

DLR's Airborne SAR System

F-SAR PRODUCT DESCRIPTION

German Aerospace Center (DLR) Microwaves and Radar Institute Department of SAR Technology

prepared:		
	Martin Keller, Jens Fischer, Marc Jäger	Datum
approved:	Rolf Scheiber	Datum
released:		
	Andreas Reigber	Datum

Doc. : DLR-FSAR-PRODVersion:3.2Date:28.11.2019Page:2 of 36

Intentionally left blank!

GENERAL

Verteiler

Organisation	Copies	Name	
DLR/HR	1	Martin Keller	
DLR/HR	1	Jens Fischer	
DLR/HR	1	Marc Jäger	
DLR/HR	1	Rolf Scheiber	
DLR/HR	1	Andreas Reigber	
DLR/HR	1	Ralf Horn	
DLR/HR	1	Eric Schreiber	

The custodian of this document is Martin Keller.

Revision Control

Version	Rev.	Date	Pages	Changes	Status
2	3	2013-06-15	all	First version released	Draft
2	4	2013-08-01	19	Description of Mosaic Products	Draft
2	5	2014-12-01	all	Circular SAR products	Draft
2	6	2015-06-09	all	CSAR and HoloSAR products	Draft
2	7	2015-10-19	8,13,	Pauli basis quicklooks;	Draft
			29-30	Specific change detection product components	
				Specific ice sounding product files	
2	8	2016-06-02	all	Various changes to improve consistency, added a short explanation relating to binary data formats used, updated the mosaic product description.	Draft
2	9	2016-10-18	5,8,14,16,32	Added appendix concerning radiometric calibration. Updated INF product definition. Updated GTC-LUT component definition to include polynomial coefficient matrices for "3D Geocoding"	Draft
2	10	2016-11-25	27-29	Product components for HoloSAR mode updated	Draft
3	0	2016-11-25	all	Included up-to-date examples of parameter structures, added GTC-LUT figure, changed heading indent	Draft
3	0	2017-08-16	31	Added remark regarding geocoded change detection results.	Draft
3	0	2018-03-01	17	Corrected the units of the vertical wavenumber (kz).	Draft
3	1	2019-07-12	34	Added description of the range- compressed-raw product	Draft
3	2	2019-11-28	7,31-38	Added description of the auxiliary data, in particular antenna and calibration related information.	Draft
3	2	2020-03-19	9,10	Added GPS week second row to real and reference tracks	Draft

CONTENTS

G	ENERAL.		3
1	Intro	oduction	5
	1.1	Purpose	5
	1.2	Structure of the Document	5
	1.3	Binary data formats	5
2	Proc	luct Structure	6
3	Con	tents of Individual Product Directories	. 7
	3.1	RAW Product	7
	3.2	RGI Product	8
	3.3	GTC Product	12
	3.4	INF Product	15
	3.5	Mosaic Product	17
	3.6	Circular SAR (CSAR) Product	18
	3.7	Holographic SAR Tomography (HoloSAR) Product	23
	3.7.1	2-D SLC product components	23
	3.7.2	3-D SLC (coherent or incoherent) product components	24
	3.7.3	Final Products	25
	3.7.4	Common product components	25
	3.8	Change Detection Product	27
	3.9	Additional files for Ice Sounding Mode	29
	3.10	Range Compressed Raw Products	30
	3.11	Auxiliary Data	31
	3.11.1	HDF5 Structure: antconf	32
	3.11.2	HDF5 Structure: antcal	35
A	ppendi	x 1: Radiometric Calibration	38
A	ppendi	x 2: Rat Format	39

1 Introduction

1.1 Purpose

This document presents the structure of F-SAR data products. The structure is also reflected in the archive DIMS (Data Ingestion and Management System) of the German Remote Sensing Data Ceter, where F-SAR data are stored. Except for RAW products all product types can be accessed by the Users via the eoweb- interface (www.eoweb.de) after registration as dedicated F-SAR User and proper configuration of ordering properties.

1.2 Structure of the Document

Section 2 lists the available F-SAR products and describes the overall product structure.

Section 3 lists the individual file content for each product's subdirectory.

1.3 Binary data formats

F-SAR data products include binary data primarily in the RAT format, which is described in detail in . A source package of Python 3 code for reading RAT files, including the meta-data in the file header, and parsing the XML documents used to store parameters is available online: www.dlr.de/hr/f-sar/data-formats.

In addition, most RAT files are accompanied by .hdr files, which allow the data to be opened in ENVI. The widely used GDAL software library also supports the ENVI format, such that these data can also be opened using free alternatives such as <u>QGis</u>. All of these programs then support export to various other file formats, such as GeoTiff.

For geocoded data (primarily in the GTC product), the hdr file also specifies the parameters of the geographic grid used.

2 Product Structure

RAW: Radar Raw Data

RAW-PRIM	(internal use only)
RAW-NAV	(internal use only)
RAW-QL	(internal use only)
RAW-AUX	(internal use only)

RGI: Products in radar geometry (slant range)

RGI-SR	(Slant range data)
RGI-TRACK	(Sensor position and attitude angles)
RGI-RDP	(Processing parameters)
RGI-QL	(Quicklooks)
RGI-AUX	(internal use only)

GTC: Geocoded products

GTC-IMG	(Geocoded radar data)
GTC-DEM	(DSM generated from interferometric processing)
GTC-LUT	(Lookup tables for geocoding)
GTC-RDP	(Processing parameters)
GTC-QL	(Quicklooks)
GTC-AUX	(internal use only)

INF: Interferometric products

INF-SR	(Slant range data)
INF-TRACK	(Sensor positions)
INF-RDP	(Processing parameters)
INF-QL	(Quicklooks)
INF-AUX	(internal use only)

Mosaic products

GTC-IMG GTC-RDP GTC-QL (Geocoded radar data) (Processing parameters) (Quicklooks)

3 Contents of Individual Product Directories

3.1 RAW Product

RAW-PRIM	
raw*.dat	SAR raw data after transcription (proprietary binary format with range line header, no rat format)
gh*.xml	global header
ch*.xml	channel header
RAW-NAV	
nav*.xml	navigation data with sampling of the GPS/IMU Systems (e.g. 0.02s). Parameter: sequence counter, GPS second, geogr. latitude, geogr. longitude, height above ellipsoid, speed component in north, speed component in east, vertical speed component, roll angle, pitch angle, heading
nav_bin*.bin	same as xml, but in binary format (avoids truncation of float values)
RAW-QL	
qls*.png	Quicklooks in slant range geometry
ns*.png	Navigation Screening:. height above ellipsoid, geogr. latitude, geogr. longitude, vertical speed component, speed component in east, speed component in north, heading, , pitch angle, roll angle
ra*.png	Radar Screening: Doppler Centroid over range, range intensity profile, incidence angle along range, azimuth spectrum, range spectrum, radar samples histogram
RAW-AUX	
ant*.xml	antenna information: [antenna name, Tx or Rx channel coding, polarisation, look direction, elevation pattern filename, azimut pattern filename, 3D pattern filename, elevation pattern, azimuth pattern, elevation angle, azimuth angle, antenna gain, depression angle, azimuth offset angle, leverarm X, leverarm Y, leverarm Z, leverarm correction dX, leverarm correction dY, leverarm correction dZ, delay to antenna (one structure for Tx and one for Rx)
bp*.xml	bounding polygon of the recorded data
cal*.xml	calibration data
d*	Dynamic data file (old F-SAR proprietary format)
d*.sav	Dynamic data file
d*.txt	Dynamic data file
fsar_transcription*log rep*.xml	Log-files of the transcription Chirp Replica: chirp duration, modulation rate, sampling rate, Chirp length, chirp start frequency, time delay internal, time delay external, chirp data
rep_bin*.bin	binary chirp Replica (same internal format)

RGI-SR

amp_*.rat +.hdr

incidence_*.rat + .hdr mask_*.rat + .hdr slc_*.rat +.hdr pol_full_*.png

amplitude slant range SAR data, Gamma-0 corrected using the local incidence angle (see) local incidence angle map mask indicating valid samples in the slant-range imagery single-look complex slant range SAR data, Beta-0 corrected (see)

full resolution PolSAR colour composite in lexicographic basis (optional)

Channel	Polarisation
Red	VV
Green	HV/VH
Blue	НН

pauli_full_*.png

full resolution PolSAR colour composite in Pauli basis (optional)

DLR's Airborne SAR

F-SAR Product

Description

Channel	Polarisation
Red	HH - VV
Green	HV/VH
Blue	HH + VV

RGI-TRACK

Track information is saved at the full resolution. The length of the tracks may therefore be greater than the dimensions of the SLC in azimuth depending on the azimuth presuming carried out during processing (see processing parameter *pre_az* in **RGI-RDP** below).

attit_*.rat

aircraft attitude sampled equidistant in time

Row	Description	Units
0	Time	[GPS week seconds]
1	Pitch	[radians]
2	Roll	[radians]
3	Heading	[radians]

attit_resa_*.rat

aircraft attitude resampled equidistant in space (see attit)

fixpoint_*.rat

coordinate of origin of local and SAR coordinate systems

Element	Description	Units
0	Longitude	[degrees]
1	Latitude	[degrees]
2	Height over WGS84	[m]

reftr loc *.rat

reference track in local coordinates, resampled equidistant in time

Row	Description	Units
0	Time	[GPS week seconds]
1	+ towards the east	[m]
2	+ towards the north	[m]
3	+ upwards	[m]

reftr loc resa *.rat

reference track in local coordinates, resampled equidistant in space (see reftr loc)

reftr_sar_*.rat

reference track in SAR coordinates, sampled equidistant in time

	Row	Description	Units
	0	Time	[GPS week seconds]
	1	+ In flight direction	[m]
	2	+ to the left	[m]
	3	+ upwards	[m]
reftr_sar_resa_*.rat reftr_xyz_resa_*.rat	(see reftr_sar)	R coordinates, resampled ec	quidistant in space resampled equidistant in space
Terti_xyz_resarat	Row	Description	Units
	0	Time	[GPS week seconds]
	1	X	[m]
	2	Y	[m]
	3	Z	[m]
track_loc_*.rat	(see reftr_loc)	dinates, sampled equidista	
track_loc_resa_*.rat		dinates, resampled equidis	tant in space
track_sar_*.rat	(see reftr_loc_resa) real track in SAR coordinates, sampled equidistant in time (see reftr_sar)		
track_sar_resa_*.rat	real track in SAR coordinates, resampled equidistant in space (see reftr_sar_resa)		
track_xyz_resa_*.rat	real track in WGS84 c (see reftr_xyz_resa)	artesian coordinates, resam	npled equidistant in space

RGI-RDP

pp_*.xml step.xsl

processing parameters xml style file to display XML parameters in a tabular format (see example below)

Parameter	Value	Units	Remark
Processor	STEP-trunk	string	The name of the processor
Build	4091	string	The processor build (SVN version)
Ident	OP16BF0412	string	Campaign,flight and pass of the channel
Coding	T1X1H0_R2X1H0	string	Coding of the channel transmit and receive paths
Site	Kaufbeuren	string	Site of the image acquisition
Date	23-Jun-2016 13:29:50	date	Date and time of the acquisition (DD/MM/YYYY)
time_stamp	368890190	1	F-SAR RTC time
Band	Х	string	Frequency Band (S/X/L etc.)
polarisation	HH	string	Transmit and receive polarisation (H or V for each)
Campaign	16op16bf	string	Name of the campaign
Flight	04	string	Flight (sensor continuously airborne)
Pass	12	string	Pass (individual acquisition)
prockernel	EOK	string	The name of the processing kernel used for image formation (EOK,FFBP etc.)
Azbins	83160	1	The number of azimuth bins in the raw data
Rgbins	28160	1	The number of range bins in the raw data
Prf	1201.9231	Hz	Pulse repetition frequency
Cd	1.0016000e-05	S	Chirp Duration
Rd	1.6864000e-05	S	Range Delay
Rsf	1.000000e+09	Hz	Range sampling frequency
c0	2.9971190e+08	m/s	Speed of light in air
v0	91.148202	m/s	Sensor velocity
f0	9.600000e+09	Hz	Centre Frequency

Doc. : DLR-FSAR-PRODVersion:3.2Date:28.11.2019Page:10 of 36

DLR's Airborne SAR F-SAR Product Description

Lambda	0.031219990	m	Wavelength		
Squint	-1.5077326	deg	Processed squint angle		
Heading	91.164020	U	Sensor heading		
Antdir	1	1	Antenna pointing direction (-1/1 for left/right)		
h0	3047.7072	m	Sensor altitude		
terrain	779.59671	m	Average terrain height		
cbw	7.600000e+08	Hz	Chirp bandwidth		
abw	233.54506	Hz	Processed azimuth bandwidth		
res_az	0.50000000	m	Processed azimuth resolution		
res_rg	0.25261143	m	Processed range resolution		
res_az_ml		m	Multi-looked azimuth resolution		
res_rg_ml		m	Multi-looked range resolution		
looks_az	1	1	Number of looks in azimuth after multi-looking		
looks_rg	1	1	Number of looks in range after multi-looking		
ps_az	0.30334121	m	Pixel spacing in azimuth		
ps_rg	0.14985595	m	Pixel spacing in range		
sub_az	1	1	Sub-sampling in azimuth		
sub_rg	1	1	Sub-sampling in range		
sub_az_ml	2	1	Sub-sampling in azimuth after multi-looking		
 sub_rg_ml		1	Sub-sampling in range after multi-looking		
pre_az	4	1	Presumming in azimuth		
	[0,540000,0,540000]		Vector of hanning alpha parameters for spectral weighting in		
alpha	[0.540000,0.540000]	1	[azimuth,range]		
alnha ml	[0.540000.0.540000]	1	Vector of hanning alpha parameters for spectral weighting in		
alpha_ml	[0.540000,0.540000]	1	[azimuth,range] in multi-looking		
R	Pointer	m	Vector of one-way range distances for the columns of the slant		
ĸ		111	range image		
rref	3618.0471	m	Reference range for processing (ECS only)		
nrx	46080	1	Number of pixels in azimuth for the processed image		
nry	14560	1	Number of pixels in range for the processed image		
nrx_part	[15233,61312]	1	The [start,end] of the scene in azimuth (if only part of the scene		
_			was processed) Part of date processed, with respect to the non-resampled track		
nrx_part_t	o [15165,61244]	samples			
nry_part	[5456,20015]	1	The [start,end] of the scene in range (if only part of the scene was processed)		
nry_pad	24576	1	The number of pixels in range, padded for processing speed		
rb_first	0	1	The column index of the first valid range bin		
rb_last	14559	1	The column index of the last valid range bin		
			The type of calibration carried out (-1: none, 0: beta0 (ECS), 1:		
calih tuna	0	1			
calib_type		1	beta0, 2: sigma0, 3: gamma0, 4: gamma0 w/o DEM slope)		
calib_type rfi_thresh		1	Threshold for RFI filtering (0 deactivates filtering)		
	0.0000000		Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none,		
rfi_thresh	0.0000000	1	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA)		
rfi_thresh	0.0000000	1	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint:		
rfi_thresh topo_moco	0.0000000	1 1 1	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo		
rfi_thresh topo_moco	0.0000000	1 1 1	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo Range of valid off-nadir angles in the processed image: [min angle,		
rfi_thresh topo_moco highsquint	0.0000000	1 1 1 deg	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo Range of valid off-nadir angles in the processed image: [min angle, max angle] in degrees.		
rfi_thresh topo_moco highsquint ang_range	0.0000000 2 0 1 1 5.000000,90.000000]	1 1 1 deg Str	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo Range of valid off-nadir angles in the processed image: [min angle, max angle] in degrees. ucture geo_poly		
rfi_thresh topo_moco highsquint ang_range	0.0000000 2 0 [15.000000,90.000000] ling polygon of the valid pixel	1 1 deg Str s in the pr	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo Range of valid off-nadir angles in the processed image: [min angle, max angle] in degrees. ucture geo_poly rocessed image. Given in pixels and Longitude/Latitude/Height.		
rfi_thresh topo_moco highsquint ang_range The bound	0.0000000 2 0 15.000000,90.000000] 10 10 10 10 10 10 10 10 10 10	1 1 deg Str s in the pr	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo Range of valid off-nadir angles in the processed image: [min angle, max angle] in degrees. ucture geo_poly rocessed image. Given in pixels and Longitude/Latitude/Height. re with respect to the WGS84 ellipsoid.		
rfi_thresh topo_moco highsquint ang_range	0.0000000 2 0 [15.000000,90.000000] ling polygon of the valid pixel Geographic coo Value	1 1 deg Str s in the pr rdinates a	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo Range of valid off-nadir angles in the processed image: [min angle, max angle] in degrees. ucture geo_poly rocessed image. Given in pixels and Longitude/Latitude/Height. re with respect to the WGS84 ellipsoid. Units Remark Pixel coordinates of the valid samples		
rfi_thresh topo_moco highsquint ang_range The bound Parameter	0.0000000 2 0 15.000000,90.000000] 1 ing polygon of the valid pixel Geographic coo Value [0.0000000,167.00000, 143	1 1 deg Str s in the pr rdinates a 559.000,3	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo Range of valid off-nadir angles in the processed image: [min angle, max angle] in degrees. ucture geo_poly rocessed image. Given in pixels and Longitude/Latitude/Height. re with respect to the WGS84 ellipsoid. 11.00000, pixels pixels pixel coordinates of the valid samples		
rfi_thresh topo_moco highsquint ang_range The bound	0.0000000 2 0 [15.000000,90.000000] ling polygon of the valid pixel Geographic coo Value	1 1 deg Str s in the pr rdinates a 559.000,3	Threshold for RFI filtering (0 deactivates filtering) The type of topography compensation during processing (0: none, 1: ECS moco, 2: ECS with SATA) Flag to indicate that this data has has exceptionally high squint: Enables high-fidelity MoCo Range of valid off-nadir angles in the processed image: [min angle, max angle] in degrees. ucture geo_poly rocessed image. Given in pixels and Longitude/Latitude/Height. re with respect to the WGS84 ellipsoid. 11.00000, pixels pixels pixel coordinates of the valid samples		

DLR's Airborne SAR F-SAR Product Description

		10.592819,47.846476,793.71590, 10.636977,47.846148,738.46193, 10.639179,47.874019,727.46173]			corresponding to the points in 'pixels': [lon1,lat1,heigh1,,lon4,lat4,height4] where 'lon' and 'lat' denote 'longitude' and 'latitude', respectively.	
sounder_n	node	0		1 indicates that geometry	this data set v	was acquired in nadir-looking

RGI-QL

amp_full_*.png	high resolution amplitude slant range image (optional)
amp_pres_*.png	presummed amplitude slant range quicklooks
attitude_*.png	plots of the sensor attitudes
pol_pres_*.png	presummed PolSAR colour composite in lexicographic basis
	(see pol_full in RGI-SR)
pauli_pres_*.png	presummed PolSAR colour composite in Pauli basis
	(see pauli_full in RGI-SR)
track_*.png	plots of the real and reference tracks in black and red, respectively

RGI-AUX (for internal use only) adc_cal*.txt ant1d_*.sav ant2d_*.sav ant3d_*.sav + .png ant3d_pha_cent* .png cal*.rat + .txt calib_pres_*.png moco1_*.rat	ADC Offset und Phase (optional) 1D antenna diagrams in elevation and azimuth 2D antenna pattern (elevation and azimuth) for central frequency 3D antenna pattern (squint,off-nadir,frequency) 3D antenna phase center The radiometric correction applied for calibration (presummed) 2D quicklook of the radiometric calibration correction
<pre>moco1_resa_*.rat offnadir_*.rat + .hdr pol_nesz_*.rat + .png pol_nesz_vec_*.rat pol_profile_*.png replica_*.rat +.png replica_*.rat + .png slantdem_*.rat tc_vector_*.rat tiepoint_eval*.png tiepoints_*.sav *.log *.pbs</pre>	applied first order motion compensation applied first order motion compensation (resampled equidistant in space) Off-Nadir angle for each pixel of the SLC [radians] 2D image of estimated NESZ values (presummed) 1D vector of NESZ values as a function of off-nadir angle HH/HV/VH/VV intensities as a function of range and co-/cross-pol phase differences Chirp replica Quicklook of the chirp replica DEM in slant range geometry vector to transform from beam-center to zero Doppler geometry Tiepoint evaluation plots Tiepoint coordinates, orientation, image positions and evaluated performance log-files of the processing pbs-files of the processing

GTC Product 3.3

As indicated by the ENVI hdr files provided, the layout of binary geocoded data on disk follows the GeoTiff convention. When binary geocoded data or lookup tables are read directly from disk (i.e. without using proper GIS software/libraries), it is therefore important to note that:

- The last row of data corresponds to the minimum northing coordinate and the northing increases towards the first row.
- The *first* column corresponds to the *minimum* easting coordinate and easting increases towards the last column.

GTC-IMG

ampgeo_*.rat +.hdr	geocoded amplitudes (see)
maskgeo_*.rat +.hdr	geocoded binary valid sample mask
incidencegeo_*.rat +.hdr	geocoded local incidence angle
mlookgeo_*.rat +.hdr	geocoded multilooked amplitude
mlookgeo_*.png	high resolution geocoded multi-look image (optional)

GTC-DEM

demgeo_*.rat +.hdr	geocoded DSM from InSAR processing ([m] over the WGS84 Ellipsoid)
hemgeo_*.rat +.hdr	geocoded height error map ([m], height standard deviation)

GTC-LUT

sr2geo_az_*.rat +.hdr

sr2geo_rg_*.rat +.hdr

geocoded azimuth index into the SLC, denoted lut_{az} in the example above (UTM grid, see ENVI .hdr file for projection parameters) geocoded range index into the SLC, denoted lut_{ra} in the example above (UTM grid, see ENVI .hdr file for projection parameters)

sr2latlon_az_*.rat +.hdr

sr2latlon_rg_*.rat +.hdr

geocoded azimuth index into the SLC (Lat/Lon grid, see ENVI .hdr file for projection parameters)

geocoded range index into the SLC (Lat/Lon grid, see ENVI .hdr file for projection parameters)

٨	DLR's Airborne SAR	Doc. :	DLR-FSAR-PROD
ф	F-SAR Product	Version:	3.2
V _{DLR}	Description	Date:	28.11.2019
DER		Page:	13 von
		36	

sr2geo3d_rg_o[12] *.rat +.hdr	polynomial coefficients for updating the range lookup table to reflect a different
	DEM height
sr2geo3d_az_o[12] *.rat +.hdr	polynomial coefficients for updating the azimuth lookup table to reflect a
	different DEM height
sr2geo3d_h0*.rat +.hdr	ellipsoidal heights used to compute the original lookup tables in sr2geo*rat

These files are provided to allow users to geocode data onto arbitrary DEMs by computing corrections to the lookup tables held in the sr2geo*rat files. All of the files above contain 2D matrices defined on the same geographic grid as the lookup tables and other geocoded data.

The sr2geo3d_h0*rat file holds the input DEM heights used for geocoding. The range and azimuth lookup tables for a height offset δ_h relative to this DEM can be obtained from the coefficient matrices as follows:

 $sr2 \ge o_{rg}^{new} = sr2 \ge o_{rg} + \delta_h sr2geo3d_{rg}^{o1} + (\delta_h)^2 sr2geo3d_{rg}^{o2}$

 $sr2 \ge o_{az}^{new} = sr2 \ge o_{az} + \delta_h sr2geo3d_{az}^{o1} + (\delta_h)^2 sr2geo3d_{az}^{o2}$

Computing lookup tables for a given absolute ellipsoidal height h_{new} is accomplished by defining

$$\delta_h = h_{new} - sr2geo3d_{h0}$$

pp_*.xmlRGI processing parameters (see RGI-RDP)ppgeo_*.xmlgeocoding processing parameters	GTC-RDP	
118 - ST	pp_*.xml	RGI processing parameters (see RGI-RDP)
	ppgeo_*.xml	geocoding processing parameters
step.xsl xml style file to display XML parameters in a tabular format (see example below)	step.xsl	xml style file to display XML parameters in a tabular format (see example below)

Parameter	Value	Units	Remark
processor	STEP-trunk	string	The name of the processor
build	4325:4338M	string	The processor build (SVN version)
ident	AFRISR0812	string	Campaign, flight and pass of the channel
coding	T1P1H0_R5P1H0	string	Coding of the channel transmit and receive paths
site	Nkok	string	Site of the image acquisition
date	12-Feb-2016 10:35:59	date	Date and time of the acquisition (DD/MM/YYYY)
band	Р	string	Frequency Band (S/X/L etc.)
polarisation	HH	string	Transmit and receive polarisation (H or V for each)
campaign	16afrisr	string	Name of the campaign
flight	08	string	Flight (sensor continuously airborne)
pass	12	string	Pass (individual acquisition)
prockernel	BACKGEOCODING	string	The processing kernel used
utm_step_east	2.0000000	m	UTM grid sampling east
utm_step_north	2.0000000	m	UTM grid sampling north
utm_file	•••		DEM file used as input
ellipsoid	WGS84		The ellipsoid used for geocoding (default WGS84)
ell_major_axis	6378137.0	m	ellipsoid major axis
ell_minor_axis	6356752.3		ellipsoid minor axis
long0_scl	0.99960000		Scaling factor at central meridian
long0_step	6	deg	difference of central meridians of adjacent UTM zones
flag_datum_change_track	0		flag to perform datum shift for reference track
track_ax	0.0000000	m	translation in X-axis
track_ay	0.0000000	m	translation in Y-axis
track_az	0.0000000	m	translation in Z-axis
track_rx	0.0000000	rad	rotation around X-axis
track_ry	0.0000000	rad	rotation around Y-axis

 Doc.:
 DLR-FSAR-PROD

 Version:
 3.2

 Date:
 28.11.2019

 Page:
 14 of 36

track_rz	0.0000000	rad	rotation around Z-axis
track_scale	1.0000000	1	scaling factor
flag_presum	0		flag to perform presumming/averaging to adjust resolution to UTM grid
file2geocode	Pointer	string	Array of slant range files to be geocoded

GTC-QL

ampgeo_*.png + .kml polgeo_pres_*.png + .kml demgeo_*.png + .kml geocoded amplitude quicklooks (.kml for Google Earth display) geocoded PolSAR colour composite (.kml for Google Earth display) quicklook of DEM from interferometric processing (optional)

3.4 INF Product

INF-SR	
coh_*.rat +.hdr	interferometric coherence
kz_*.rat	vertical wavenumber [rad/m]
pha *.rat +.hdr	residual or <i>flattened</i> interferometric phase (after flat earth and DEM compensation)
pha_dem_*.rat +.hdr	the phase that needs to be subtracted from the master – slave interferogram to <i>flatten</i> it (i.e. to remove the flat earth and topographic phase components)
slc_coreg_*.rat +.hdr	slave SLC image (see RGI-SR), coregistered to master geometry
INF-SR: Optional files (outpu	t during InSAR DEM generation)
insardem_*.rat +.hdr	DEM from InSAR processing (slant-range)
pha_cal_*.rat +.hdr	interferometric phase after baseline calibration
pha_uw_*.rat +.hdr	unwrapped Phase (optional)
INF-TRACK	
track.rat	slave tracks in master coordinate system (see RGI-TRACK in section 3.2)
baseline_error_*.rat	residual baseline errors estimated during interferometric processing, stored in a three dimensional array [n_iterations, track_length, axis]. The total estimated residual baseline error is given by summing over the first axis. The result is in the

INF-RDP

pp_*.xml ppinsar_*.xml step.xsl processing parameters of master SLC parameters for InSAR processing

SAR coordinate system (see SAR tracks in **RGI-TRACK** of section 3.2)

xml style file to display XML parameters in a tabular format (see example below)

Parameter	Value	Units	Remark
processor	STEP-trunk	string	The name of the processor
build	4325:4338M	string	The processor build (SVN version)
ident	AFRISR0812	string	Campaign, flight and pass of the channel
coding	T1P1V0_R6P1V0	string	Coding of the channel transmit and receive paths
site	Nkok	string	Site of the image acquisition
date	12-Feb-2016 10:35:59	date	Date and time of the acquisition (DD/MM/YYYY)
band	Р	string	Frequency Band (S/X/L etc.)
polarisation	VV	string	Transmit and receive polarisation (H or V for each)
master_campaign	16afrisr	string	campaign name of the master pass
master_flight	01	string	flight ID of the master pass
master_pass	07	string	pass ID of the master pass
prockernel	FUSAR	string	The processing kernel used
baseline	[0.347289,62.3161,0.00000]	m	Baseline [horizontal,vertical]
topo	1		Take into account the slant-range-DEM in InSAR Processing
coreg	2		Coregistration mode. 1: geometry w/o DEM; 2: geometry with DEM; 3: geometry+offset from data
rgfilter	0		Perform spectral range filtering; 0: no filter; 1: band-pass; 2: range adaptive
phasetype	3		Type of phase computed.1: unmodified; 2: flat-earth removed; 3: DEM removed (residual)
presumming	[1,1]	1	Presumming factor in [range,azimuth] for coherence and phase
complexcoh	0		Derive phase from complex coherence (otherwise only presumming, no filter)
cohalgo	1	1	Type of coherence filter. 0: moving average; 1: Gauss
kz	2	1	Compute KZ; 0: do not compute; 1: with flat-earth; 2: with

Doc. : DLR-FSAR-PRODVersion:3.2Date:28.11.2019Page:16 of 36

			topography	
uwalgo	0		Unwrapping algorithm. 0: no phase unwrapping; 1: region growing; 2: SNAPHU; 3: graph-cuts	
bcalalgo	0		Type of baseline calibration. 0: do not calibrate; 1: with reflectors; 2: with reference DEM; 3: from data (SD)	
p2halgo	0		Phase to height conversion. 0: no phase 2 height; 1: 2D using KZ; 2: 3D Newton	
Structure ms				
Parameters for residual baseline error estimation				
Structure geogrid				
Parameters for InSAR DEM geocoding (see ppgeo in GTC-RDP)				

INF-QL

baseline_*.png	plot of the real interferometric baseline
baseline_error*.png	plot of the estimated (and corrected) residual baseline error
coh _*.png	presummed coherence quicklook
pha_*.png	quicklook of the residual phase (after subtracting flat earth and DEM)

INF-QL: Optional files (output during InSAR DEM generation)

···· (
insardem_*.rat +.hdr	DEM from InSAR processing (slant-range)
pha_cal_*.rat +.hdr	interferometric phase after baseline calibration
pha_uw_*.rat +.hdr	unwrapped Phase (optional)
insardem_*.png	the corrections applied to the input DEM by interferometric processing
kz_*.png	quicklook of the vertical wavenumber
pha_uw_*.png	quicklook of the unwrapped interferometric phase

INF-AUX (for internal use only)IOSAR_*.loglog-file of Insar-processingINSAR_*.pbspbs-File of insar-processingtiepoint_bcal_*.pngevaluation of the baseline calibration using tiepoints (e.g. corner reflectors)tiepoint_height_*.pngtiepoint height error

3.5 Mosaic Product

Mosaic products are generated by combining several GTC products and follow the conventions of standard GTC product (see section **GTC** above) with following omissions:

- There are no lookup tables (GTC-LUT) since there is no slant range product in this case
- Only geocoded amplitudes (gamma-0 corrected) and a valid sample mask are provided

3.6 Circular SAR (CSAR) Product

The CSAR products are obtained by focusing a SLC in the (x,y) plane, using a DEM or assuming a flat topography, and with an imaging grid having a pixel spacing of approximately lambda/4. The SLC is focused with the timedomain Fast Factorized Back-Projection (FFBP) by adding coherently the energy of a single circular track. Among others the products contain an analysis of the IRF (if available), a fully-polarimetric image decomposed in the Pauli basis, a GIF animation of subaperture images (10 degrees coherent integration and overlap of 80%), and a GIF animation of subaperture images (10 degrees coherent integration) by adding their intensity.

The products are included in the GTC directory's subfolders, as follows:

GTC-IMG

incoherent_*.gif + .png	Animation of the geocoded incoherent intensity using incremental subapertures of 10 degrees (one file for every polarimetric channel). The amplitude of the final image is provided as png.
maskgeo_*.rat + .png	Geocoded binary valid sample mask.
polgeo_full_*.png	Geocoded PolSAR colour composite at the highest resolution grid in the Pauli basis.
slcgeo_*.rat + .hdr subaperture_*.gif	Single-look complex and geocoded image with subwavelength sampling. Animation of the geocoded intensities of subapertures of 10 degrees (80% overlap, one file for every polarimetric channel).
GTC-QL	
ampgeo_pres_*.png(.kml)	Geocoded amplitude quicklook (one file per channel; .kml for Google Earth display).
polgeo_press_*.png(.kml)	Geocoded PolSAR colour composite in the Pauli basis (.kml for Google Earth

display). specgeo_*.png Spectrum of the geocoded SLC in the (kx, ky) plane.

. . .

GTC-RDP

step.xslxml style file.ppgeo_csar_*.xmlGeocoding processing parameters per channel.

Parameter	Value	Units	Remark
Processor	STEP-trunk	string	The name of the processor
Build	2264:2265M	string	The processor build (SVN version)
Ident	TDXSIM0104	string	Campaign, flight and pass of the channel
Coding	T1X3V0_R2X1H0	string	Coding of the channel transmit and receive paths
Site	Kaufbeuren	string	Site of the image acquisition
Date	11/19/2009 10:31	date	Date and time of the acquisition (DD/MM/YYYY)
time_stamp	156940279	?	F-SAR RTC time
Band	Х	string	Frequency
Polarisation	HH	string	Transmit and receive polarisation (H or V for each)
Campaign	09tdxsim	string	Name of the campaign
flight	1	string	Flight (sensor continuously airborne) ???
pass	4	string	Pass (individual acquisition)
prockernel	CSAR-FFBP	string	The processing kernel used (FFBP, Capon, CS, Music)
azbins	219094	1	The number of azimuth bins in the raw data
rgbins	11008	1	The number of range bins in the raw data
prf	200.1	Hz	Pulse repetition frequency
cd	5.12E-06	S	Chirp Duration
rd	1.44E-05	S	Range Delay
idi	3.11E-07	S	Internal Delay Intern (measured in the laboratory)

DLR's Airborne SAR F-SAR Product Description

Doc. :	DLR-FSAR-PROD
Version:	3.2
Date:	28.11.2019
Page:	19 von
36	

ide	0	S	Legacy parameter; unused (see cal_dt parameter)	
rsf	5.00E+08	Hz	Range sampling frequency	
c0	3.00E+08	m/s	Speed of light in air	
v0	85.814305	m/s	Sensor velocity	
f0	9.60E+09	Hz	Central Frequency	
lambda	0.031219558	m	Wavelength	
antdir	-1	1	Antenna pointing direction (-1/1 for left/right)	
h0	2497.47	m	Sensor altitude	
terrain	35.378059	m	Average terrain height	
cbw	3.00E+08	Hz	Chirp bandwidth	
abw	1832.8445	Hz	Processed azimuth bandwidth	
cf1	3.95E+08	Hz	Chirp start frequency	
cf2	95000000	Hz	Chirp end frequency	
sub_az	1	1	Sub-sampling in azimuth	
sub_rg	1	1	Sub-sampling in range	
alpha	[0.5400,0.5400]	1	Vector of hanning alpha parameters for spectral weighting	
alpha	[0.5400,0.5400]		in [azimuth, range]	
alpha_ml	[0.5400,0.5400]	1	Vector of hanning alpha parameters for spectral weighting	
	[•	in [azimuth, range] in multi-looking	
cr	5.86E13	Hz/s	Chirp rate	
rs	0.29970776	m	Range sample spacing	
r	Pointer	m	Vector of one-way range distances corresponding to the	
			raw data	
rref	3811.983	m	Reference range for processing (ECS only)	
da	0	deg	Antenna depression angle	
nrx	218112	1	Number of pixels in azimuth (subsampled raw data)	
nry	11008	1	Number of pixels in range (subsampled raw data)	
nry_pad	16384	1	The number of pixels in range (subsampled raw data),	
<i>,</i> –			padded for processing speed	
rb_first	1450	1	The column index of the first valid range bin	
rb_last	9556	1	The column index of the last valid range bin	
ch_shift	0.000248	S	Time offset with respect to the first receiving channel	
cal_dphi	0	rad	Phase correction, measured from calibration targets	
cal_damp	0	dB	Intensity correction factor, measured from calibration	
			targets	
cal_dt	3.00E-08	S	Range delay correction, measured from calibration targets	
calib_type	0	1	Type of calibration: (-1:none, 1:beta0, 2:sigma0,	
			3:gamma0, 4:gamma0 w/o DEM slope)	
rfi_thresh	0	1	Threshold for RFI filtering (0 deactivates filtering)	
aarc	0	1	Adaptive antenna response correction flag	
mode	csar or holosar	string	Non-linear modes CSAR or HoloSAR	
interpMode	knab or cubic	string	Type of interpolation (knab is the most accurate and fast)	
fullres	true	flag	1:coherent integration of the full circular aperture	
angInt	10	1	Along-track angular integration	
topo	true	flag	1:consider topography in the focusing	
rotMode	1	1	Depending on the number, it indicates the quadrant	
			number with which the function starts to count the circles	
master	0	0	Master circle (HoloSAR)	
ntracks	0	0	Total number of circles (HoloSAR)	
tracks	Pointer	1	Range of circles to be combined (HoloSAR), [c_min,c_max]	
max_norm_bl	1	m	Maximum perpendicular baseline (HoloSAR)	
min_norm_bl	1	m	Minimum perpendicular baseline (HoloSAR)	
crit_bl	[gr, z]	m	Critical baseline (HoloSAR) in [gr,z]	
cov_looks	[az,rg]	1	Covariance matrix size [az, rg]	
res_xyz	[res_x,res_y,res_z]	m	Resolution in x, y and z directions	
res_ar	[res_az,res_rg]	m	Resolution in azimuth and range (subaperture processing)	
res_el res_xyz_ml	1	m	Resolution in elevation (subaperture processing) Multilook resolution in x, y and z (amplitude image)	
	[res_x,res_y,res_z]	m	I Multilook resolution in X V and Z (amplitude image)	

res_ar_ml	[res_az, res_rg]	m	Multilook resolution in azimuth and range (subaperture processing)
looks_xyz	[l_x, l_y, l_z]	1	Looks in x, y and z
looks_ar	[l_az, l_rg]	1	Looks in azimuth and range (subaperture processing)
ps_xyz	[ps_x, ps_y, ps_z]	m	Final pixel spacing in x, y, z
ps_ar	[ps_az, ps_rg]	m	Final pixel spacing in azimuth and range
ps_el	1	m	Final pixel spacing in elevation
		Struct	ture geo_poly
See section 3.2			
Structure geoGrid			
		See	e section 3.4

GTC-AUX (internal use only)

amploc_* _ncalib.png ant1d_*.sav ant2d_*.sav	Amplitude of the non-calibrated SLC in local coordinates and per channel. 1D antenna diagrams in elevation and azimuth. 2D antenna pattern (elevation and azimuth) for central frequency.
ant3d_*.sav + .png	3D antenna pattern (squint, off-nadir, frequency).
attit_*.rat + .png	Real aircraft attitude per channel (see attit in RGI-TRACK).
attit_3D_*.png	3-D plots of the aircraft attitude.
cal_map_loc_*.rat	Complex radiometric correction of the full spotlighted region and applied for calibration (presumed).
	2-D plot of the calibration phase correction (.kml for Google Earth display).
	2-D plot of the calibration intensity correction (.kml for Google Earth display).
cal_mask_loc_*.rat	Binary valid sample mask of the full spotlighted region (decimated).
cal_mask_loc_*.png	2-D plot of the binary valid sample mask.
demloc_x_*.rat	Imaging grid in the x direction in local coordinates.
demloc_y_*.rat	Imaging grid in the y direction in local coordinates.
demloc_z_*.rat	Imaging grid in the z direction in local coordinates.

error_LOS_*_<reflector_name>_<iteration>.rat and .png

PGA estimation error in the line of sight (LOS) for a given reference target. This file saves the estimates independently for each reflector name and iteration number.

Row	Description	Units
0	Error in the LOS	[meters]

error_LOS_*.rat

Final error estimate in the LOS. The error is corrected in the range-compressed data by constant shifts along range direction and corresponding phase correction.

error_ sxyz_*_<reflector_name>_<iteration>.rat + .png

PGA estimate of the error in cartesian coordinates (x,y,z). The array contains the horizontal (s) and vertical (z) components for the linear inversion, in order to estimate the x and y components (one file for each reference target and each iteration). Not available, if less than 2 reference targets present.

Row	Description	Units
0	Error in the horizontal direction	[meters]
1	Error in x	[meters]
2	Error in y	[meters]

	3	Error in z	[meters]
error_sxyz_*.rat		estimate in the (x,y,z) space. The error is co and before image formation. Not available sent.	
fixpoint_*.rat	Coordinate of origin of the local and SAR coordinate systems per channel (see fixpoint in RGI-TRACK).		
irfloc_*_ncalib_2d.png irfloc_*_ncalib_1d.png	2-D amplitude of the reference targets in local coordinates (one file per channel). 1-D profiles of the reference targets in local coordinates (one file per channel).		
*.log / *.pbs	log and pb	s-files of the processing	
pol_profile_*.png	HH/HV/VH/VV intensities, co- and cross-pol phase differences (averaged profiles as a function of easting), 2D estimate of HH-VV phase and coherence.		
pol_profile_phase_*.rat	Co- and cro	oss-polar phase and coherence profiles alo	na eastina
poi_prome_pridee_ ride	Row	Description	Units
	0	Not used	
	1	Not used	
	2	Co-polar HH/VV phase profile	[rad]
	3	Cross-polar HV/VH phase profile	[rad]
	4	Co-polar HH/VV coherence profile	[-]
	5	Cross-polar HV/VH coherence profile	[-]
pol_profile_inten_*.rat	Intensity pr	ofiles along easting of all polarisations	
	Row	Description	Units
	0	Easting vector in local coordinates	[m]
	1	Co-polar HH/VV phase profile	[rad]
	2	Cross-polar HV/VH phase profile	[rad]
	3	Co-polar HH/VV coherence profile	[-]
	4	VV intensity profile	[-]
replica_*.rat + .png slcloc_*_ncalib.rat	Chirp replica and quicklook of the replica . Non-calibrated SLC in local coordinates (one file per channel).		
specloc_*_ncalib.png	Amplitude of spectrum of the non-radiometric calibrated SLC in the (kx, ky) plane (one file per channel).		
tiepoints_*.png	Plots of the reference targets in local coordinates.		
track_loc_*.rat track_loc_*.png track_loc_3D_*.png envelope_*.png	Real track in local coordinates (see reftr_loc in RGI-TRACK). Plots of the ideal and real tracks in black and red, respectively, and in local coordinates. 3-D real track visualisation in local coordinates. Envelope indicating where to start counting the circular track. There are four		
E	•	pending on the quadrant.	

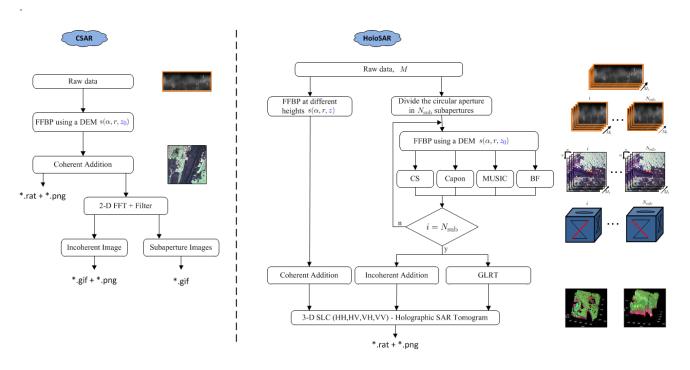
GTC-LUT and GTC-DEM folders are not needed and empty.

Intermediate products in slant-range (polar coordinates)

Doc.: DLR-FSAR-PROD Version: 3.2 Date: 28.11.2019 Page: 22 of 36

The products are described by SS: sub-aperture number.

INF-SR (internal use only) slcpol_* _s <ss>.rat amppol_*s<ss>.png specpol_*_ s<ss>.png</ss></ss></ss>	SLC in polar coordinates (radiometrically calibrated). Amplitude of the SLC in polar coordinates (radiometrically calibrated). Spectrum of the SLC in polar coordinates (radiometrically calibrated).
INF-AUX (internal use only) gridpol_*_ s <ss>.rat</ss>	2D polar coordinates (r, alpha).



3.7 Holographic SAR Tomography (HoloSAR) Product

The HoloSAR products are divided into two categories:

- 1. For each circular track(s) at nominally constant flight altitude: SLCs in the (x,y) plane using a DEM or assuming a flat topography are generated. The SLCs are focused with the time-domain Fast Factorized Back-Projection (FFBP) by adding coherently the energy of the given track(s), angular persistence and with certain overlap. The pixel spacing can be given by the user, otherwise it takes the theoretical lambda/4. Among others the products contain an analysis of the impulse response function (IRF), if available, a fully-polarimetric image decomposed in the Pauli basis. In case of having several subapertures, the STEP will throw as an output a GIF animation containing all images.
- II. 3-D SLC per polarimetric channel in the (x,y,z) plane focused as follows:
 - a. Directly with the FFBP by adding coherently the energy of the cylindrical synthetic aperture. The imaging grid has a pixel spacing of approximately lambda/4 in the (x,y) plane and c0/2*cbw in the vertical direction. An AVI video of the 3-D rendering from views is provided.
 - b. Incoherent integration of sub-aperture tomograms, which are coherently focused with the FFBP (typically with 10° integration) over the circular aperture and with Capon/MUSIC/CS for the entire elevation aperture. An AVI video of the 3-D rendering from multiple aspect angles is provided.
 - c. Either from a. and b., it is possible to select as an output sub-aperture tomograms to analyse the 3-D volumes per aspect angle.

The different processing options are summarized below (see also F-SAR_CSAR_HoloSAR_v2-6.vsd)

3.7.1 2-D SLC product components

The product files are included in the GTC directory's subfolders with CC: circle number, SS: sub-aperture number, ZZ: vertical slice as follows:

```
<suffix> = c<CC>_s<SS> OR <suffix> = c<CC>_s<SS>_z<ZZ>
```

GTC-IMG

incoherent_*_<suffix >.gif + .png Animation of the geocoded incoherent intensity using incremental

Doc. : DLR-FSAR-PROD Version: 3.2 Date: 28.11.2019 Page: 24 of 36	DLR's Airborne SAR F-SAR Product Description		
	subapertures of 10 degrees (one file for every channel). The amplitude of the final image is provided as png. CC: circle number.		
maskgeo_*_ <suffix>.rat + .png polgeo_full_*_ <suffix>.png</suffix></suffix>	Geocoded binary valid sample mask. Geocoded PolSAR colour composite at the highest resolution grid in the Pauli basis.		
slcgeo_*_ <suffix>.rat + .hdr</suffix>	Single-look complex and geocoded image with sub-wavelength sampling.		
subaperture_*_ <suffix>.gif</suffix>	Animation of the geocoded intensities of subapertures of 10 degrees (80% overlap, one file for every channel).		
GTC-QL	Concoded applitude quicklook (one file per channel and per track)		
ampgeo_pres_*_ <suffix>. png(.kml)</suffix>	Geocoded amplitude quicklook (one file per channel and per track; .kml for Google Earth display). tNr: track number, sNr: sub-aperture number.		
polgeo_press_*_ <suffix>.png(.kml)</suffix>	Geocoded PolSAR colour composite in the Pauli basis (.kml for Google Earth display).		
specgeo_*_ <suffix>.png</suffix>	Spectrum of the geocoded SLC in the (kx, ky) plane.		
GTC-AUX (internal use only)			
amploc_* _ncalib_ <suffix>.png</suffix>	Amplitude of the non-calibrated SLC in local coordinates and per channel.		
cal_map_loc_*_ <suffix>.rat</suffix>	Complex radiometric correction of the full spotlighted region and applied for calibration (presumed).		
cal_map_loc_* _phase_ <suffix>.pn</suffix>			
cal_map_loc_* _intdB_ <suffix>.png</suffix>			
cal_mask_loc_*_ <suffix>.rat</suffix>	Binary valid sample mask of the full spotlighted region (decimated).		
cal_mask_loc_*_ <suffix>.png</suffix>	2-D plot of the binary valid sample mask.		
irfloc_*_ncalib_2d_ <suffix>.png</suffix>	2-D amplitude of the reference targets in local coordinates (one file per channel).		
irfloc_*_ncalib_1d_ <suffix>.png</suffix>	1-D profiles of the reference targets in local coordinates (one file per channel).		
pol_profile_*_ <suffix>.png</suffix>	HH/HV/VH/VV intensities, co- and cross-pol phase differences (averaged profiles as a function of easting), 2D estimate of HH-VV phase and coherence.		
pol_profile_phase_*_ <suffix>.rat</suffix>	Co- and cross-polar phase and coherence profiles along easting (see section 3.6).		
pol_profile_inten_*_ <suffix>.rat slcloc_*_ncalib_ <suffix>.rat specloc_*_ncalib_ <suffix>.png</suffix></suffix></suffix>	Intensity profiles along easting of all polarisations (see section 3.6). Non-calibrated SLC in local coordinates (one file per channel). Amplitude of spectrum of the non-radiometric calibrated SLC in the (kx, ky) plane (one file per channel).		

3.7.2 3-D SLC (coherent or incoherent) product components

Intermediate products (CC: circle number, SS: sub-aperture number).

INF-SR (internal use only)	
slcpol_* _ c <cc>_s<ss>.rat</ss></cc>	SLC in polar coordinates (radiometrically calibrated).
amppol_* c <cc>_s<ss>.png</ss></cc>	Amplitude of the SLC in polar coordinates (radiometrically
	calibrated).

	DLR's Airborne SAR F-SAR Product Description	Doc. : Version: Date: Page: 36	DLR-FSAR-PROD 3.2 28.11.2019 25 von
specpol_*_ c <cc>_s<ss>.png</ss></cc>	Spectrum of the SLC in pola calibrated).	r coordinates (radio	metrically
slcpol_polsar_*_ c <cc>_s<ss></ss></cc>		track and in the Pau eometry, where all	uli basis. The master
slc3pol_*_ s <ss>.rat</ss>	3-D sub-aperture tomogram	in polar coordinates	s (r,alpha,elevation).
INF-AUX (internal use only) gridpol_*_ c <cc>_s<ss>.rat grid3pol_*_ s<ss>.rat</ss></ss></cc>	2D polar coordinates (r, alpha). 3D polar coordinates (r, alpha, elevation).		
Apol_*_ s <ss>.rat Bpol_*_ s<ss>.rat</ss></ss>	Steering vector B=AX. Measurements B=AX.		

3.7.3 **Final Products**

After processing with PyRAT Tomo tools, the following 3D final products are available:

GTC-IMG	
slc3cart_*.rat + .png	Geocoded 3D holographic SLC tomogram in the geocoded grid (one file per channel).
grid3cart_*.rat mask3geo_*.rat + .png	Vectors containing the coordinates of the geocoded grid (x,y,z) or final grid. Geocoded binary valid sample mask.
pol3geo_full_*.png	Geocoded PolSAR colour composite at the highest resolution grid in the Pauli basis.
subaperture3_*.gif	Animation of the geocoded intensities of subapertures of 10 degrees (80% overlap, one file for every channel).
Incoherent3_*.gif + .png	Animation of the geocoded incoherent intensity using incremental subapertures of 10 degrees (one file for every channel). The amplitude of the final image is provided as png. CC: track number, SS: sub-aperture number.
GTC-QL	
amp3geo_pres_ c <cc>*.png</cc>	Geocoded amplitude quicklook (one file per channel and per circle; .kml for Google Earth display).
pol3geo_press_*.png	Geocoded PolSAR colour composite in the Pauli basis (.kml for Google Earth display).
spec3geo_*.png	Spectrum of the geocoded SLC in the (kx, ky,kz) plane.
GTC-AUX (internal use only) irfloc_*_ncalib_3d.png	3-D amplitude of the reference targets in local coordinates (one file per channel).
irfloc_*_ncalib_2d.png irfloc_*_ncalib_1d.png	2-D amplitude of the reference targets in local coordinates (one file per channel).1-D profiles of the reference targets in local coordinates (one file per channel).

3.7.4 **Common product components**

GTC-RDP

step.xsl	xml style file.
ppgeo_csar_*.xml	Geocoding processing parameters per channel (see section 3.6).

Doc. : DLR-FSAR-PRODVersion:3.2Date:28.11.2019Page:26 of 36

GTC-AUX (internal use only) ant1d_*.sav ant2d_*.sav ant3d_*.sav + .png attit_*.rat attit_*.png attit_3D_*.png	1D antenna diagrams in elevation and azimuth. 2D antenna pattern (elevation and azimuth) for central frequency. 3D antenna pattern (squint, off-nadir, frequency). Real aircraft attitude per channel (see attit in RGI-TRACK). Plots of the aircraft attitude. 3-D plots of the aircraft attitude.
demloc_x_*.rat demloc_y_*.rat demloc_z_*.rat	Imaging grid in the x direction in local coordinates. Imaging grid in the y direction in local coordinates. Imaging grid in the z direction in local coordinates.
error_LOS_*_ <reflector_name>_</reflector_name>	<iteration>.rat and .png Residual motion error in the line of sight (LOS) estimated by PGA for a given reference target. This file saves the estimates independently for each reflector name and iteration number. (see section 3.6)</iteration>
error_LOS_*.rat	Final error estimate in the LOS. The error is corrected in the range-compressed data by constant shifts along range direction and corresponding phase correction.
error_ sxyz_*_ <reflector_name>_</reflector_name>	_ <iteration>.rat + .png PGA estimate of the error in cartesian coordinates (x,y,z). The array contains the horizontal (s) and vertical (z) components for the linear inversion, in order to estimate the x and y components (one file for each reference target and each iteration). Not available, if less than 2 reference targets present. (see section 3.6)</iteration>
error_ sxyz_*.rat	Final error estimate in the (x,y,z) space. The error is corrected directly in the track data and before image formation. Not available, if less than 2 reference targets present.
fixpoint_*.rat	Coordinate of origin of the local and SAR coordinate systems per channel (see fixpoint in RGI-TRACK).
*.log / *.pbs	log and pbs-files of the processing
replica_*.rat + .png	Chirp replica and quicklook of the replica.
tiepoints_*.png	Plots of the reference targets in local coordinates.
track_loc_*.rat track_loc_*.png track_loc_3D_*.png envelope_*.png	 Real track in local coordinates (see reftr_loc in RGI-TRACK). Plots of the ideal and real tracks in black and red, respectively, and in local coordinates. 3-D real track visualisation in local coordinates. Envelope indicating where to start counting the circular tracks. There are four modes, depending on the quadrant.

GTC-LUT and GTC-DEM folders are not needed and empty.

3.8 Change Detection Product

In addition to the standard F-SAR products, the data delivery may include intermediate and final results for change detection on specific regions of interest (ROIs). Two different detectors are used: the first one is based on interferometric coherence and SAR amplitude thresholding (coherent change detection), whereas the second one identifies changes in the polarimetric signature (incoherent change detection). The additional files and their contents are located in the INF product component of the slave data set and are described in the following.

change_mask_roiX_*.rat	A binary mask that equals one for pixels that fall within ROI X.
change_block_roiX_*.txt	The extent of ROI X used for change detection between master and slave data. Coordinates given slant range pixel coordinates: start in x, start in y, size in x, size in y.
cohchange_mask_nlflt6x6_ roiX_*.rat	The change detection mask for the interferometric coherence change detector (joint non-local means filter commonly applied to master and slave data).
cov3x3_ <coreg_>ml_roiX_*.rat</coreg_>	3x3 full rank covariance matrix after presuming. The elements on the diagonal correspond to polarisations HH, HV and VV, in that order. The matrices are available for master and resampled slave.
cov3x3_ <coreg_>nlflt_ roiX_*.rat</coreg_>	3x3 full rank covariance matrix after non-local means filtering. The matrices are available for master and resampled slave.
cov3x3_ <coreg_>nlflt_enl_ roiX_*.rat</coreg_>	The local effective number of looks after speckle filtering. The matrices are available for master and resampled slave. (currently unused)
cov6x6_ml_roiX *.rat	The 6x6 PolInSAR covariance matrix after presuming. The two 3x3 blocks on the diagonal correspond to the polarimetric covariance matrices of master and slave acquisitions, respectively, and have the same channel order as the cov3x3 matrices described above.
cov6x6_nlflt_roiX*.rat	The 6x6 PolInSAR covariance matrix after non-local means filtering.
cov6x6_nlflt_enl_roiX*.rat	The local effective number of looks after speckle filtering.
polchange_prob_ml_roiX*.rat	The value of the test statistic output by the polarimetric change detector when applied directly to the presumed covariance matrices (no speckle filter).
polchange_prob_nlflt3x3_roiX *.rat	The value of the test statistic output by the polarimetric change detector when applied to filtered covariance matrices (master and slave filtered independently).
polchange_prob _nlflt6x6_roiX *.rat	The value of the test statistic output by the polarimetric change detector when applied to the two 3x3 blocks on the diagonal of the speckle filtered 6x6 PolInSAR covariance matrix.
slc_flt_*.rat	The common band filtered master/slave SLC data.

INF/INF-QL

cohchange_mask_nlflt6x6_	Quicklook of the change detection mask for the coherent change detector
roiX_*.png	(joint non-local means filter for master and slave data).

 Doc. :
 DLR-FSAR-PROD

 Version:
 3.2

 Date:
 28.11.2019

 Page:
 28 of 36

cov3x3_ <coreg_>ml_roiX*.png cov3x3_<coreg_>nlflt_ roiX*.png</coreg_></coreg_>	Quicklook of the 3x3 full rank covariance matrix after presuming. Red, green and blue correspond to the backscatter in HH, HV and VV, channels respectively. Quicklook of the 3x3 full rank covariance matrix after non-local means filtering
cov6x6_ml_roiX *.png	Quicklook of the 6x6 PolInSAR covariance matrix after presuming. The color channels correspond to the first three diagonal elements of the 6x6 matrix (i.e. the master data set) and have the same channel order as the cov3x3 matrices described above.
cov6x6_nlflt_roiX*.png	Quicklook of the 6x6 PolInSAR covariance matrix after non-local means filtering. The color channels correspond to the first three diagonal elements of the 6x6 matrix (i.e. the master data set) and have the same channel order as the cov3x3 matrices described above.
polchange_prob_ml_roiX*.png	Quicklook of the value of the test statistic output by the polarimetric change detector when applied directly to the presumed covariance matrices (no speckle filter), scaled between 0 (black) and 1 (white).
polchange_prob_nlflt [3x3,6x6]_roiX *.png	Quicklook of the value of the test statistic output by the polarimetric change detector when applied to filtered covariance matrices (3x3 or 6x6)), scaled between 0 (black) and 1 (white).
polchange_mask_ [ml,nflt][3x3,6x6]_roiX*.png	Quicklook of the change detection mask obtained by thresholding the correspondingly named test statistic (polchange_prob*) in INF-SR.

Optionally, change detection results are also geocoded. The geocoded change detection results are then stored in the **GTC/GTC-IMG** component of the **master** acquisition.

3.9 Additional files for Ice Sounding Mode

When F-SAR is operated in nadir looking ice sounding mode, some additional files are included:

RGI/RGI-TRACK

reftr_geogr_resa_*.rat

The reference track in geographic coordinates, equidistant in space. The sampling interval corresponds to the initial raw data and is an integer factor with respect to the slc data.

Row	Description	Units	
0	GPS second	[sec]	
1	Longitude	[deg]	
2	Latitude	[deg]	
3	Ellipsoidal height	[m]	

range2surface_*.rat	Evaluation of the closest distance from the reference track to the ice surface. The
	sampling interval corresponds to the one of to the slc data. Vector of the
	azimuth length of the slc data.
travel_time_*.rat	The delay to the individual range samples of the slc data. Vector of the range
	length of the slc data.

RGI/RGI-QL

gradient_*.png	Quicklook of the gradient of the radargram in logarithmic scale (dynamic range 20dB).
gradient_*_axis.png	Quicklook of the gradient of the radargram in logarithmic scale (dynamic range 20dB) with coordinate annotation along-rack-position vs. height above ellipsoid.
radargram_*.png	Quicklook of the A-scope radargram in logarithmic scale (dynamic range 60dB).
radargram_*_axis.png	Quicklook of the A-scope radargram in logarithmic scale (dynamic range 60dB) with coordinate annotation along-rack-position vs. height above ellipsoid.

3.10 Range Compressed Raw Products

Pre-processed range compressed raw data can be provided to support applications that require the analysis of SAR data before azimuth compression. In contrast to the RAW Product described at the beginning of this document, these range compressed raw data have the following advantages:

- Sensor independence
- Easy-to-use file formats (RAT, XML and HDF5)
- Can also serve as an input to the processor, i.e. the data can be modified and re-processed to yield focussed SAR image
- Includes calibration corrections for range delay as well as channel amplitude and phase
- Tracks (position information) are provided for each individual data channel, i.e. each individual antenna phase centre

The range compressed raw format adopts the structure of the RGI product (see section 3.2). The following subsections detail the contents of the individual product components.

RGI-SR

rcraw*.rat

complex, range-compressed raw data before azimuth compression and motion compensation

RGI-TRACK

Per-channel platform attitude angles and track information in the so-called local coordinate system, as well as a fixpoint to relate the local coordinates to global geographic coordinates (see RGI product description for details)

RGI-RDP

Per-channel sensor and processing parameters in XML format (see RGI product description for details)

RGI-AUX

antconf*.xml	XML file indicating, for each channel, which antenna patterns apply on transmit
	and receive
antpatterns*.hdf5	HDF5 file with the actual 3D complex antenna patterns for each channel (as a
	function of squint, off-nadir and frequency, see the description of the antconf
	file in section 3.11)
1 4 1	
range_comp_kernel*.rat	The 1D kernel, in the time domain, used for range compression (inverse filtering
	based on this kernel achieves range-decompression)
	5

With respect to the description of the auxiliary calibration information in section 3.11, it should be noted that the RCRAW product does not include an antcal file with additional, incremental calibration corrections. Any such corrections can be assumed to have already been applied (e.g. to the system parameters, the raw data matrix and the antenna lever-arms in the antpatterns HDF5 file) such that the RCRAW product can be considered calibrated.

The only exception to the rule above is in relation to the mount-angles in the antpatterns file: The attitude angles provided in the RCRAW product do *not* take these into account. The reason is that the attitude angles are required both with and without the mount angle correction:

- Attitudes without the mount angle are appropriate for applying the antenna lever-arm to the track to obtain the antenna phase centre position at each azimuth sample.
- Attitudes with the mount angle correction are appropriate for transformations into the coordinate system of the antenna diagram and are appropriate during the antenna pattern compensation.

As described in more detail in section 3.11, the mount angles are applied to the attitude angles by simple addition.

3.11 Auxiliary Data

In addition to the information in the raw data product described in section 3.1, SAR processing and calibration requires certain auxiliary data. This data is typically held in a directory outside the campaign data structure.

Mission Planning, Testsite and Navigation Data

igi*.dat	navigation data (Input for Transcription and Processing)
mp_*segm*.txt	mission planning file including coordinates for all flown segments (Input for
	Transcription)
mp <mission>.csv</mission>	flight planning table (links the planned segments to flown tracks)
testsite_NAME.xml	Testsite bounding polygon: four corner coordinates (geogr. Latitude, geogr. longitude, height (Format same as bp*.xml)
tiepoints*.csv	tiepoint file (characterizes ground control points, and reference targets such as trihedrals).
utmdem*.rat + .hdr	Input-DEM utmdem*.rat

Antenna Diagrams and Calibration Information

antmap*csv	A table that maps channel coding to the antenna ID as it appears in the HDF5 files. For F-SAR raw data, this ID also appears in the per-channel ant*xml files of
antconf*hdf5	the RAW product. HDF5 data set containing antenna diagrams, antenna phase center positions and
antcal*hdf5	calibration constants HDF5 data set with incremental corrections to the information in the antconf file

3.11.1 HDF5 Structure: antconf

1. Mount group

File	Go	View	Window	Help		
<	þ	-	4	· 👗		
Ba	ck	Next	U	о Тор	List View	Icon View
				Name	Kind	
m	ou	nt		C1_C-05300-1-1-1_HH	HDF5	Group
				C1_C-05300-1-1-1_VV	HDF5	Group
	<u> </u>			= L1-25deg_L-01325-1-1-3_HH	HDF5	Group
				= L1-25deg_L-01325-1-1-3_VV	HDF5	Group
_		-		= L1-30deg_L-01325-1-1-3_HH	HDF5	Group
HD	F5 G	roup		L1-30deg_L-01325-1-1-3_VV	HDF5	Group
				= L1-35deg_L-01325-1-1-3_HH	HDF5	Group
22	item	S		= L1-35deg_L-01325-1-1-3_VV	HDF5	Group
2 ⊦	IDF5	Attribu	tes	= L1-40deg_L-01325-1-1-3_HH	HDF5	Group
				= L1-40deg_L-01325-1-1-3_VV	HDF5	Group
				= P2-side_P-00435-1-0-2_SN1R1_	HH HDF5	Group
				P2-side_P-00435-1-0-2_SN1R1_	VV HDF5	Group
				= S1_S-03250-1-2-3_HH	HDF5	Group
				= S1_S-03250-1-2-3_VV	HDF5	Group
				= S2_S-03250-1-2-3_HH	HDF5	Group
				= S2_S-03250-1-2-3_VV	HDF5	Group
				T1_X09600_2-1-3_SN_4_HH	HDF5	Group
				X1_ X09600_2-1-3_SN_4_VV	HDF5	Group
				T2_X09600_2-1-3_SN_1_HH	HDF5	Group
				T2_X09600_2-1-3_SN_1_VV	HDF5	Group
				T3_X09600_2-1-2_SN_3_HH	HDF5	Group
				X3_ X09600_2-1-2_SN_3_VV	HDF5	Group

The top-level "mount" group contains one sub-group per antenna phase center. The names of the antennas corresponds to the ID given in the antmap table and, for F-SAR RAW products, the per-channel ant*xml files. By convention, the first two characters of the ID indicate the frequency band and the antenna number. The last character indicates the linear polarization state.

2. Antenna phase centre group

File Go View Window	v Help	
Back Next	🔶 👗 Up Top	List View Icon View
	Name	Kind
X1_X4_HH	📄 Axes	HDF5 Group
	Depression	HDF5 Dataset
	🚞 LeverArms	HDF5 Group
	🗑 MountAngles	HDF5 Dataset
	Pattern	HDF5 Dataset
HDF5 Group	🗑 XPattern	HDF5 Dataset
6 items		
4 HDF5 Attributes		

Each antenna group contains various datasets and sub-groups. A brief description of some of this information is given in the following.

3. Antenna pattern and Axes

				Patte	ern (on hr-sl	x022)					_ 0	×
ile Visualize Windov	v Help											
											Plot [Data
	Array Inc	dexing:	0									
Pattern			0	- +								
		0	1	2	3	4	5	6	7	8	9	:
and a	0	(0.103353	(0.098365	(0.069183	(0.059982	(0.068036	(0.071715	(0.066433	(0.056584	(0.048543	(0.04664	2' (0.0
	1	(0.103142	(0.098155	(0.069018	(0.059819	(0.067843	(0.071499	(0.066191	(0.056301	(0.048221	(0.04630)9i (0.0i
UDEE Datacat	2	(0.103341	(0.098335	(0.069126	(0.059894	(0.067918	(0.071565	(0.066208	(0.056237	(0.048084	(0.04615	i3i (0.0
HDF5 Dataset	3	(0.103128	(0.098124	(0.068960	(0.059731	(0.067724	(0.071349	(0.065966	(0.055955	(0.047765	(0.04582	<mark>י1י (0.0</mark>
Shape	4	(0.103328	(0.098306	(0.069071	(0.059806	(0.067801	(0.071417	(0.065986	(0.055894	(0.047631	(0.04566	57: (0.0·
101, 720, 360)	5	(0.103114	(0.098094	(0.068905	(0.059644	(0.067607	(0.071201	(0.065745	(0.055615	(0.047316	(0.04533	8 (0.0
Гуре	6	(0.103315	(0.098278	(0.069016	(0.059721	(0.067685	(0.071269	(0.065766	(0.055556	(0.047185	(0.04518	35: (0.04
Jnknown	7	(0.103100	(0.098065	(0.068850	(0.059558	0.067491	(0.071053	(0.065526	(0.055280	(0.046873	(0.04486	50 [°] (0.04
	8	(0.103304	(0.098250	(0.068963	(0.059636	(0.067570	(0.071124	(0.065549	(0.055224	(0.046745	(0.04470)9 [,] (0.04
	9	(0.103088	(0.098037	(0.068796	(0.059473	(0.067377	(0.070908	(0.065310	(0.054950	(0.046436	(0.04438	36i (0.04
	10	(0.103293	(0.098224	(0.068909	(0.059551	(0.067457	(0.070981	(0.065336	(0.054896	(0.046310	(0.04423	8 [,] (0.04
le Visualize Windov	v neip	Plot Data	The vis	ddii2e wi	indow Hel		• I I I I I I I I I I I I I I I I I I I	File Visual	ize winde	w nep	Plot [
		Value					/alue				Va	lue
Frequency	0	9.1e+09	Off	ladir		0 0.0		Squint	t	0	-90.0	
	1	9.11e+09				-	506963			1	-89.7	74965:
	2	9.12e+09		1		_	013927			2	-89.4	19930 [,]
	3	9.13e+09					520891			3	-89.2	24895(
	4	9.14e+09				4 1.0	027855			4	-88.9	99860
HDF5 Dataset	5	9.15e+09	HDF5 I	Dataset		5 1.2	534818	HDF5 Dat	aset	5	-88.7	74826:
Shape	6	9.16e+09	Shape			6 1.5	041782	Shape		6	-88.4	19791:
(101,)	7	9.17e+09	(360,)			7 1.7	548746	(720,)		7	-88.2	24756
Туре	8	9.18e+09	Туре			8 2.0	055710	Туре		8	-87.9	9721
4-byte floating point	9	9.19e+09	8-byte	floating po	pint	9 2.2	2562674	8-byte flo	ating point	9	-87.7	74687(
	10	9.2e+09				10 2.5	069637			10	-87.4	19652:
	11	9.21e+09				11 2.7	576601			11	-87.2	24617!
	12	9.22e+09				12 3.0	083565			12	-86.9	9582
	13	9.23e+09				13 3.2	590529			13	-86.7	745479
	14	9.24e+09		cowrna bi		14	097493			14	-86.4	19513;

The Pattern dataset contains the 3D, complex valued, one-way pattern of the respective antenna. The three dimensions are the frequency, the squint and the off-nadir angles (in that order). The sampling points along each axis are given by the "Frequency" (Hz), "Squint" (degrees) and "OffNadir" (degrees) datasets in the "Axes" sub-group of each antenna group. The polar coordinate system squint/offnadir has its poles at squint angles of +-90 deg. A squint of +90 deg corresponds to the flight direction.

4. Lever-arms and mount-angles

antconf19swisar.hdf5 /m	ount/X1 🗆 ×	Absolute (on	hr-slx022)	_ 🗆 ×	MountAngles (o	n hr-slx022	2) _ 🗆 :
File Go View Wind	ow Help	File Visualize Window	Help		File Visualize Window		
Back Next				Plot Data			Plot Data
	Name			Value			Value
LeverArms	🚞 Axes	Absolute	0	-0.736	MountAngles	0	0.0
_	Depression		1	-0.259		1	0.0
	LeverArms	and the second s	2	-0.403	and and	2	0.0
	Pattern						
HDF5 Group	TPattern	HDF5 Dataset			HDF5 Dataset		
4 items		Shape (3,)			Shape (3,)		
		Type 4-byte floating point			Type 4-byte floating point		

The lever-arm of each antenna corresponds to the 3D displacement, in the instrument rest frame, from the reference point of the navigation data to the antenna phase center. The lever-arm that is relevant to SAR processing is held in the "Absolute" data set of the "LeverArms" sub-group. The lever-arm axes denote offsets in flight direction, towards the left and upwards, respectively. Lever-arms are given in *m*.

The mount-angle of each antenna, meanwhile, denotes the 3D antenna mis-pointing. It measures offsets [delta_roll, delta_pitch, delta_yaw] in degrees. These offsets are be applied additively to the platform attitude angles to obtain Euler angles that can be used to define transformations into the antenna coordinate system (the coordinate system in which the 3D pattern is defined).

3.11.2 HDF5 Structure: antcal

1. Top-level cal group and root attributes

	antcal19swisar.hdf5 /cal (on hr-slx022)	_ 🗆 ×		Attribu	tes of "/" (on h	ır-slx022)		×
ile Go View Wir	ndow Help			File Window Hel	р				
💠 🔶	۸ ک					Name	Value	Туре	
Back Next	Up Тор	List View	Icon View	/		cal_dtropo	0.000140971	float64	ł
	Name		Kind	~~~					
cal	C1 C-05300-1-1-1	HH H	IDF5 Group	203					
	C1 C-05300-1-1-1	VV I	IDF5 Group	Sans					
	 L1-25deg_L-01325-	1-1-3_HH H	IDF5 Group						
	= L1-25deg_L-01325-	1-1-3_VV	IDF5 Group	HDF5 Attributes					
	🚞 L1-35deg_L-01325-	1-1-3_HH H	IDF5 Group						
HDF5 Group	🚞 L1-35deg_L-01325-	1-1-3_VV I	IDF5 Group						
ibib oroup	🚞 S1_S-03250-1-2-3_I	нн н	IDF5 Group						
24 items	S1_ S-03250-1-2-3_	vv i	IDF5 Group						
	🚞 S2_S-03250-1-2-3_I	нн н	HDF5 Group						
	E S2_S-03250-1-2-3_	vv i	IDF5 Group						
	🚞 X1_X09600-2-1-3_F	Proto1_V8-2_SN	IDF5 Group						
	🚞 X1_X09600_2-1-3_9	5N_4_HH H	HDF5 Group						
	🚞 X1_X09600_2-1-3_9	5N_4_VV I	IDF5 Group						
	🚞 X1_X-09600-2-1-2_	нн н	IDF5 Group						
	🚞 X1_X-09600-2-1-2_	VV I	IDF5 Group						
	🚞 X2_X09600-2-1-3_F	Proto1_V8-2_SN H	IDF5 Group						
	X2_X09600_2-1-3_	5N_1_HH H	IDF5 Group						
	🚞 X2_X09600_2-1-3_9	5N_1_VV H	IDF5 Group						
	🚞 X2_X-09600-2-1-2_	нн н	IDF5 Group						
	🚞 X2_X-09600-2-1-2_	VV I	IDF5 Group						
	🚞 X3_X09600_2-1-2_9	5N_3_HH H	IDF5 Group						
	🚞 X3_X09600_2-1-2_9	5N_3_VV H	IDF5 Group						
	🚞 X3_X-09600-2-1-2_	нн н	HDF5 Group						
	🚞 X3_X-09600-2-1-2_	VV I	IDF5 Group						

Similar to the antconf structure, the top-level "cal" group contains one sub-group for each antenna ID. In addition, the root element has attributes corresponding to global calibration information.

Currently this global information comprises a tropospheric propagation correction "cal_dtropo". The value represents a refractive index correction to the speed of light in air. Using this parameter, the speed of light in air to be used for SAR image formation is

 $c_{air} = 299707760 \ 10^{-0.1 \ cal_{dtropo}} ms^{-1}$

Doc. : DLR-FSAR-PRODVersion:3.2Date:28.11.2019Page:36 of 36

2. Calibration constants

antcal195Wisar.n	df5 /cal/X1_X09600_2-1-3_SN_4_HH	(on hr-slx022) _ 🗆 ×		TxCalib	rationConstan	ts (on hr-slx022)	-	- • ×
ile Go View Windo	w Help		File Visualize Window	Help				
Image: BackImage: Personal stateBackNext		List View Icon View						Plot Data
	Name	Kind			0	1	2	3
X1_X4_HH	LeverArms	HDF5 Group	TxCaltants	0	97000000	2.01580057566e-08	-0.293505	-0.256888
	MountAngles	HDF5 Dataset		1	96000000	2.07328176177e-08	-0.073645(1.403205
RxCalibrationConstants TxCalibrationConstants	HDF5 Dataset HDF5 Dataset	and and	2	94120000	2.10684941059e-08	0.4995846	2.080767	
		TIDI 5 Dataset		3	97880000	2.09536093608e-08	-0.323301(-0.877088
HDF5 Group			HDF5 Dataset					
			HDF5 Dataset	RxCalib	rationConstan	ts (on hr-slx022)		×
HDF5 Group 4 items			HDF5 Dataset File Visualize Window		rationConstan	ts (on hr-slx022)		_
					rationConstan	ts (on hr-slx022)	-	D Plot Data
			File Visualize Window		rationConstan	ts (on hr-slx022) 1	2	
					0		2	Plot Data
			File Visualize Window	Help	0 970000000 960000000	1 2.06197663274e-08 2.07328176177e-08	2 -0.332492 ⁻ -0.073645(Plot Data 3 1.373821 1.403205
			File Visualize Window	Help 0 1 2	0 97000000 96000000 94120000	1 2.06197663274e-08 2.07328176177e-08 2.10996512659e-08	2 -0.332492 ⁻ -0.073645(0.7188091	Plot Data 3 1.3738218 1.403205 -2.873689
			File Visualize Window	Help 0 1	0 97000000 96000000 94120000	1 2.06197663274e-08 2.07328176177e-08	2 -0.332492 ⁻ -0.073645(0.7188091	Plot Data 3 1.3738218 1.4032053 -2.873689

Each antenna-sub group contains the data sets "TxCalibrationConstants" and "RxCalibrationConstants" that quantify constant delay, amplitude and phase offsets that affect signals propagating through the antenna upon transmit and receive, respectively. Each of the calibration constant data sets has four columns:

- The centre frequency, in Hz, for which the calibration constants apply
- A delay, in s, affecting signals upon propagation through the antenna
- The gain, in dB, affecting the signal intensity upon propagation through the antenna
- The phase shift, in radians, affecting the complex signal upon propagation through the antenna

For a given channel of radar raw data, the calibration constants for delay, amplitude and phase are given by summing the transmit and receive contributions of the relevant antenna phase centres. For example, the image above shows calibration constants for the X1 antenna in H-polarization. The delay for the HH channel of the X1 antenna at 9.788 GHz is 20.954 ns + 20.964 ns.

3. Mount-angles and lever-arm corrections

antcal19swisar.hdf5 /ca	al/X1_X09600_2-1-3_SN_4_	HH/LeverArms (on hr-sl 💶 🗙	1	lountAngle:	s (on hr-slx022)	_ = ×
File Go View Wind	dow Help		File Visualize Window			
Back Next	🔶 👗 Up Top	List View Icon View				Plot Data
	Name	Kind	Maximbon		Value	
LeverArms	🗑 Delta	HDF5 Dataset	MountAngles	0	0.1900126	
				1	-0.0495934	
			2	-0.3726114		
HDF5 Group				Delta (or	n hr-slx022)	_ 0 ×
1 items			File Visualize Window	Help		
						Plot Data
			Dalta		Value	
			Delta	0	0.0399619	
				1	-0.822704	
				2	-0.743957	

Each antenna group provides lever-arm and mount-angle corrections. These are added onto the

corresponding values in the antconf HDF5 file. In the case of the lever-arm, for instance, the antenna phase centre position relative to the navigation data reference point is given by the "LeverArms/Absolute" dataset in antconf **plus** the "LeverArms/Delta" dataset in antcal. The same applies to the two "MountAngles" datasets. See the antconf description above for more details concerning the coordinate conventions used for mount-angles and lever-arms.

4. Pattern Correction

antcal19swisar.hd	f5 /cal/X2_X09600_2-1-3_SN_1_H	IH (on hr-slx022) 🔔 😐 🗙		Pat	tern (on hr-sl	x022)		_ 0	×
File Go View Window	w Help		File Visualize Window	v Help					
Image: BackNext	🔶 👗 Up Top	List View Icon View						Plot D	
	Name	Kind			0	1	2	3	4
X2_X1_HH	X2_X1_HH LeverArms HDF5 Group MountAngles HDF5 Dataset Pattern HDF5 Dataset	Pattern	0	(0.758749	(0.758752	(0.758762	(0.758778	(0.75	
			1	(0.758749	(0.758752	(0.758762	(0.758778	(0.75	
	RxCalibrationConstants	HDF5 Dataset	a all	2	(0.758749	(0.758753	(0.758762	(0.758778	(0.75
	TxCalibrationConstants	HDF5 Dataset		3	(0.758750	(0.758753	(0.758763	(0.758778	(0.75
HDF5 Group		HDF5 Dataset	4	(0.758750	(0.758754	(0.758763	(0.758779	(0.75	
				5				(0.758780	
5 items			Shape (720, 360)	6		•	•	(0.758781	
				7				(0.758782	
			Type Unknown	8				(0.758783	
			on known	9				(0.758784	
				10				(0.758786	
				11				(0.758787 (0.758789	
				12 13	•	•	•	(0.758791	
				13				(0.758793	
				14				(0.758795	
				16				(0.758797	-
				10					

Antenna groups may optionally include a dataset "Pattern" that contains a 2D or 3D antenna pattern correction. 3D corrections have the exact size of the original "Pattern" in the antconf file. 2D corrections cover the squint and off-nadir axes and apply to all frequencies in the full 3D pattern (this is the case for the example above). The pattern correction is complex valued and is applied multiplicatively to the dataset in antconf.

 Doc. : DLR-FSAR-PROD

 Version:
 3.2

 Date:
 28.11.2019

 Page:
 38 of 36

Appendix 1: Radiometric Calibration

SAR images are commonly radiometrically corrected in one of three fashions: beta-0, sigma-0 and gamma-0. Which type of correction is appropriate depends on the application at hand. The aim of this appendix is therefore to summarise how F-SAR data can be converted from one type of radiometric calibration to another.

In general, the formula for converting F-SAR imagery to dB values corresponding to any one of the three calibration types is as follows:

$$I_{dB} = 10 log(\langle f | I |^2 \rangle)$$

where I denotes the input image, f denotes a scale factor and <...> denotes spatial averaging or multi-looking. The scale factor f depends on the input image and the desired type of radiometric calibration in the output. The following table summarises the factors used for different conversions:

Input	Product	Factor f	to achieve desired	sired output		
	Component	Beta-0	Sigma-0	Gamma-0		
slc	RGI-SR, INF-SR	1	$sin(\theta_{inc})$	$tan(\theta_{inc})$		
amp	RGI-SR, GTC-IMG	$1/tan(\theta_{inc})$	$cos(\theta_{inc})$	1		

The angle θ_{inc} in the table above refers to the local incidence angle, which is given, for each sample of the image grid, in the **incidence** files that are provided as part of the RGI-SR (see section 3.2) and GTC-IMG (see section 3.3) product components for slant range and geocoded data, respectively.

Appendix 2: Rat Format

The following table indicates the binary structure of RAT (version 2) files on disk. All floating point and complex data follow IEEE standards and are stored with little endian byte ordering.

Format description:

Group	Tagname	Length [byte]	Туре	Example	Description
	MagicLong	4	1 x long	844382546	Magic number for recognizing RAT
	Version	4	1 x float	2.0	RAT Version number
	NDIM	4	1 x long	2	Number of dimensions of data matrix
	NCHANNEL	4	1 x long	1	Number of channels
RAT (100 bytes)	DIM	32	8 x long	1000,2000,0,0,0,0,0,0	Number of samples per dimension
	VAR	4	1 x long	4	IDL variable type (1- byte, 2-integer, 4 –float, 6 – complex)
	SUB	8	2 x long	5, 8	Subsampling factors
	RATTYPE	4	1x long	100	RAT type
	RESERVED	36	9 x long	9x0	<empty></empty>
INFO	INFO	100	string		Description of file content
(100 bytes)					
	PROJECTION	2	1 x int	1	Projection Type (0=Lat/Long, 1 = UTM, 2 = Gauss-Krüger)
	PS_EAST	8	1 x double	1.0	Sampling in Easting ([deg] or [m])
	PS_NORTH	8	1 x double	1.0	Sampling in Northing ([deg] or [m])
	MIN_EAST	8	1 x double	436041.00	Minimum easting (lower left corner)
GEO (100 bytes)	MIN_NORTH	8	1 x double	5921365.0	Minimum northing (lower left corner)
	ZONE	2		32	Projection zone
	HEMISPHERE	2		1	Hemisphere (1 – north, 2 - south
	LONG0SCL	8	1 x double	0.99996	Scaling factor at central meridian
	MAX_AXIS_ELL	8	1 x double	6378137.0	Ellipsoid major axis
	MIN_AXIS_ELL	8	1 x	6356752.3	Ellipsoid minor axis

			double		
	DATUM_SHIFT	100	7 x double + 64 byte		Datum Shift Parameters (3x translation, 3x Rotation, 1x Scaling) in case other than WGS-84 ellipsoid is used.
	RESERVED	18	18 x byte		<empty></empty>
STAT (100bytes)	STAT	100	25 x long	0	Reserved for statistical values of data matrix.
DATE	START_TIME	19	string	2012-11-14 T18:20:06	Start time of data acquisiton
(100bytes)	STOP_TIME	19	string	2012-11-14 T18:21:29	Stop time of data acquisiton
	RESERVED	62	62 x byte		<empty></empty>
RESERVED1	RESERVED	100	25 x long		<empty></empty>
RESERVED2	RESERVED	100	25 x long		<empty></empty>
RESERVED3	RESERVED	100	25 x long		<empty></empty>
RESERVED4	RESERVED	100	25 x long		<empty></empty>

Functions for reading and writing the RAT format are available for IDL and python upon request.