could already be reached under realistic hot 
environmental conditions. Since dimensioning load cases appear shortly after take-off, the 
knowledge of the temperature field within the primary load bearing structure is necessary for 
an accurate failure analysis. 
 
A major problem for an accurate thermal analysis of a starting aircraft is the determination of 
realistic boundary conditions. In this context on one hand radiation loads must be determined, 
as resulting from direct and reflected solar radiation as well as from thermal radiation of the 
ground, of surrounding structures or of the atmosphere. On the other hand, convective loads 
have to be considered. Therefore, realistic convective coefficients must be specified for 
natural and forced convective heat transfer. 
 
For the steady state case (e.g. parking on ground) the structural temperature field is influenced 
by: 

• ambient conditions (solar flux, air temperature, ground temperature, ground emission 
and absorption coefficients, air velocity) 

• layout (contour) of the structure 
• structural heat conduction properties 

 
Additionally, for the transient (unsteady) case, the structural heat capacity has to be regarded. 
 
Main drivers for heat transfer are: 

• solar radiation absorption 
• radiation between structure and ground 
• radiation between different structural zones 
• radiation between structure and sky atmosphere 
• convection between structure and atmosphere 

 
 
Solar Radiation Absorption : Regarding hot environmental conditions, the amount of heat 
induced by solar radiation can be estimated easily. Assuming clear skies, the solar heat 
intensity ( 21000 W/m≈ , depending on height) is well known. Beside direct solar radiation, 
also reflection of ground or other structures have to be taken into account. Important 
parameters are the solar absorption coefficient sα  of the aircraft structure and the solar 
reflection coefficient 1s sρ α= −  of the ground. Both can vary heavily and have to be 
determined properly. Under conservative assumptions a structural and ground absorption of 

sα =1.0 combined with a hot ground surface temperature of Tground = 80°C could be chosen. 
 
Radiation between Structure and Ground: In addition to reflected solar radiation, the 
ground has also to be taken into account for thermal radiation between the structure and the 
ground surface itself. For this thermal radiation thermal absorption coefficients thα  have to be 
provided for the structure and the ground. Usually, a very hot ground temperature of  
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Tground = 80°C in combination with a high thermal absorption of 0.9, which implies a very 
dark surface, is assumed. 
 
Radiation between different Structural Zones: Inter-structural radiation has to be regarded 
at places where different structural zones have considerable view factors to each other. This 
implies only for special substructures. For larger components like wing or fuselage this 
influence is of minor relevance. 
 
Radiation between Structure and Sky Atmosphere: With a considerable influence on the 
structural temperature field, radiation between the structure and the surrounding sky 
atmosphere has to be computed. An easy equation for a representative temperature of the sky 
atmosphere is given by Swinbank [10], with 

 
 1.5

sky amb0.0552= ⋅T T , ( 11)
 

where the sky temperature skyT  and the ambient air temperature ambT  are given in Kelvin. 
Disadvantages of this approach appear at higher temperatures over 40°C, when unrealistic 
high values are computed. Another presentation, given by Idso & Jackson, see [11], with 

 
 2

sky amb1 0.261 exp[ 0.000777 (273 ) ]T T= − ⋅ − ⋅ − , ( 12)
 
is quite similar but realistically remains with sky ambT T< for higher temperatures. 
 
Convection between Structure and Atmosphere: Forced convection is the main process, 
responsible for cooling down after the aircraft starts moving. With a given wind speed profile, 
the heat transfer coefficient for forced convection h can be determined. 
The equation 

 
 4/5 1/3Nu( ) 0,0296 Re Prx = ⋅ ⋅  ( 13)

 
provides the local Nusselt (Nu) number as function of Reynolds (Re) and Prandtl (Pr) 
numbers for turbulent conditions. Finally, the forced convection 

 
 Nu /xh λ= ⋅  ( 14)

   
can be approximated by the Nusselt number, the thermal conductivity λ  and the position x  
within the length of the thermal boundary layer. Natural convection, which may cause a 
realistic heat transfer coefficient up to approximately 3 W/m2K, is taken into account by 
assuming a minimum wind speed of 2m/s. As it can be seen by formulae ( 13) and ( 14) the 
heat transfer coefficient depends mainly on two parameters, one is the air flow velocity, the 
other is the position within the boundary layer of the structure. Figure 6 shows two curves for 
positions at 1.0x m=  (typical for wing dimensions) and 50.0x m=  (typical for fuselage 
dimensions). The differences are obvious. The kink within the curve for 1.0x m=  results 
from the laminar-turbulent transition, where for 50.0x m=  only the turbulent region is 
relevant. 
 
As pointed out the air flow velocity is one major factor for cooling during the take off. Figure 
7 shows a typical profile of the air flow velocity over time. 
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By evaluating equations ( 13) and ( 14) the air flow velocity can be transformed into a 
function for the heat transfer coefficient, see Figure 8. In this case a mean value is calculated 
for a structural length of 4,0L m= . 
 
Another important and parameter, also varying with time, is the ambient air temperature 
which depends on the assumed ground temperature and the actual height of the aircraft. Such 
an exemplary temperature profile is given in Figure 9. The described profile is derived by a 
combination of an ISA-temperature function (temperature as function of hight) with an 
appropriate take off scenario (hight as function of time). 
 
With these input parameters for forced convection the partial heat flux  

 
 ( ) ( )struct ambq h h T T= −  ( 15)

   
can be computed within the numerical analysis. 
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2.3 Application to CFRP and Fiber Metal Laminates 
 
As composite materials become more and more common for primary aircraft structures, the 
thermal analysis plays a growing role for the design process. A typical part which could be 
made of composite in future aircraft is a CFRP wing box, shown in Figure 10. 
Main points for thermal evaluation are shown in Figure 11. 
 
Conducting a steady state analysis, the effect of a varying solar absorption coefficient sα  is 
shown in Figure 12. It comes out very clearly, that a painting with a low sα  and high thermal 
emissivity thε  has a favorable influence on the temperature in the sense of limited heating. 
 
The influence of a varying heat convection factor is shown in Figure 13, where the strong 
influence of this parameter is pointed out. Values are computed for a steady state case which 
is relevant for a parking scenario on ground. 
Taking a heat transfer coefficient of 8 W/m2, a thermal emissivity and solar absorptivity of 
0.9, the transient heating on hot environmental conditions up to a steady state limit (after 
approximately 1 hour) for a CFRP wing box is presented in Figure 14. 
Then taking into account a take off scenario, described in chapter 2.2, the cooling of the 
structure is shown in Figure 15.  
Taking the steady state values as starting condition, a little drop of temperatures is observed 
during taxiing. Then, by having a one minute stop, the structure heats up again. During the 
following take off a rapid cooling is visible. 
 
For fuselage structures fiber metal laminates exhibit new potential weight savings. As for 
other composites, they also show a drop of strength and stiffness for hot temperatures. 
Therefore, accurate thermal analyses are necessary. An exemplary cross section, Fig. 16, was 
discretised with panels, shown in Fig. 17. 
For such structure a similar computation of the temperature field as for the wing box was 
conducted. A crucial point is the validation of the numerical model of the panel. Therefore, 
experimental tests were carried out at the DLR THERMEX test facilities. 
These tests were compared to numerical computations on panel level. Typical contour plots 
are shown in Figure 18. In this manner it is possible to compute temperature fields for various 
composite aircraft substructures. This gives an accurate basis for all mechanical computations, 
where temperature effects have to be taken into account.  
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3. Thermally Induced Stresses in Composite Shells 
3.1 Extended 2D Method for Transverse Thermal Stresses based on FSDT 
 
When a shell or plate is subjected to a temperature change, the distribution of which can be 
calculated by the methods described in chapter 2, thermal strains are generated if the thermal 
expansion coefficient is unequal to zero. Thermally induced stresses do only appear if the free 
deformation of the structure is restrained either by internal constraints or by external boundary 
conditions. In-plane stresses can occur as well as transverse stresses. 
 
In case of a uniform thermal load within the x1-x2-plane transverse stresses can only develop 
near the boundaries. At free edges the transverse shear resultant must vanish, however, 
interlaminar shear eigen-stresses are normally present since the thermal expansion behavior 
changes from layer to layer. Transverse shear resultants can develop at supported boundaries 
if the thermal load causes bending of the plate. This occurs in symmetric laminates under non-
symmetric temperature distribution in thickness direction, or in unsymmetrical laminates even 
under uniform through-the-thickness temperature. In case of non-uniform thermal loading 
within the x1-x2-plane, thermally induced transverse stresses can occur throughout the whole 
plate. The importance of transverse stresses for predicting the onset of damage in composites 
is widely accepted. Consequently, modern failure criteria account for the full stress tensor 
even for applications to thin-walled structures [12].Therefore an efficient method for 
predicting thermally induced transverse stresses is required. 
 
The first order shear deformation theory (FSDT) has proven to be a good compromise 
between low effort and high accuracy. Generally, good results are achieved for displacements 
and in-plane stresses whereas transverse stresses show poor quality when calculated using the 
material law. If the three-dimensional equilibrium conditions are used instead then realistic 
transverse stress distributions can be achieved at least under mechanical loading. This 
procedure has already been proposed by Pryor and Barker [13]. However, their method needs 
fourth order shape functions in order to evaluate all derivatives required on element level. The 
extended 2D-method of Rolfes and Rohwer [14] which bases on simplifying assumptions 
needs only quadratic shape functions. This allows elementwise evaluation of derivatives in 8 
or 9 noded elements. The extension of this method to thermal loading is discussed 
subsequently. The content is primarily based on the publications [15, 8]. 
 
The 3D-equilibrium conditions write 
 
 σα3,3 + σαβ,β = 0 ( 16)
 σ33,3 + σα3,3 = 0 ( 17)

 
where equations ( 16) are used to compute the transverse shear stresses 3ασ  from the in-plane 
stresses αβσ . The components of αβσ  are written in vector form and denoted as mσ . For the 
FSDT they read 
 
 

mσ  = 3C ( x T)ε° + κ − α∆ , ( 18)
 
where ε °, κ  and α  are extensional strains and curvatures of the reference surface and 
coefficients of thermal expansion, respectively. ε (°) and κ  can be expressed by the in-plane 
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and bending stress resultants thN, N ,M  and thM when using the thermo-elastic constitutive 
relation for the laminate 
 
 th

th

N NA B
B D M M

°      +ε
=     

κ +     
 ( 19)

 
The matrices A, B, and D  are inverse matrices of the laminate’s in-plane, coupling and 
bending stiffness matrices A,B and D . Including eq.’s ( 17) and ( 18) into eq. ( 16) yields a 
formulation for the transverse shear stresses σα3 which depends on laminate matrices and first 
derivatives of the in-plane and bending stress resultants. 
 
At this point two simplifying assumptions come into play. Firstly, the influence of the first 
derivatives of the in-plane stress resultants on the transverse shear forces is neglected and, 
secondly, the deformation behavior is approximated by two cylindrical bending modes. Thus, 
the following derivatives vanish 
 
 N, 0α =  ( 20)
 11,2 22,1 12,1 12,2M M M M 0= = = =  ( 21)
 
 
The remaining derivatives of the bending stress resultants can be expressed by the transverse 
shear resultants 
 
 M11,1 = R1 ( 22)
 M22,2 = R2 ( 23)
 
by applying equilibrium. When introducing equations ( 17) to ( 20) into eq. ( 16) the final 
equation for the transverse stresses appears after some algebraic manipulations 
 
 

[ ]
(0)th th

th th
(1)th th

T,A B
f R B G F a b

T,B D
αβ

α
αβ

    
  τ = + +             

 ( 24)

 
The matrices th th th th thf ,G,F,a , b ,A ,B and D  only depend on the laminate properties and can 
easily be evaluated. (for more details see [8]). Bα  are simple Boolean matrices, T(0) is the 
temperature of the reference surface and T(1) denotes the temperature gradient in thickness 
direction (linear distribution assumed). Applying the third equilibrium condition ( 17) allows 
for evaluating even the transverse normal stress. After some algebraic work it appears 
 
 

( )
(0)th th

* * * th th
33 3 (1)th th

T,A B
x b f R, b B G F a b

T,B D
αβ∗

α α α β
αβ

    
    σ = − + + ∗              

(25)

 
The superscript ∗ denotes integration in thickness direction up to x3.The extended 2D-method 
can easily be implemented into a pre- and postprocessing software tool for any finite element 
code which comprises a shell element based on the FSDT. By that means the full 3D state-of-
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stress is evaluated by using a standard shell discretisation and performing a very rapid 
postprocessing. 
 
The performance and limitations of the extended 2D-method are illustrated by the subsequent 
examples. A simply supported plate with anti-symmetric stacking [0/90/0/90] was subjected 
to static and temperature loading. The latter one was either uniform in thickness direction or 
linear. Material properties typical for CFRP with high tenacity fibers were chosen. 
 
 E1/E2 = 15; G12/E2 = 0.5; G22/E2 = 0.3378; ν12 = 0.3; α1 = 0.139∗10-6; α2 = 9.0∗10-6 

 

Figure 19 shows transverse shear stress distributions which are compared to an analytical 3D 
solution, denoted as “exact”, and an equilibrium method without simplifying assumptions, 
denoted as “3D Post Processing”. In general the approximation of the extended 2D-method is 
good, often very good. The full equilibrium approach provided even better results, however, 
one should keep in mind that it requires higher order derivatives which can usually not be 
evaluated in finite element computations on element level. While the transverse shear stresses 
are already small compared to the in-plane stresses, the transverse normal stress is even much 
smaller than the transverse shear stresses. 
 
Figure 20 shows the results for two aspect ratios of the plate. For mechanical loading the 
results are excellent, for thermal gradient loading they are at least good. However, under a 
temperature load which is uniformly distributed through the thickness the results are poor for 
the plate with aspect ratio 1. In this case the maximum transverse normal stress is only 2.50/00 
of the maximum transverse shear stress. It is interesting to notice that the application of the 
full equilibrium method does not improve the results. This gives rise to the assumption that in 
these cases the FSDT finds its limitations. This problem can be resolved by applying higher 
order theories as will be shown in the following. 
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3.2 Higher Order Theorie 
 
3.2.1 Conditional need for higher order theories  
 

From the explanations and examples given above it is obvious that the extended 2D method 
based on the First Order Shear Deformation Theory (FSDT) delivers thermally induced 
stresses which in many cases compare very well with those obtained by means of the much 
more expensive 3D analysis. That holds especially for the transverse shear stresses; in a few 
cases transverse normal stresses, however, deviate considerably from the exact solution. In the 
following, reasons for these discrepancies are investigated more closely.  

 
Test cases are rectangular plates where the boundary conditions 
 

2 2 11 1 1

1 1 22 2 2

u 0, w 0, 0, 0 at x 0,L
u 0, w 0, 0, 0 at x 0,L

ϕ σ
ϕ σ

= = = = =

= = = = =
          (26) 

 
are enforced along the edges. The quantities 1ϕ  and 2ϕ  specify the normal rotation around the 
axes 2x  and 1x  respectively. The plates consist of layered fiber composites the material 
properties of which are assumed as  
 

L T LT T TT T LT
6 1 6 1

TT T L T

E /E 15, G /E 0.5, G /E 0.3378, 0.3,

0.48, E 10.0 GPa, 0.139 10 K , 9 10 K

ν

ν α α− − − −

= = = =

= = = ⋅ = ⋅
          (27) 

 
Discrepancies in the resulting stresses appear for example if the plates are loaded by a 
temperature distribution of the form 
 

1 2 3 0 1 1 2 2 3 1 1 1 2 2T(x ,x ,x ) T sin( x /L )sin( x /L ) x T sin( x /L )sin( x /L )∆ π π π π= +    (28) 
 
Rolfes et al. [15] have shown that for all cases considered, the transverse shear stresses at the 
edge half way between two corners obtained by means of the extended 2D method compare 
very well with the corresponding 3D results. Transverse normal stresses at the plate center, 
however, are in many cases not well determined by the extended 2D method. That holds 
especially for a temperature load which is constant across the plate thickness 
( 0 1T 0, T 0≠ = ). No good agreement with the 3D results could be reached for such a 
loading. In case of a linear temperature distribution 1T , however, the extended 2D values 
compare quite well in general.  
 
These inconsistencies were thoroughly investigated by Rohwer et al. [16]. They traced them 
back to lentil-like deformations of each separate layer due to the sinusoidal temperature 
distribution. Under a temperature load constant through the plate thickness ( 0 1T 0, T 0≠ = ) 
transverse normal stresses are the consequence of inter layer compatibility. In case of a 
temperature load linearly distributed through the thickness ( 0 1T 0, T 0= ≠ ) each separated 
layer would deform either into a concave or convex shape depending on its location in 
thickness direction. Transverse normal stresses appear as before but with a sign change along 
x3. Consequently, the sinusoidal temperature load distribution in x1 and x2 will always render 
transverse normal stresses. The question arises why these stress components are not 
adequately covered by the extended 2D method. 
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Equilibrium conditions relate transverse derivatives of the transverse normal stresses to in-
plane derivatives of the transverse shear stresses. 

 
33,3 3,α ασ σ= −                      (29) 

 
At the upper and lower plate surface (x3 = ±h/2) the stresses 33σ  must vanish. Since they 
cannot be zero all along x3 as explained above, non-zero in-plane derivatives of 3ασ  and 
therewith these stresses themselves must exist. But they also must vanish at the upper and 
lower plate surface because of equilibrium conditions. 

 
For a symmetrically stacked plate under a temperature load constant through the thickness 
( 0 1T 0, T 0≠ = ) the stresses 3ασ  must not result in transverse shear forces when integrated 
over the plate thickness. Consequently the distribution along x3 must at least have two 
maximum values. Using now the in-plane equilibrium conditions 

 
3,3 ( ), ( ),(1 )α αα α αβ αβ βσ σ δ σ= + −                   (30) 

 
it becomes clear that a linear distribution of in-plane displacements and the resulting piece-
wise linear in-plane stresses can not adequately model the structural behavior. A higher order 
polynomial is necessary. Though these arguments are not fully applicable to plates with non-
symmetric stacking or to a linearly distributed temperature load it can be assumed that also in 
these cases higher order polynomials would lead to a considerable improvement in the 
transverse shear and normal stress distribution. 
 
3.2.2 Kinematic relations 
 
In order to determine necessary and sufficient polynomial degrees for displacement 
approximation they are developed into power series in thickness direction. 
 

( )
i

i
i 3

i 0
u c u xα α

∞

=
= ⋅∑            (31) 

( )ii i 3
i 0

w d w x
∞

=
= ⋅∑             (32) 

 
These series must be truncated so that the number of functional degrees of freedom is kept 
limited. Such approaches have been proposed by several authors. In some cases additional 
constraints are applied for to further reduce the number of functional degrees of freedom. The 
applicability of the different theories to thermal loads, however, is seldom checked. The 
considered sinusoidal temperature distribution, in particular, is treated by Khdeir and Reddy 
[17]. But their results are restricted to transverse displacements and membrane stresses; 
transverse stresses are not studied. 

 
In the following, results obtained by means of the extended 2D method based on FSDT will 
be compared against results with approaches characterized by ci = 1 and di = 1 for i = 0,1,2,3 
(HO-3) and for i= 0,1,2,3,4,5 (HO-5) whereas higher order terms vanish. For all approaches 
the standard linear strain displacement relations are assumed. With the polynomial 



 16

approximation of the displacements inserted the strains can also be written in the form of a 
polynomial series. 
 

( )
i

i
n n 3

i 0
xε ε

∞

=
= ⋅∑             (33) 

 
This series is to be truncated according to the truncation of the displacement development. 

 
In general the kinematics described above do not meet the condition of vanishing transverse 
shear strains at the upper and lower plate surface. These conditions can be utilized to 
eliminate four functional degrees of freedom. If that is done the corresponding stiffness 
coefficients must be modified, accordingly, which may impair the quality of the displacement 
distribution. Furthermore, in case of application in finite elements at least C(1) continuity 
conditions are required for the shape functions. Since in the following the transverse stresses 
will be determined by means of the equilibrium conditions zero transverse shear strains at the 
plate surfaces need not be enforced explicitly in the displacement functions. 

 
 
3.2.3  Elasticity Relation and Boundary Conditions 
 
Basis for the higher-order theories is the 3D elasticity law of the layer k which in index 
notation reads 
 

{ }k m k mn n k nQ Tσ ε α ∆= − ⋅           (34) 
 

The stresses can be integrated over the plate thickness leading to stress resultants of the form 

( )
i

i
m m 3 3

(h)
N x dxσ= ⋅∫                     (35) 

 
For i = 0,1 these stress resultants are the standard membrane forces and bending/ torsion 
moments; indices between 2 and 5 point to higher order stress resultants. Correspondingly 
coefficients of the strain components and the components of the temperature load are to be 
integrated. To that end the assumed thickness distribution of the strains εn and the temperature 
load ∆T must be inserted. With 
 

( )
i j

i j
mn mn 3 3

(h)
C Q x dx+= ∫         where    i, j 0,1,2,3,4,5=  for HO-5                        (36) 

and 
 

( )
i

i
m mn n 3 3

(h)
A Q x dxρ

ρ α += ∫      where    i 0,1,2,3,4,5=   for HO-5 and 0,1ρ =    (37) 

 
the elasticity relation for the laminated plate reads 
 

i i j j im mn n mN C A Tρ ρε= −            (38) 

 
Therewith equilibrium conditions can be established. 
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i i i 1

i i i 1

i i i 1

11 1 12 2 13

12 1 22 2 23

13 1 23 2 33

N , N , i N 0

N , N , i N 0

N , N , i N 0

−

−

−

+ − ⋅ =

+ − ⋅ =

+ − ⋅ =

      where    i 0,1,2,3,4,5=  for HO-5     (39) 

 
In case of HO-5 these are 18 conditions whereas for HO-3 the number is reduced to 12. 
Correspondingly there are 2×18 and 2×12 boundary conditions to be satisfied. For a ‘simple 
support’ they can be specified as follows: 

 

i i11 2 iN u w 0= = =               at    x1 = 0, L1        (40) 

i i22 1 iN u w 0= = =               at    x2 = 0, L2        (41) 
 

These conditions are met if the displacement functions are of the form 
 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

i
i

i i

1 1 1 2 2mn1

2 2 1 1 2 2mnm 1n 1
i i 1 1 2 2mn

u cos m x /L sin n x /Lu

u u sin m x /L cos n x /L

w w sin m x /L sin n x /L

π π

π π

π π

∞ ∞

= =

 
   
   =   
   
   

 

∑ ∑      (42) 

 
 

3.2.4 Transverse Stresses 
 

The applied temperature load consists of the first term of the Fourier series only. Thus it is 
sufficient to restrict the displacement functions likewise. Inserting these displacement 
functions into the strain displacement relation and using the resulting strains together with the 
stiffness coefficients and the temperature load in the equilibrium conditions yields a set of 
linear algebraic equations for to determine the unknown coefficients 

i
uα  and iw . They fully 

specify the displacements. 
 

For the determination of the transverse stresses, only the membrane displacements 
i

uα  are 
used. In-plane derivatives are formed to derive at the membrane strains. With the aid of the 
material law the membrane stresses are calculated for each layer. By means of the local 
equilibrium conditions the in-plane derivatives of the membrane stresses are integrated to get 
the transverse shear stresses, whereas integrating the in-plane derivatives of these transverse 
shear stresses results in the transverse normal stresses. 

 
 

3.2.5  Numerical Application 
 

By means of two examples the effects discussed above are evaluated. Results obtained with 
the extended 2D method (FSDT), with a cubic (HO-3) and with a fifth order (HO-5) 
displacement approximation are compared against analytical 3D solutions. Plates with two 
different lay-ups are analysed, a four layer anti-symmetric stacking of [0,90,0,90], and a ten-
layer symmetric stacking [0,90,0,90,0]S. The plates are of quadratic ground shape with a 
slenderness ratio of s=L/h=5. This rather small ratio is chosen to make the differences 
between the theories more visible.  
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Material properties and loading conditions are as specified in equation (27). Transverse shear 
stresses 13σ  and 23σ  are determined at the mid-side edge points (0;L2/2) and (L1/2;0), 
respectively, whereas the transverse normal stresses 33σ  are calculated at the plate center 
(L1/2;L2/2). Due to the applied thermal load and the boundary conditions these are the points 
where the stresses reach maximum values. The stress distribution in x1- and x2-direction 
follows harmonic functions. 
 
Transverse shear and normal stresses in the [0,90,0,90] laminate are depicted in Figure 21. 
Such a lay-up leads to a bending deformation even for the constant thermal load 
( 0 1T 0, T 0≠ = ). Transverse shear forces must develop at the edges. That is reflected by the 
transverse shear stresses 13σ  and 23σ . Their zig-zagging mode can be explained by abrupt 
stiffness changes between the 0o- and the 90o-layers. Values of 13σ  and 23σ  are of opposite 
sign but exactly central symmetric in magnitude. Transverse normal stresses 33σ  are 
compressive at the plate center. That again is due to compatibility constraints in connection 
with the lentil-like deformations. 

 
With the extended 2D method (FSDT) the zig-zagging modes of the transverse shear stresses 
are well captured. Though the values are somewhat off they still show exact central 
symmetry. The transverse normal stresses, however, are determined as tensile, their 
distribution differs drastically from the 3D results. Cubic and fifth order displacement 
approximations deliver transverse stresses which are nearly identical to the 3D solution. 

 
Through linearly distributed thermal loads ( 0 1T 0, T 0= ≠ ) additional bending is induced. 
Figure 21 shows that it results in transverse shear stresses which are of opposite sign in the 
upper and lower half of the plate. The distribution of 13σ  in positive x3-direction is exactly 
the same as that of 23σ  in negative x3-direction. Transverse normal stresses 33σ  are rather 
small with tensile values in the upper half and compressive ones in the lower half. The 
relatively small contribution due to the compatibility constraints of concave and convex 
deformation shapes of separated slices must be superimposed by larger transverse normal 
stresses due to bending. 

 
Distribution shapes of transverse shear and normal stresses are rather well captured by the 
extended 2D method (FSDT). Maximum values of the normal stresses, however, exceed those 
of the 3D results by about 25%. Results of the cubic displacement approximation are much 
more accurate, and the fifth order approach show hardly any difference to the exact solution. 
 
Results obtained for the [0,90,0,90,0]S plate are summarised in Figure 22. Constant 
temperature through the thickness ( 0 1T 0, T 0≠ = ) leaves the symmetry plane straight but 
the sinusoidal distribution in x1 and x2 causes lentil-like deformation as mentioned above. 
Each layer undergoes bending deformation, and because of the abrupt stiffness changes 
between the 0o- and the 90o-layers transverse shear stresses appear in a zig-zagging mode. 
Distribution through the thickness of 13σ  as well as of 23σ  is exactly central symmetric. At 
the plate center compressive normal stresses 33σ  appear due to inter layer compatibility. 

 
Again, the extended 2D method (FSDT) captures the central symmetric zig-zagging shape of 
the transverse shear stresses quite well, though the values, especially for 13σ , are somewhat 
off. But the transverse normal stresses are in no way comparable with the exact results. Cubic 
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and fifth order approximation result in transverse shear stresses which hardly deviate from the 
3D solution. For 33σ  the cubic approximation yields a maximum value at the plate center 
which is 7.1% too large, whereas the fifth order approximation result is again very close to the 
3D value. 

 
Under a linear temperature distribution ( 0 1T 0, T 0= ≠ ) the bending deformation result in 
positive values for 13σ  and corresponding negative values for 23σ . With exception of the 
two central 0o-layers it are again zig-zagging forms, but now symmetric with respect to the 
center plain. Again, transverse normal stresses are rather small, with compressive values in 
the upper half and tensile ones in the lower half.  They can be explained by the compatibility 
constraints of concave and convex deformation shapes due to positive and negative 
temperature difference, respectively. 

 
Especially the shear stresses 13σ  is quite well modelled by the extended 2D method (FSDT), 

23σ  is much worse. That is because of the larger membrane and bending stiffness in x1-
direction as compared to x2. The transverse normal stresses by the extended 2D method 
capture only the bending effect, not the lentil-like deformations and is therefore no way near 
the exact results. The cubic approximation (HO-3) delivers rather accurate transverse shear 
stresses, whereas the normal stresses are 33% too large at the maximum. All results from the 
fifth order approximation compare very well with the exact results. 

 
The examples clearly point out that a variation in temperature difference over the reference 
surface results in effects which cannot be captured by the FSDT. That holds especially for the 
transverse normal stresses. Though their absolute values are relatively small they should not 
be neglected since the corresponding strength in layered composites is also rather small. 
Therefore, in case of a temperature load with considerable gradients in the in-plane direction 
the application of higher order theories (HO-3 or HO-5) is strongly recommended.   
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3.3 Thermally Induced Buckling  
 
In aircraft and reentry vehicle structures there are many structural components which, caused 
by its high slenderness and predominant in-plane loading, are prone to fail by loss of stability 
at a load which is significantly below the strength limit. Thus, after having calculated the 
temperature field (cf. chapter 2) and having checked the strength by use of thermal stress and 
failure analysis (cf. chapter 3.1 and 3.2) the stability behaviour under combined thermo-
mechanical loading must be investigated. 
 
The thermal buckling of laminated composite plates and shells has been investigated by 
several authors (e.g. [18], [19], [20], [21], [22]), none of which however considered design 
rules for thermo-mechanical buckling of stringer stiffend panels. This is done subsequently by 
the example of a flat stiffened panel. Previously, finite element modelling philosophy and test 
correlation are discussed by the example of a curved, so-called validation panel, which might 
be representative for a fuselage structure. The content is primarily based on the work reported 
in [23, 24, 25]. 
 
In order to establish a validated finite element model a panel designed for global buckling 
(conf. Figure 23) was tested and analyzed. It had a length of 800 mm, a radius of 400 mm and 
an arc length of 420 mm. It was stiffened by six blade-stringers of 14 mm height. The 
stacking sequence of the skin was [(+45/-45)2 / 90 / 0]s which yielded a thickness of 1.5 mm. 
The temperature dependent material properties of Fiberite 954-2A/IM7 are given in table 1. 
The panel was tested within the THERMEX-B facility of EXSACOM [26]. This test site is 
equipped with segmented clamping boxes at both sides which allow for transverse expansion 
of the test panel (y-direction). Furthermore the unloaded straight edges of the panel are fixed 
between two buckling supports each in order to prevent wrinkling. It turned out that very 
precise modeling of these boundary conditions is of major importance for realistic 
representation of the buckling behavior. A first approach to model the buckling supports was 
the assumption w=0. This resulted in a very stiff structure, because the panel behaved like 
being fixed in a stiff frame. The problem was solved by coupling the rotational degrees of 
freedom of the nodes in the region of the buckling support. By that means the straight edges 
acted like rigid structures which could perform any rigid body movement (conf. Fig. 23). The 
areas of the FE-model with boundary conditions reflecting the clamping (curved edges) were 
changed in their length, and a separate coordinate system was defined to allow transverse 
deformations δν. 
 
Another important modeling aspect concerns the eccentricity of the foot of the blade stringers. 
Modeling the foot as local stiffening of the skin with unmodified reference plane is 
presumably an efficient method which introduces only a minor inaccuracy. However, 
computational results reveal an important influence on the buckling behavior. Thus, the exact 
eccentricity must be taken into account, e.g. by modeling skin and foot with separate shell 
elements and connecting them by beam elements. Two nominally identical panels were tested. 
The first one was subjected to pure mechanical loading under room temperature until 
buckling. The global buckling pattern yielded damaging of the panel. Thus the second panel 
was treated up to 150°C on the outside and, after having reached steady state, was compressed 
until buckling. The temperature distribution was calculated by finite elements and transferred 
to the buckling analysis model. Finally, a nonlinear buckling computation taking into account 
temperature dependent material properties and initial imperfections in the form of the first 
eigenmode (with amplitude δz=0.1 mm) was carried out. An adequate choice of imperfections 
was crucial for the curved panel. A too small imperfection did not affect the buckling at all, 
whereas a too big one dominated the behavior. Table 2 shows the favorable agreement 
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between calculation and experiment for both tests. In Figure 24  a very good comparison of 
buckling patterns can be seen. It is worthwhile to notice that the additional thermal loading 
did not have a significant influence on the buckling load. This was more thoroughly 
investigated by further computations. 
 
For this purpose flat stringer-stiffened panels were selected. Firstly, they are typical for wings 
of supersonic aircraft, the curvature of which is negligible. Secondly, they exhibit a 
postbuckling behavior which is quite different from curved panels. The latter resulted in a 
very low sensitivity with respect to geometrical imperfections. Different amplitudes for 
imperfections in the form of first and second buckling modes (conf. Figure 25b/c) were 
numerically tested but did not have a significant effect. The same finite element modeling 
philosophy was used as for the curved validation panel. The panel depicted in Figure 25a with 
(±45, 0)s - and (±45, 03)s - lay-ups for skin and stringer, respectively and made from CIBA 
6376/HTA (temperature dependent material properties are given in [25]) was subjected to 
combined thermal and mechanical loading. The design resulted from an optimization for 
buckling load maximization. The linear buckling load under pure mechanical loading of 93.3 
kN was basically not reduced by simultaneous heating within a realistic range up to 150°C. 
This result was confirmed by geometrically and physically non-linear computations which 
provided identical load-shortening curves for 25°C and 100°C. Again, like in the previous 
investigation of the curved panel, the transverse expansion was unrestrained. In the next step 
the unloaded edges (parallel to the stringers) were fixed in transverse and normal direction (v 
= w = 0) whereas the rotations were left unrestrained. These boundary conditions might be 
close to those of wing panels fixed to ribs and spars. Figure 26 shows that the buckling load 
under pure mechanical load is less than half of the value obtained before. Furthermore, a very 
pronounced reduction of the buckling load due to temperature increase could be observed. 
The transverse expansion of the skin laminate is rather high under mechanical and thermal 
loading. In order to reveal this influence two extreme designs were investigated. 0° plies only 
in the skin result in maximum transverse expansion and yielded a rather high mechanical 
bifurcation load of 85.3 kN, whereas the critical buckling temperature difference was only 
18.5°C (conf. table 3). Consequently, pure 90° plies in the skin provided a lower bifurcation 
load (60.6 kN) and a higher critical temperature (115.6 °C). An optimisation for maximum 
mechanical buckling load at room temperature resulted in a (90 / 0)s design with a bifurcation 
load of 86.3 kN. Also the critical temperature difference of 88.6 °C was rather high in this 
case. 
 
Summarizing the thermal buckling investigation of stiffened panels it can be stated that 
possibility to expand transverse to the loading direction has a decisive influence on the 
optimum structural design and on the effect of additional thermal loading. Thus, the designer 
has to make sure that the boundary conditions of the panel to the surrounding structure are 
modeled precisely. Then, independent of the boundary conditions chosen, an optimization for 
maximum mechanical buckling load is also appropriate for additional thermal loading. When 
modeling panels with finite elements not only the boundary conditions but also the connection 
between stringers, stringer foot and skin must be represented accurately, especially 
representing eccentricities correctly.  
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Figure 1: Examples of different composite structures 
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Figure 2: Layered design of composite and sandwich structures 
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Figure 3: Example problem for the thermal analysis 
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Figure 4: Comparison of 2D and 3D thermal analysis (transverse temperature distribution at point P) 
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Figure 5: Environmental heat transfer process with aircraft structure 
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Figure 6: Heat transfer coefficient for two different positions 
 
 

 

Figure 7: Air flow velocity for take off scenario 
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Figure 8: Heat transfer coefficient 
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Figure 9: Ambient air temperature for take off scenario 
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Figure 10: CFRP wing box 
 
 
 
 
 
 
 

 
 
 
Figure 11: Evaluation points for thermal analysis of wing box 
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Figure 12: Steady state temperature for varying solar absorption coefficient 
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Figure 13: Steady state temperature for varying heat convection factor 
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Figure 14: Heating of wing box under hot conditions 
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Figure 15: Transient cooling of wing box during take off scenario 
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Figure 16: Fuselage cross section 
 
 
 

 
 
 
Figure 17: Panel of fuselage 
 
 
 
 
 
 
 



 32

 
 
Figure 18: Temperature field of panel during heating 

 



 33

 

 
Figure 19: Through-the-thickness distributions of transverse shear stresses ( σ31 at L1, L 2/2); 
σ32 at L1/2, L2)). Four-layer antisymmetric cross-ply laminate with L2/L1 =  2 subjected to: 
(a) static loading p; (b) uniform temperature T0

 ; (c) temperature gradient T1. 
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Figure 20: Through-the-thickness distribution of transverse normal stress σ33 at (L1/2, L2/2). 
Four-layer antisymmetric cross-ply laminate subjected to: (a) static loading p; (b) uniform 
temperature T0; (c) temperature gradient T1. 
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Figure 21: Transverse Stresses in an Anti-Symmetric [0,90,0,90] Plate 
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Figure 22: Transverse Stresses in a Symmetric [0,90,0,90,0]S Plate 
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Figure 23: Sketch of panel co-ordinate system and boundary conditions 
 
 
 
 

  
 
Fig. 24:Experimental and calculated buckling mode 
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Figure 25: Flat panel with six stringers for investigation of imperfection sensitivity 
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Figure 26: Critical axial force – temperature difference diagram of linear bifurcation 
computations of panel with fixed unloaded edges 
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Tables 
 

 

Table 1: Material properties of Fiberite 954-2A/IM7 

 

 Room temperature 150 °C 
E11,t 156 GPa 166 GPa 
E22,t 9.2 GPa 7.4 GPa 
E11,c 155 GPa 160 GPa 
E22,c 9 GPa not obtained 
ν12 0.34 0.30 

 
 
 
Table 2: Comparison of buckling loads 

 
Calculation Experiment

Pure mechanical
load

Additional 
thermal load 1

208.30 (linear)
185.22 (nonlinear)

185.23 (nonlinear)

182.0

175.8

 

 
 
 

Table 3: Mechanical bifurcation buckling loads and critical temperature differences for variations of skin lay-up 

 

Panel skin-layup 1 Mechanical 
bifurcation load [kN]

1.1.1 Critical temperature 
difference [K] 

0° 85.3 18.50 

90° 60.6 115.59 

(90°, 0°)s 86.3 88.625 
 

 
 
 


