zum Bild S129E007592

BIOMEX: Biology and Mars Experiment

General information:

  • Experiment on EXPOSE-R2 attached outside on the Zvezda module of the International Space station (ISS)
  • Launch: scheduled for April 2014
  • biological and mineralogical samples on EXPOSE-R2
  • biological and mineralogical samples in Ground Simulation facilities of DLR Cologne/Berlin (Environmental Verification Tests EVT and Scientific Verification Tests SVT, in DLR Cologne, Mars simulation facility (MSF-T tests as adds on at the DLR Berlin)

Scientific objectives of BIOMEX

The prime objective of BIOMEX is to measure to what extent biomolecules like pigments and cell components are resistant to and able to maintain their stability under space and Mars-like conditions. The results of BIOMEX will be relevant for space proven biosignature definition and the formation of a biosignature data base (e.g. the proposed creation of an international Raman / UV/VIS/IR spectroscopy library). The library would be useful for future space missions like projects for life detection analysis on Mars (e.g. ExoMars).

The secondary scientific objective is to analyze to what extent terrestrial extremophiles are able to survive in space and which interaction between biological samples and selected minerals (including terrestrial, Moon- and Mars analogue varieties) can be observed under space and Mars-like conditions. The results will provide new information about environmental extremes that can be sustained by the proposed species and about the chances for survival during a ‘natural’ trip in space (according to the Panspermia theory). The BIOMEX samples will consist of a variety of pigments, cell wall components, lichens, archaea, cyanobacteria, iron bacteria, snow alga, black fungi and bryophytes.

In brief these and other scientific objectives are in focus within the BIOMEX-mission as listed below:


  • Stability / degradation of space exposed biomolecules and organisms in contact to natural / Mars analogue substrates
  • Interaction between bio-samples and natural / Mars/Lunar analogue substrates.
  • Collect information for a biosignature reference data base (Raman, UV/VIS, IR- and MS-Spectroscopy).


  • Capacity of organisms to resist, survive and live under Mars-like / space exposure conditions


  • Likelihood of Lithopanspermia hypothesis with new organisms (compared to EXPOSE-E)


  • Improve environmental sensors (gas pressure, humidity, temperature, radiation)


  • The search for life on Mars and other planets and satellites with different methods of spectroscopy (Raman, UV/VIS, IR- and MS-Spectroscopy)

Space parameters in Low Earth Orbit as expected for BIOMEX

Mission duration 12 – 18 months
temperature range -30 to +60°C, mostly -15 to +40°C
irradiation (space and Mars-like)       UV, PAR, IR (high-pass windows)
cosmic (background) radiation γ, X, H+, He2+, e- (SCR, GCR)
vacuum / sim. Mars atmosphere Pa / 930 Pa (CO2, N2, Ar)





Samples: Mars and Lunar analog regolith mixtures and Biological Samples (BIOMEX P-I: DLR Berlin)

Bacteria Deinococcus radiodurans wild type and crtI or crtB (non-pigmented) (DLR-Cologne)
Biofilm containing Leptothrix, Pedomicrobium, Pseudomonas, Hyphomonas, Tetrasphaera (TU Berlin)
Cyanobacteria Nostoc sp. strain CCCryo 231-06 (Fraunhofer IBMT)
Cyanobacteria Gloeocapsa OU-20 (Astrobiology Center Edinburgh)
Cyanobacteria Chroococcidiopsis sp. CCMEE 029 (Uni Roma)
Algae (green alga) Sphaereocystis sp. CCCryo 101-99 (Fraunhofer IBMT)
Archaea Methanosarcina spec.strain SMA-21 (terrestrial permafrost) (GFZ/AWI Potsdam)
Lichens Circinaria gyrosa (INTA)
Lichens Buelia frigida (antarctic lichen) (H-H-Uni Düsseldorf)
Meristematic black fungi Cryomyces antarcticus (Antarctic cryptoendolithic black fungus) (Uni Viterbo)
Bryophytes Grimmia sessitana (alpine samples) (Uni Potsdam)


Bryophytes Marchantia polymorpha L. (Uni Potsdam)


Pigment Chlorophyll (H-H-Uni Düsseldorf)
Pigment beta-Carotene (H-H-Uni Düsseldorf)
Pigment Naringenin (H-H-Uni Düsseldorf)
Pigment Quercitin (H-H-Uni Düsseldorf)
Pigment Parietin (H-H-Uni Düsseldorf)
Pigment Melanin (H-H-Uni Düsseldorf)
Cellulose (H-H-Uni Düsseldorf)
Chitin (H-H-Uni Düsseldorf)
Agar (as a substitute for Murein, H-H-Uni Düsseldorf)
Minerals Lunar analogue mixture (MfN Berlin)
Minerals P-MRS: Early acidic Mars analogue (Mixture of Fe2O3, Montmorillonite, Chamosite, Kaolinite, Siderite, Hydromagnesite, Quarz, Gabbro and Dunite) (MfN Berlin)
Minerals S-MRS: Late basic Mars analogue (Mixture of Hematite, Goethite, Gypsum, Quarz, Gabbro, Dunite) (MfN Berlin)
Minerals Basaltic glass rocks (Astrobiology Center Edinburgh)
KOMBUCHA Biofilm containing: Yeast: Saccharomyces ludwigii, Schizosaccaromyces pombe, Zygosaccharomyces rouxii, Zygosaccharomyces bailii, Brettanomyces bruxellensis; Bacteria: Paenibacillus sp. IMBG221, Acetobacter nitrogenifigens, Gluconacetobacter kombuchae sp. nov., Gluconacetobacter xylinum.(NAS Ukraine)


zum Bild EXPOSE-R2

Baqué M., de Vera, J.-P., Rettberg, P., Billi, D., 2013. The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronautica 91: 180–186.

Böttger, U., de Vera, J.-P., Fritz, J., Weber, I., Hübers, H.-W., Schulze-Makuch, D., 2012. Optimizing the detection of carotene in cyanobacteria in a Martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planetary and Space Science 60: 356–362.

Böttger, U., Meeßen, J., Frias, J.M., Hübers, H.-W., Rull, F., Sánchez, F.J., de la Torre, R., de Vera, J.-P. (2013). Raman Spectroscopic Analysis of the Calcium Oxalate Producing Extremotolerant Lichen Circinaria gyrosa. International Journal of Astrobiology (in press).

de Vera, J.-P. Boettger, U., de la Torre Noetzel, R., Sánchez, F. J., Grunow, D., Schmitz, N., Lange, C., Hüber, H.-W., Billi, D., Baqué, M., Rettberg, P., Rabbow, E., Reitz G., Berger T., Möller, R., Bohmeier, M., Horneck, G., Westhall, F., Jänchen J., Fritz, J., Meyer, C., Onofri, O., Selbmann, L., Zucconi, L., Kozyrovska, N., Leya, T., Foing, B., Demets, R., Cockell, C.-S., Bryce, C., Wagner, D., Serrano, P., Edwards, H. G. M., Joshi, J., Huwe, B., Ehrenfreund, P., Elsaesser, A., Ott, S., Meessen, J., Feyh, N., Szewzyk, U., Jaumann, R., Spohn, T.,(2012) Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planetary and Space Science.

Jänchen, J., Bauermeister, A., Feyh, N., de Vera, J.-P., Rettberg, P., Flemming, H.-C., Szewzyk, U. (2013). Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions. Planetary and Space Science (in press).

Kozyrovska N., Reva O., Goginyan V., de Vera J.-P., 2012. Kombucha microbiome as a probiotic: a view from the perspective of post-genomics and synthetic ecology. Biopolym. Cell. 2012, 28 (2): 103-110.

Kukharenko O., Podolich O., Rybitska A., Reshetnyak G., Burlak L., Ovcharenko L., Voznyuk T., Moshynets O., Rogutskyi I., Zaets I., Yaneva O., Pidgorskiy V., Rabbow E., de Vera J.-P., Kozyrovska N., 2012. Robust symbiotic microbial communities in space research. In: Space research in Ukraine (2010-2012). The report to the COSPAR, 2012, Academ Periodyka, Kyiv, 128 p.

Meeßen, J., Sánchez, F. J., Brandt, A., Balzer, E.-M., de la Torre, R., Sancho, L. G., de Vera, J.-P. and Ott , S., 2013. Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research I. Morphological and Anatomical Characteristics. Orig Life Evol Biosph 43: 283–303.

Serrano, P., Hermelink, A., Boettger, U., de Vera, J.-P., Wagner, D., 2013. Biosignature detection of methanogenic archaea from Siberian permafrost using confocal Raman spectroscopy. Planetary and Space Science (accepted).

URL for this article