Kinetik der Erstarrung von Metallschmelzen



Die computergestützte Simulation von Gieß- und Erstarrungsprozessen zur Herstellung von metallischen Werkstoffen gewinnt in der technischen Anwendung zunehmend an Bedeutung. Die Effizienz solcher Simulationen setzt vor allem ein detailliertes Verständnis der physikalischen Prozesse bei der Erstarrung von Metallschmelzen voraus. In der TEMPUS-Anlage zum elektromagnetischen Positionieren unter Schwerelosigkeit wird an frei schwebenden Metalltropfen die Erstarrungsgeschwindigkeit mit hoher Präzision gemessen.

Auf der Erde sind Erstarrungsvorgänge durch schwerkraftbedingte Flüssigkeitsströmungen beeinflusst. Diese werden wiederum durch Temperatur- und Dichteunterschiede in der Schmelze angetrieben. In der Schwerelosigkeit werden die Strömungen unterdrückt. Dadurch wird das Wachstum des Festkörpers in der Schmelze nur durch die Eigenbewegung von Atomen gesteuert. Durch den Vergleich der Daten aus diesem Experiment mit berechneten Erstarrungsgeschwindigkeiten werden physikalische Modelle zum Kristallwachstum in unterkühlten Metallschmelzen überprüft.

Die Parabelflugexperimente konzentrieren sich auf reine Nickel-Schmelzen und auf Titanium-Aluminiun-Legierungen. Aus diesen Legierungen werden Hochtemperaturwerkstoffe entwickelt, die vielfältig eingesetzt werden können, etwa zum Bau von Turbinenschaufeln.

Kontakt
Dr. Thomas Volkmann
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Materialphysik im Weltraum

Tel: +49 2203 601-2794

E-Mail: Thomas.Volkmann@dlr.de
URL dieses Artikels
http://www.dlr.de/rd/desktopdefault.aspx/tabid-4316/6960_read-10147/