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a b s t r a c t

Monocular plenoptic cameras are slightly modified, off-the-shelf cameras that have novel capabilities as

they allow for truly passive, high-resolution range sensing through a single camera lens. Commercial

plenoptic cameras, however, are presently delivering range data in non-metric units, which is a barrier

to novel applications e.g. in the realm of robotics. In this work we revisit the calibration of focused

plenoptic cameras and bring forward a novel approach that leverages traditional methods for camera

calibration in order to deskill the calibration procedure and to increase accuracy. First, we detach the

estimation of parameters related to either brightness images or depth data. Second, we present novel

initialization methods for the parameters of the thin lens camera model—the only information required

for calibration is now the size of the pixel element and the geometry of the calibration plate. The ac-

curacy of the calibration results corroborates our belief that monocular plenoptic imaging is a disruptive

technology that is capable of conquering new markets as well as traditional imaging domains.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

A considerable number of machine vision users think that

multi-view triangulation is required in order to retrieve accu-

rate 3-D information using cameras without a priori information

about the scene. This is predominantly accomplished either by

passively taking images from different vantage points (stereo vi-

sion) or by actively projecting a known pattern from a separate

location (Kinect). In other words, the notion that 3-D information

is lost when light rays traverse the front lens of the camera is

widespread. Experts know, however, that this is not the case as

light rays are differently diffracted by a lens depending on the dis-

tance to the emitting object [1]. In fact, one of the potential out-

puts of monocular plenoptic cameras is range sensing.

1.1. Plenoptic imaging

Plenoptic (also light-field) imaging is about measuring light in

a higher dimensionality than in standard 2-D imaging. In fact,

light transmission can be contemplated in a higher-dimensional

space, the so-called plenoptic function [2]. Current plenoptic imag-

ing samples the plenoptic function in 4-D , viz. 2-D projection po-

sition on the chip together with the direction of incoming light

rays. The quest for this extra information is anything but new,
∗ Corresponding author.
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ut advances in parallel computation and modern workmanship of

icrolens arrays (MLAs) have recently made commercial products

ossible [3–5]. In a nutshell, monocular plenoptic cameras capture

he 3-D image produced by the main lens within the camera by us-

ng an MLA in front of the sensor chip. By capturing the whole 3-D

mage, classical habits when using planar sensors like keeping the

perture size small in order to increase depth of field are lifted and

ore light can be gathered from the scene. Different camera de-

igns open up new possibilities to trade off lateral precision against

ngular resolution of the reprojected ray directions. The original

onocular plenoptic cameras focus the image on the MLA, achiev-

ng a limited spatial resolution at that particular depth equal to the

umber of valid microlenses. These microlenses produce defocused

mages that sample the ray direction at the position of the mi-

rolens. In 2009 Lumsdaine and Georgiev introduced the focused

lenoptic camera (or plenoptic camera 2.0), which makes it possi-

le to adapt this rather rigid trade-off between angular and spatial

esolutions towards more spatial resolution [6]. This is performed

y a modification of the focus distance to the main lens with the

esult that microlenses produce focused images that, on the other

and, more loosely sample ray direction.

Many characteristics of plenoptic cameras are in conformity

ith the standard reference on disruptive technologies in Ref. [7].

or instance, plenoptic cameras initially produce a deficient stan-

ard output (fair images) at a higher cost, which makes them of no

nterest to the average consumer. They, however, clearly have the

otential to improve and open up new markets while sharply re-

ucing costs. Their current applications are offline refocusing and
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otal focusing (i.e., increased depth of field) of 2-D images. More

elevant potential applications are passive, 3-D video recording,

-D modeling, range-based segmentation and tracking, industrial

nspection (e.g. in narrow cavities), and imaging in challenging,

ow-light environments (e.g. underwater or in space). Most of

hese applications rely on the capability of plenoptic cameras to

rovide metric information of the scene in the form of 2.5-D depth

mages. This is, however, not yet commercially available as depth

s currently being delivered in internal units related to image pro-

essing (disparities). We address the metric calibration of focused,

onocular plenoptic cameras in order to transform their depth

utput into metric space.

.2. Related work

There is less research on the metric calibration of focused

lenoptic cameras and the works on the calibration of the origi-

al, unfocused ones are only of partial use [8]. Next we review the

nly available approaches in Refs. [9–12]. They all have in common

hat they start out from synthetic images generated by the RxLive

oftware of Raytrix GmbH (viz. the total focus image and the depth

mage), not from the raw images of the camera. The conformity of

he generated synthetic images with the camera models used for

alibration is of course critical. It is a judicious decision to rely on

he manufacturers, however, since (i) they are most qualified to do

hat job, (ii) they still keep individual design details in secret, and

iii) in order to avoid mismatching between our potential recon-

truction attempts and the eventual operation on GPGPUs. In ad-

ition, the calibration process is simplified by using the synthetic

mages because we leverage established methods for pinhole cam-

ra calibration [13,14]. It is worth noting that the geometry of the

LA is not included in the calibration process as it can be es-

imated in a separate procedure using the Raytrix software. The

est-known work in Ref. [9] details the modeling and calibration

f the focused plenoptic camera, failing to obtain absolute range

ccuracy. Further the automatic initialization of calibration param-

ters is not addressed; the authors make use of privileged infor-

ation from the manufacturer. The recent Master’s thesis in Ref.

12], however, does achieve superior results by largely implement-

ng the above approach. Still, considerations on the initialization of

alibration parameters are not being addressed. The author makes

trong use of filtering approaches to wipe out peripheral artifacts

n depth estimation, which might constrain the general applicabil-

ty of the approach. Zeller et al. in Ref. [11] perform calibration

y minimizing the reprojection residuals with respect to (w.r.t.) a

et of measured calibration points for which the object distance is

nown—at least for the initialization of their method. In addition,

he method requires assumed intrinsic values. In the same spirit,

uhmann et al. in Ref. [10] opt for measuring ranges of a planar

alibration object, which is error-prone and inconvenient [15,16].

ncidentally, the current internal approach for metric calibration at

aytrix GmbH also relies on a linear actuator in order to produce
Fig. 1. Diagram representing the informa
polynomial that directly converts virtual depths into metric dis-

ances [12]. This type of empirical models, however, is only appli-

able within the scope of the calibration data.

.3. Contributions

In this work we revisit the type of calibration approaches that

re based on the standard camera calibration method described

n Refs. [13,14]. We suggest modifications to particular modeling

etails and present justifications. Special care has been taken to

eep the approach in the spirit of the standard method, i.e., to

ake images of a known planar calibration pattern in unknown

ose and to facilitate automatic bootstrapping of the parameters

rior to nonlinear optimization. This keeps the amount of required

rior knowledge (e.g. specifications by the manufacturer) to a min-

mum, making the whole calibration process more generic and eas-

er. More importantly, we introduce a novel approach for stepwise

alibration by alternate use of total focus and depth (synthetic) im-

ges. Our motivation is to avoid the impact of higher levels of noise

n the depth images on a large part of the intrinsic parameters like

he focal length and the radial lens distortion. These parameters

an be estimated in advance by exclusively using total focus im-

ges, as in traditional camera calibration. After that, the optimiza-

ion of the remaining parameters using the depth images and the

esults of the first optimization takes place, see Fig. 1. By doing so,

alibration accuracy is increased and the optimization robustness is

romoted as the formulations of both optimizations become better

onditioned compared with joint optimization methods [9]. In ad-

ition, the optimization of the lens distortion model will not get

ntangled with the optimization of the (potentially very similar)

epth distortion model.

Overall, we produce an easy-to-use, automatic method for met-

ic plenoptic camera calibration. The only required data are syn-

hetic total focus and virtual depth images of a planar calibration

late of known geometry and the metric size of their virtual sensor

lements.

. Proposed method

.1. The thin lens camera model and the focused plenoptic camera

The pinhole camera model is a valid approximation for most

ameras and applications. It relates projection directions in the

amera reference frame SC with projection positions in the sensor

eference frame SS. This projection is independent of the ac-

ual range to the scene, which makes it unsuitable for modeling

lenoptic cameras aimed at inferring the depth of the scene out

f inner camera projections. The pinhole camera model is derived

rom the thin lens camera model in the case of smaller aperture

izes. The thin lens camera model embraces the thin lens approx-

mation of light rays passing through a thin lens, which states

hat ray directions are still projected following the pinhole camera
tion flow in the presented method.
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Fig. 2. The thin lens camera model and the focused plenoptic camera.
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model and that projections are only focused at particular depths d

that depend both, on the focal length f of the lens and on the ob-

ject ranges r in the direction of the principal axis of the camera as

follows:

1

f
= 1

d
+ 1

r
. (1)

The thin lens camera model does consider ranges to the scene

and therefore serves as a starting point for the camera model of a

plenoptic camera. The use of the pinhole camera model has been

convenient because of its linear projective formulation in homoge-

neous coordinates (¯). Similarly, the thin lens camera model allows

for such a formulation as follows:

C p̄f =

⎡⎢⎢⎣
Cxf

Cyf

Czf

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Sx · p

Sy · p

Czf

1

⎤⎥⎥⎦ ∝

⎡⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 − 1
f

1

⎤⎥⎥⎦ ·

⎡⎢⎢⎣
Cx

Cy

Cz

1

⎤⎥⎥⎦, (2)

introducing the focused projection Cpf of the point in space Cp,

both vectors represented in 3-D in SC. The metric 2-D orthogonal

projection of Cpf {Cxf, Cyf} can be transformed to a virtual SS using

the length p of the virtual sensor element. The virtual sensor cor-

responds to the sensor that would produce the synthetic images

delivered e.g. by the RxLive software out of raw sensor images.

Note that we choose to shift pixel values to the center of projec-

tion at the principal axis of the camera since camera calibration is

less sensitive to the actual position of the principal point (at the

cost of a slightly different pose of SC, see Refs. [17,18]) and because

lens distortion will feature its own 2-D origin {Cxr, Cyr} in the first

place.

The internal depth d of projections Czf is the central value of

this model. It depends on the actual range r to the scene Cz and

on the focal length f of the main lens. In the case of the focused

plenoptic camera it is possible to estimate Czf using raw camera

projections, see Fig. 2. In fact, the depth estimation algorithm of

Raytrix cameras delivers the distance a between the MLA and the

internal depth Czf in multiples of the distance b between the MLA

and the sensor chip, which is an unknown value related with cam-

era production [19]. That relative distance is called virtual depth

v = a/b. In detail, virtual depths are provided as normalized values

P coded in 16 bits that are to be converted to real values and di-

vided by their potential maximum 65535, resulting in values in the

range of [0.5, 1.0). This normalized internal depth value is trans-

formed to actual, relative virtual depths v = (1 − P)−1, which are

in turn related to the internal depth projections using b and the

distance h between the MLA and SC as follows:

Czf = v · b + h. (3)

Virtual depths are, however, of limited use to final applications be-

cause they are not metric and because they involve a nonlinear

relationship with the actual depths in the scene Cz. In order to

be able to transform virtual depths into actual metric depths it
s necessary to estimate b and h with high accuracy. It is worth

oting that it is the knowledge of virtual depths v that enables

lenoptic cameras to deliver synthetic, total focus 2-D brightness

mages composed of projections at their respective focused depths

zf.

.2. Calibration approach

Our method is based on the two types of synthetic images ex-

lained above: first, depth images featuring virtual depths v at

heir virtual sensor projections {Sx, Sy}, and second, total focus im-

ges featuring actual, focused brightness values captured at the

ame virtual sensor projections {Sx, Sy}. Traditional pinhole cam-

ra calibration approaches only use the latter brightness images,

inimizing reprojection residuals in SS for optimal estimation of

ntrinsic parameters following the maximum likelihood criterion,

hich holds because checkerboard corner detection by image pro-

essing is prone to errors that can be modeled by 2-D indepen-

ent and identically distributed zero-mean Gaussian distributions

13,14]. In the case of the thin lens camera model, the information

onveyed by brightness images, together with the model of the cal-

bration target, does allow to parameterize Eq. (2) including Czf.

n order to estimate the unknown intrinsic parameters b and h in

q. (3), however, the information v conveyed by the virtual depth

mages is also needed. The previous calibration approaches for fo-

used plenoptic cameras included both types of data into the thin

ens camera model in Eqs. (2) and (3) in order to obtain all intrin-

ic and extrinsic parameters by global minimization of Euclidean

-D residual distances [9]. It is difficult to justify the optimality

f that approach in the face of multi-modal data and an aleatory

hoice of residuals. Virtual depth images feature a much higher

evel of noise than brightness images after all. It is clear that by

sing multi-modal data for joint optimization, the accuracy of all

esults will be compromised by both noise sources—especially by

he strongest source, i.e., the virtual depth images. Even though

nformation theory says that even the noisiest bit of information

s able to increase the overall information budget, in reality this

s here not the case as the stochastic error distribution of virtual

epths has not yet been properly modeled.

In this work we note that most intrinsic parameters of the thin

ens camera model can be estimated without having to make re-

ourse to noisy virtual depth images. Virtual depths are a new type

f information that is not yet accurately understood and modeled.

e propose to recur to this type of data only when strictly neces-

ary by the following procedure (cf. Fig. 2):

1. First, the focal length f and, in the case of radial lens distortion,

the parameters (Cxr, Cyr, k1 and perhaps k2) are automatically

estimated using brightness images. As a by-product, we obtain

the optimal extrinsic parameters of the camera (i.e., the cam-

era motion) with highest accuracy as well as the optimal inter-

nal depths of projections Czf. The intrinsic parameters are then

fixed for future estimations. Camera calibration from brightness

images is a trusted science after all.

2. Second, virtual depths images are used to estimate the inner

lengths b and h in Eq. (3)—perhaps together with the parame-

ters of a depth distortion model.

In addition, the detachment of these two types of information

uring the calibration process proves to be useful whenever it is

equired to robustify the calibration process against data outliers.

or example, the whole set of brightness features can be used

o perform lateral calibration (Stage #1) whereas the most noisy

epth values can be readily removed during the estimation of the

epth-related parameters (Stage #2). This is not possible when us-

ng the state-of-the-art calibration algorithms that mix both data
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ypes during calibration. An additional advantage is that the lens

istortion model and the depth distortion model will not become

ntangled within a sole optimization, which otherwise would be a

roblem since both models are potentially similar. Lastly, the un-

anted correlations between the focal length f and the inner cam-

ra lengths b and h are suppressed.

Without loss of generality in this work we suggest checkerboard

alibration patterns [20]. In Ref. [12] the author chooses circular

eatures because Raytrix, historically, did so. They calculate their

rojected centroids and average over the depth values of the whole

llipse. It is worth noting, however, that in the case of circular fea-

ures, the center of the ellipse is generally not the same as the pro-

ected circle center [21]. Similarly, averaging over depth values of

he ellipse to find the depth of its centroid is also prone to errors.

oth of these aspects are better managed when using checkerboard

atterns. The correspondence problem is easily solved e.g. by using

he calibration software DLR CalDe [22].

Lastly, we introduce automatic, sequential initialization schemes

or all parameters involved in the staged calibration.

.3. Stage #1: Lateral calibration

By removing the third, depth-related row in Eq. (2) we

btain:

Sx

Sy

1

⎤⎦∝

⎡⎣ 1
p

0 0 0

0 1
p

0 0

0 0 − 1
f

1

⎤⎦ ·

⎡⎢⎢⎣
Cx

Cy

Cz

1

⎤⎥⎥⎦

=

⎡⎣ 1
p

0 0 0

0 1
p

0 0

0 0 − 1
f

1

⎤⎦ ·
[

CRO
CtO

0 0 0 1

]
·

⎡⎢⎢⎣
Ox

Oy

Oz

1

⎤⎥⎥⎦, (4)

hich represents a projection model from 3-D coordinates in SC or

he object reference frame SO to 2-D projections in SS. This formu-

ation is fully in the spirit of the thin lens camera model. Since the

alibration object is planar, i.e., Oz�0, this formulation allows for

apid initialization of the focal length f and the rigid body transfor-

ation

{
CRO = [r1r2r3], CtO =

[
CxO

CyO
CzO

]T}
using planar homo-

raphies H(3×3) similar to the traditional pinhole approach in Refs.

13,14]. Homographies H can be easily estimated for every calibra-

ion image as the linear least squares solution of the homogeneous

ormulation including two equations for every measured (˜) feature

p̃ [23]. The importance of normalizing data cannot be overesti-

ated at this point.

First, a novel correspondence between the homography and the

nknown transformations is established:

(3×3) = [h1 h2 h3] ∝

⎡⎣ 1
p

0 0 0

0 1
p

0 0

0 0 − 1
f

1

⎤⎦ ·
[

r1 r2 CtO

0 0 1

]

≈

⎡⎣ 1
p

0 0

0 1
p

0

0 0 − 1
f

⎤⎦
︸ ︷︷ ︸

A(3×3)

·
[
r1 r2 CtO

]
⇔ f�Cz.

(5)

he correspondence has been simplified because the focal length

s generally much shorter than the range to the feature in front of

he main lens z, when represented in the same distance units.
C
ow using the orthonormality constraints r1 · r2 = 0, r1 · r1 = 1,

nd r2 · r2 = 1, i.e., CRO ∈ SO(3), we obtain:

(A−1 h1)
T · (A−1 h2) = 0

(A−1 h1)
T · (A−1 h1) − (A−1 h2)

T · (A−1 h2) = 0

}
⇔ h

T
1 ω∞ h2 = 0

h
T
1 ω∞ h1 = h

T
2 ω∞ h2

}
, (6)

ith the so-called absolute conic

∞ = A−TA−1 =

⎡⎣p2 0 0

0 p2 0

0 0 f 2

⎤⎦. (7)

q. (6) enable the direct estimation (ˆ) of the focal length f either

sing the orthogonality constraint ( f̂1) or using the normalization

onstraint ( f̂2):

f̂1 = ±p ·
√

−h11h12 + h21h22

h31h32

, f̂2 = ±p ·
√

h2
12

+ h2
22

− h2
11

− h2
21

h2
31

− h2
32

,

(8)

or every single calibration image of the checkerboard plate. Note

hat h1 = [ h11 h21 h31]
T

and h2 = [ h12 h22 h32]
T

. The only required

ata for the metric initialization of f are the side length p of the

irtual sensor pixel featuring total focus and virtual depth im-

ges together with the geometry of the checkerboard calibration

late, i.e., the N coordinates of its corners O pi = [Oxi Oyi Ozi]
T, ∀i ∈

1, . . . , N}. The requirement on the knowledge of the latter ge-

metry could, however, be partially lifted [16]. Experiments show

hat the estimation f̂2 is slightly better conditioned with regard

o the amount of perspective distortion included in the calibra-

ion images (orthogonal plate projections are widely discouraged

or camera calibration [24]). We choose the median of all the

f̂2 estimations for every C calibration images, arriving at a value

f̂ = median( f̂2c
), ∀c ∈ {1, . . . ,C}, that closely matches the nominal

ocal length of the lens unit.

The absolute extrinsic camera parameters {CRO, CtO} can then be

stimated for every calibration image c using both, the C homo-

raphies Hc and the approximated intrinsic matrix A including the

irtual pixel size p and the newly estimated focal length f̂ as fol-

ows: r̂1 = 1/s A−1h1, r̂2 = 1/s A−1h2, r̂3 = r̂1 × r̂2, t̂ = 1/s A−1h3,

nd s = ||A−1h1|| = ||A−1h2||. These can also be used for a poten-

ial hand-eye calibration of the plenoptic camera [25].

At this point all parameters have been estimated with reason-

ble accuracy. It is known that the radial lens distortion parameters

an be initialized at zero value for subsequent nonlinear optimiza-

ion. If necessary, they can also be estimated in advance, perhaps

tand-alone [26,27].

Last, the optimal (�) parameters �̂� including f̂�, Cx̂r�, Cŷr�, k̂1�,

ˆ
2� as well as the C extrinsic transformations {CR̂

O
c�, Ct̂

O
c�} can be

stimated on the basis of the maximum likelihood criterion, i.e.,

y sensibly minimizing the discrepancies between the erroneous

easurements p̃ and the expected, distorted projections S p̂d of the

ctual corners of the calibration plate Op as follows:

̂
� = arg min

�̂

C∑
c=1

∑
i

∥∥∥S p̃
{c, i} − S p̂

{c, i}
d

(
�̂, p, O pi

)∥∥∥2

. (9)

he expected projections S p̂d depend on the calibration parame-

ers � to be optimized, on the side length p, and on the known

eometry of the corners of the calibration plate Op. The calibration

arameters � are initialized as explained above.

A word of caution regarding the formulation of the lens distor-

ion model as in Ref. [28]: First, the only formulation that is correct

n a physical ground, viz. based on Snell’s refraction law, applies
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to virtual, undistorted projections derived from the actual scene

(u→d formulation). Many authors apply the formulation the other

way around (d→u formulation), which is wrong on a strict, phys-

ical ground and can be potentially misinterpreted when it comes

to using the parameterized model. Experiments show, however,

that the d→u formulation does come very close by the physically-

conform u→d formulation [23]. Second, it is necessary to state the

dimensions of the lens distortion model along with delivering the

calibration results, i.e., whether it has been estimated on normal-

ized directional coordinates or on projected pixels or millimeters.

Third, it is a good idea to use Cxr and Cyr to detach the camera’s

principal point from the origin of lens distortion, which is equiv-

alent to releasing the first degree of freedom of lens decentering

distortion [18].

2.4. Stage #2: Depth calibration

Metric calculation of depths in front of a plenoptic camera de-

mands metric knowledge about its inner lengths b and h. These

parameters connect virtual depths with actual ranges in SC, cf. Eq.

(3). It is by the relationship between virtual and actual depths that

we will be able to estimate these parameters in a novel way.

In Section 2.3 we removed the third row of the system of equa-

tions in Eq. (2)

Czf = Cz

−Cz/ f + 1

/
Cz = r31 Ox + r32 Oy + r33 Oz + CzO, (10)

obtaining Eq. (4). Eq. (10), however, can readily be executed after

optimal estimation of the other intrinsic parameters in Eq. (9), ob-

taining optimal depth values Cẑf
{c, i}
�

for all features and C calibra-

tion images. These values, together with the virtual depths ṽ{c, i}
acquired during calibration, can be used to estimate the inner

lengths h and b by using Eq. (3). First, we initialize these values

by ordinary least squares on all available data:⎡⎢⎢⎢⎢⎣
ṽ{1, 1} 1

ṽ{1, 2} 1

... 1

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C

[
b

h

]
=

⎡⎢⎢⎢⎢⎣
Cẑ

{1, 1}
f�

Cẑ
{1, 2}
f�

...

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

d

⇒

⎡⎣b̂

ĥ

⎤⎦ = inv
(
CTC

)
CTd. (11)

Note that these parameters can be estimated using a sole calibra-

tion image but using more data is beneficial. Earlier approaches

initialized these parameters using privileged information from the

manufacturer, together with the focus distance that can be gauged

from the lens unit, which is both inconvenient and error-prone.

After that, the whole thin lens camera model can be used to

optimize only these two parameters �̂ = {b̂, ĥ} as follows:

�̂� = arg min
�̂

C∑
c=1

∑
i

∥∥∥C p̃
{c, i}
f

(
�̂
)

− C p̂
{c, i}
f,d

(
p, O pi, �̂�

)∥∥∥2

, (12)

making use of the optimal parameters �̂� obtained in Eq. (9). This

optimization is well conditioned and converges in a few steps. Note

that we opt for minimizing 3-D Euclidean distances in SC between

focused depths within the camera because these distances feature

Gaussian noise, refer to Fig. 5. Gaussian noise is certainly not ex-

pected from reconstructed actual depths in front of the camera as

the relationship in Eq. (10) is highly nonlinear. It is conceivable,

however, that a minimization of reprojection errors on raw plenop-

tic images delivers even more accurate results.

Depth images from plenoptic cameras are also affected by sys-

tematic depth errors. The authors in Ref. [9] suggest that these

are in part consequence of the Petzval field curvature aberration,
hich describes a slight change of focal distance for oblique pro-

ections. The authors model this distortion in a similar way to

he radial lens distortion, affecting projection depth Czf instead of

ts lateral position {Cx, Cy}. Further, the authors introduce a lin-

ar dependency of this model w.r.t. the magnitude of the virtual

epth. Since this type of distortion is in accordance with the na-

ure of the lens used, we propose a more general depth distortion

odel:

z̃f,d = Cz̃f,u + α · (x̂C/ẑC) + β · (ŷC/ẑC)

+
∑∞

i=1
(γi + δi Cz̃f,u) ·

(√
(x̂C/ẑC)2 + (ŷC/ẑC)2

)i

. (13)

q. (13) models a skewed paraboloid with factors α and β that

arameterize a linear bias dependent on the lateral projection po-

ition (i.e., a planar slope, which could be consequence of in-

er skewness of the camera components), and γ i and δi param-

terize the linear dependency of the depth distortion w.r.t. the

ndistorted, focused projection depth Cz̃f,u = (ṽ · b̂ + ĥ) and the ab-

olute lateral distance. These parameters can be added to the set

f unknown parameters �̂. As explained in the next Section 3.1,

ur experiments using a short focal length lens of 12.5 mm feature

stronger planar distortion w.r.t. the lateral projection position,

n underlying parabolic depth distortion component, and a steep

igher-degree paraboloid in 7th degree to cope with the strong pe-

ipheral distortion. It is known that multi-focus plenoptic cameras

ork best using long focal lengths and short focus distances [19].

urther research is required in this concern.

. Results

Next, the implementation of the calibration procedure is de-

cribed. The parameters are then validated using a commercial

ange measuring table.

.1. Calibration

We use a Raytrix R5-C-K color camera featuring 4.2 Megarays

nd a 12.5 mm Canon lens that yields total focus and depth images

ith 1 MP each. We choose a low post-processing level for depth

mages in order not to hallucinate information by using regulariza-

ion terms. Note that p = 2 · 5.5 μm is twice the side length of the

ctual Baumer camera pixels because we are using 1 MP virtual

mages instead of the raw 4 MP images.

First, eight tilted calibration images including feature ranges be-

ween 11 and 55 cm have been taken, see Fig. 3. The total focus

mages in the top row are processed with either DLR CalDe or DLR

alDe++ [22], which flawlessly detect all 2023 visible corners and

ssigns them to their known coordinates in SO. All of these corners

ill be used for calibration, i.e., data filtering is not applied. Af-

er that, the feature projections are represented around the central

oint of the image instead of the upper-left corner.

The initialization of the parameters requires the computation

f homographies, which is performed on normalized pixel and Eu-

lidean coordinates. In detail, C linear equation systems (one for

very image c, ∀c ∈ {1, . . . ,C}) are solved in a least-square sense

sing the single value decomposition. The homographies are then

ransformed back to their original dimensions by matrix multipli-

ation [23]. The 2-D reprojection root mean square (RMS) error us-

ng homographies amounts to 3.3 pixels. Next, we estimate the fo-

al length of the lens using Eq. (8) with the result of f̂ = 12.01 mm.

t is clear that, in the absence of radial distortion correction, the

stimated focal length diverges from reality as the apparent scal-

ng factor is compromised. This initial value is, however, valid

or subsequent nonlinear optimization of the whole model. Next,

he C absolute extrinsics of the camera w.r.t. the calibration plate

CRO
c , CtO

c

}
are estimated as explained in Section 2.3. A pinhole
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Fig. 3. Total focus brightness calibration images (top) and depth images (bottom).
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(a) Stepwise calibration, Stage #1
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(b) Joint optimization

Fig. 4. Reprojection residual errors in SS using the radial lens distortion parameters

obtained either following our approach in Section 2.3 (a) or from joint optimiza-

tion (b). Red arrows are 50×. Our approach yields k̂1� = −0.1893 and k̂2� = 0.2020

with distortion origin at C x̂r� = −0.023 and Cŷr� = 0.006 in z-normalized camera

coordinates. The resulting RMS error is 0.39 pixels. The joint optimization yields

k̂1� = −0.118 and k̂2� = 0.158 with origin at C x̂r� = 0.0258 and Cŷr� = −0.0008. The

resulting RMS error is 3.0 pixels. The inaccuracy after joint optimization renders to-

tal focus brightness images virtually useless.
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(a) Focused 3-D projection residuals
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(b) 3-D reprojection residuals

Fig. 5. Ordered set of 2023 residual distance errors (blue crosses) against a Gaus-

sian distribution with the same mean and variance (red dots). Subfigure (a)

shows the distribution of distances between focused projections within the camera(
C p̃f,d − C p̂f,d

)
, whereas subfigure (b) shows distances between reprojected (from

virtual depths) and estimated (using the parameterized camera and scene models)

actual 3-D points in front of the camera
(

C p̃ − C p̂
)
. The data in (a) follow a Gaussian

distribution, thus optimal estimation by leveraging the maximum likelihood crite-

rion is warranted. By contrast, note the long tail at the left-hand side of (b), which

means that some depth measurements using noisy virtual depths are markedly be-

yond ground truth—a known circumstance in stereo vision.
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amera model featuring f̂ and

{
CR̂

O
c , Ct̂

O
c

}
shows a reprojection

MS error of 3.6 pixels.

At this point the thin lens camera model optimization de-

cribed in Eq. (9) takes place. The optimization is performed us-

ng the lsqnonlin method in MATLAB®, a Levenberg–Marquardt

mplementation. After 14 iterations and 8 s it successfully opti-

izes the model’s parameters yielding a reprojection RMS error

f 0.39 pixels. Such a low reprojection residual indicates a highly

ccurate parametrization and pose estimation—in consideration of

he megapixel size of the images and the fact that images are filled

ith features to the brim. The optimal focal length f̂� amounts

o 12.76 mm and the lens distortion parameters are detailed in

ig. 4 (a).

By way of contrast, we also implemented a plain (non-iterative)

oint optimization of all intrinsic parameters (including b and h)

sing all virtual images. The optimization delivers erroneous ra-

ial distortion parameters because they compensate for noisy vir-

ual depth values and a potential depth distortion model featuring

adial components, see Fig. 4 (b). This effect can be mathemati-

ally interpreted as bad conditioning and/or local minima because

constrained optimization featuring fixed optimal intrinsic val-

es as obtained by our method does yield a lower residual cost.

n fact, the authors in Ref. [9] encountered the same difficulties.

herefore, they proposed an empirical optimization approach us-

ng iterative, constrained optimization steps within the framework

f sequential quadratic programming.

Second, the calibration of the inner lengths of the camera be-

ween the MLA and the image plane (b) and between the main

ens and the MLA (h) is conducted as in Section 2.4. The initial-

zation of these parameters by solving the system of equations in

q. (11) uses the optimal depth values Cẑ
{c, i}
f�

for all features and

calibration images together with the virtual depths ṽ{c, i} in the
ottom row of Fig. 3. It is convenient to filter the depth values in

ase of missing pixels or noise artifacts. The author in Ref. [12] av-

rages the virtual depth values of a whole image blob. Instead, we

pt for using the median value within a radius of 5 pixels around

he measured projections S p̃{c, i}. The values estimated by the lin-

ar least-squares method for the distances b̂ and ĥ are 0.397 and

1.969 mm, respectively.

Next comes the second nonlinear optimization in Eq. (12). This

ptimization is well conditioned, taking 2 iterations and 1 s. The

nal values for the inner lengths are b̂� = 0.432 mm and ĥ� =
1.850 mm (both are actually negative, owing to the formulation

hoice). The nonzero parameters of the depth distortion model

re also estimated: α = −0.080, β = −0.044, γ2 = −0.127, γ7 =
190.03, and δ7 = 14.82. Note that we minimize 3-D Euclidean

istances between focused projections in SC within the camera, re-

er to Fig. 5. The optimization engine used is, again, MATLAB®’s

sqnonlin.

.2. Validation

We collect independent range data in order to validate the last

ection’s results. To this end we use a commercial range measuring

able and a known planar calibration pattern, see Fig. 6. The cam-

ra is mounted on the vertical axis and is shifted in range from 10

o 90 cm in 80 steps of 1 cm.

Note that it is also possible to estimate range accuracy with-

ut an external measuring system. On the one hand, 3-D repro-

ections are computed from both, virtual depth images (e.g. of

he calibration pattern) and the optimal intrinsic parameters, us-

ng Eqs. (2) and (3). On the other hand, 3-D estimations of the

ame features’ structure can be computed using total focus bright-

ess images, the local model of the calibration pattern, and the
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Fig. 6. Left: Camera mounted on the vertical axis of a range measuring table. Right:

Some total focus brightness and virtual depth images of the validation set consisting

of 81 image pairs and range measurements.
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(a) Model-based structure estimation
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(b) Virtual depth measurements

Fig. 7. Absolute range accuracy (solid) and standard deviation (dashed) w.r.t. reg-

istered ground truth for all features and ranges. Since the range measurements are

in a different reference frame, these have been registered to SC using an aleatory,

camera-based range datum. We preferably take a datum from model-based struc-

ture estimation, as they are sub-millimetrically accurate in the whole validation

range (a). The same transformation has been used to register both measurement

sets (a) and (b) because they share the same thin lens camera model. Using that

transformation and the measurements, the camera origin at SC (i.e., the optical cen-

ter of the lens) can be pinpointed within the camera lens at approx. 1 cm distance

in front of the sensor chip, exactly as expected. It is worth noting, however, that the

thin lens model is just an approximation, whose origin is not a physically distinctive

point.
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intrinsic parameters estimated in Section 2.3. The latter method is

preferably in the form of a nonlinear optimization similar to Eq.

(9), now with fixed, optimal intrinsic parameters. The method is

known as model-based structure estimation and is highly accu-

rate when using regular pinhole cameras with an adequate angular

field of view [24]. Unfortunately, high accuracy is yet to be veri-

fied in the context of plenoptic cameras. In this section we also

consider the accuracy of model-based structure estimation using

total focus brightness images.

Fig. 7 (a) shows the absolute range accuracy w.r.t. registered

ground truth of model-based structure estimation using the total

focus brightness images of the Raytrix camera, the known model

of the calibration plate Opi, and the thin lens camera model pa-

rameterized using Section 3.1 including f̂�, k̂1�, k̂2�, Cx̂r�, and Cŷr�.

Range data shows highest accuracy with a standard deviation of

0.18 mm in the range between 10 and 90 cm—irrespective of the

actual depth, which matches the precision of the measuring sys-

tem. Note that this validation range is larger than the distances

used for camera calibration. Therefore, model-based structure esti-

mation using the thin lens camera model that has been parameter-

ized using the method presented in Section 2.3 does indeed yield

highly accurate range estimations.

Fig. 7 (b) in turn shows the same absolute range accuracy plot,

now using the light-field range measurements reprojected from
irtual depths. All corner measurements within an angular field of

iew of 30° have been used (between 9 and 450 depending on the

amera height, cf. Fig. 6). In this way we include the problematic

epth distortion model in the validation results. We obtain highly

ccurate measurements in short range between 10 and 25 cm with

n accuracy of 1 mm. From that point through to 90 cm an un-

teady bias appears within the range of ± 2 cm. Note that due to

he overall unbiased results, these range measurements do not re-

uire any bias correction factor, cf. Ref. [9] with a correction factor

of 25 cm. These are good accuracy values considering the extended

measurement range beyond calibration data and the highly noisy

nature of virtual depths.

. Conclusion

In this work we introduce a novel method for the calibra-

ion of focused plenoptic monocular cameras that leverages long-

stablished practice for the calibration of standard monocular

ameras [13,14]. We decouple the calibration of the traditional ca-

abilities of plenoptic cameras from the calibration of their novel

eatures related with depth estimation. In this way, the higher

oise levels of the latter novel features will not affect the estima-

ion of traditional parameters like the focal length and the radial

ens distortion. Further advantages are: First, different robustifica-

ion methods can be applied to the input data (either total focus

r depth images) in accordance to their specific propensity toward

utliers. Second, both subtasks are simpler, enabling novel, rapid

nitialization schemes for all parameters where the only required

hysical data are the metric size of the sensor elements (pixels)

nd the local geometry of the calibration pattern. Third, neither the

orrelated lens and depth distortion models nor the inner lengths

, b and h will get entangled during optimization. In addition, we

ddress particular details on the modeling of this sort of cameras

nd suggest modifications in the choice of the minimization space

f the depth distortion model.

Experiments show the rapid convergence of the approach along

ith its accuracy on independent ground-truth validation data.

Future work comprises the study of the depth distortion model

nd the skewness of single camera components with regard to the

ens unit used. The inclusion of the geometry of the MLA in the

alibration algorithm should be addressed as well as the considera-

ion of the three different types of microlenses used in the MLAs of

aytrix cameras [12]. In addition, a calibration approach based on

aw plenoptic images would generalize this formulation to jointly

alibrate unfocused and focused plenoptic cameras [29].
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