
Separating NumPy API from Implementation

Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Kenneth Skovhede
Niels Bohr Institute, University of Copenhagen, Denmark

{madsbk/safl/blum/skovhede}@nbi.dk

Abstract—In this paper, we introduce a unified back-
end framework for NumPy that combine a broad range of
Python code accelerators with no modifications to the user
Python/NumPy application. Thus, a Python/NumPy application
can utilize hardware architecture such as multi-core CPUs and
GPUs and optimization techniques such as Just-In-Time compi-
lation and loop fusion without any modifications. The backend
framework defines a number of primitive functions, including
all existing ufuncs in NumPy, that a specific backend must
implement in order to accelerate a Python/NumPy application.
The framework then seamlessly translates the Python/NumPy
application into a stream of calls to these primitive functions.

In order to demonstrate the usability of our unified backend
framework, we implement and benchmark four different back-
end implementations that use four different Python libraries:
NumPy, Numexpr, libgpuarray, and Bohrium. The results are
very promising with a speedup of up to 18 compared to a pure
NumPy execution.

I. INTRODUCTION

Python is a high-level, general-purpose, interpreted lan-
guage. Python advocates high-level abstractions and conve-
nient language constructs for readability and productivity
rather than high-performance. However, Python is easily ex-
tensible with libraries implemented in high-performance lan-
guages such as C and FORTRAN, which makes Python a great
tool for gluing high-performance libraries together[1]. NumPy
is the de-facto standard for scientific applications written in
Python[2] and contributes to the popularity of Python in the
HPC community. NumPy provides a rich set of high-level
numerical operations and introduces a powerful array object.
The array object is essential for scientific libraries, such as
SciPy[3] and matplotlib[4], and a broad range of Python
wrappers of external scientific libraries[5], [6], [7]. NumPy
supports a declarative vector programming style where numer-
ical operations applies to full arrays rather than scalars. This
programming style is often referred to as vector or array pro-
gramming and is commonly used in programming languages
and libraries that target the scientific community, e.g. HPF[8],
ZPL[9], MATLAB[10], Armadillo[11], and Blitz++[12].

NumPy does not make Python a high-performance lan-
guage but through array programming it is possible to achieve
performance within one order of magnitude of C. In contrast
to pure Python, which typically is more than hundred if
not thousand times slower than C. However, NumPy does
not utilize parallel computer architectures when implementing
basic array operations; thus only through external libraries,
such as BLAS or FFTW, is it possible to utilize data or task
parallelism.

In this paper, we introduce a unified NumPy backend that
enables seamless utilization of parallel computer architecture

such as multi-core CPUs, GPUs, and Clusters. The framework
exposes NumPy applications as a stream of abstract array
operations that architecture-specific computation backends can
execute in parallel without the need for modifying the original
NumPy application.

The aim of this new unified NumPy backend is to provide
support for a broad range of computation architectures with
minimal or no changes to existing NumPy applications. Fur-
thermore, we insist on legacy support (at least back to version
1.6 of NumPy), thus we will not require any changes to the
NumPy source code itself.

II. RELATED WORK

Numerous projects strive to accelerate Python/NumPy ap-
plications through very different approaches. In order to utilize
the performance of existing programming languages, projects
such as Cython[13], IronPython[14], and Jython[15], introduce
static source-to-source compilation to C, .NET, and Java,
respectively. However, none of the projects are seamlessly
compatible with Python – Cython extends Python with static
type declarations whereas IronPython and Jython do not sup-
port third-party libraries such as NumPy.

PyPy[16] is a Python interpreter that makes use of Just-
in-Time (JIT) compilation in order to improve performance.
PyPy is also almost Python compliant, but again PyPy does
not support libraries such as NumPy fully and, similar to
IronPython and Jython, it is not possible to fall back to
the original Python interpreter CPython when encountering
unsupported Python code.

Alternatively, projects such as Weave[17], Numexpr[18],
and Numba[19] make use of JIT compilation to accelerate
parts of the Python application. Common for all of them is
the introduction of functions or decorators that allow the user
to specify acceleratable code regions.

In order to utilize GPGPUs the PyOpenCL and PyCUDA
projects enable the user to write GPU kernels directly in
Python[20]. The user writes OpenCL[21] or CUDA[22] spe-
cific kernels as text strings in Python, which simplifies the
utilization of OpenCL or CUDA compatible GPUs but still
requires OpenCL or CUDA programming knowledge. Less in-
trusively, libgpuarray, which is part of the Theano[23] project,
introduces GPU arrays on which all operations execute on the
GPU. The GPU arrays are similar to NumPy arrays but are
not a drop-in replacement.

III. THE INTERFACE

The interface of our unified NumPy backend (npbackend)
consists of two parts: a user interface that facilitates the
end NumPy user and a backend interface that facilitates the

Fig. 1: The Software Stack

.

backend writers (Fig. 1). The source code of both interfaces
and all backend implementations is an available at the Bohrium
project’s website1 for further inspection. In the following two
subsections, we present the two interfaces.

A. The User Interface

The main design objective of the user interface is easy
transition from regular NumPy code to code that utilizes a
unified NumPy backend. Ideally, there should be no difference
between NumPy code with or without a unified NumPy
backend. Through modifications of the NumPy source code,
the DistNumPy[24] and Bohrium[25] projects demonstrate
that it is possible to implement an alternative computation
backend that does not require any changes to the user’s NumPy
code. However, it is problematic to maintain a parallel version
of NumPy that contains complex modifications to numerous
parts of the project, particularly when we have to fit each
modification to a specific version of NumPy (version 1.6
through 1.9).

As a consequence, instead of modifying NumPy, we in-
troduce a new Python module npbackend that implements an
array object that inherit from NumPy’s ndarray. The idea is
that this new npbackend-array can be a drop-in replacement
of the numpy-array such that only the array object in NumPy
applications needs to be changed. Similarly, the npbackend
module is a drop-in replacement of the NumPy module.

The user can make use of npbackend through an ex-
plicit and an implicit approach. The user can explicitly im-
port npbackend instead of NumPy in the source code e.g.
“import npbackend as numpy” or the user can alias
NumPy imports with npbackend imports globally through
the -m interpreter argument e.g. “python -m npbackend
user_app.py”.

Even though the npbackend is a drop-in replacement, the
backend might not implement all of the NumPy API, in
which case npbackend will gracefully use the original NumPy
implementation. Since npbackend-array inherits from numpy-
array, the original NumPy implementation can access and
apply operations on the npbackend-array seamlessly. The result
is that a NumPy application can utilize an architecture-specific
backend with minimal or no modification. However, npback-
end does not guarantee that all operations in the application
will utilize the backend — only the ones that the backend
support.

1http://bh107.org

1 i m p o r t npbackend as np
2 i m p o r t matplotlib .pyplot as plt
3
4 d e f solve (height , width , epsilon= 0 . 0 0 5) :
5 grid = np .zeros ((height+2 ,width+2) ,dtype=np .float64)
6 grid [: , 0] = -273 .15
7 grid [: , - 1] = -273 .15
8 grid [- 1 , :] = -273 .15
9 grid [0 , :] = 4 0 . 0

10 center = grid [1 : - 1 , 1 : - 1]
11 north = grid [: - 2 , 1 : - 1]
12 south = grid [2 : , 1 : - 1]
13 east = grid [1 : - 1 , : - 2]
14 west = grid [1 : - 1 , 2 :]
15 delta = epsilon+1
16 w h i l e delta > epsilon :
17 tmp = 0 . 2 * (center+north+south+east+west)
18 delta = np . sum (np . abs (tmp -center))
19 center [:] = tmp
20 plt .matshow (center , cmap= ' h o t ')
21 plt .show ()

Fig. 2: Python implementation of a heat equation solve that uses the finite-
difference method to calculate the heat diffusion. Note that we could replace
the first line of code with “import numpy as np” and still utilize
npbackend through the command line argument “-m”, e.g. “python -m
npbackend heat2d.py”

Figure 2, is an implementation of a heat equation solver
that imports the npbackend module explicitly at the first
line and a popular visualization module, Matplotlib, at the
second line. At line 5, the function zeros() creates a new
npbackend-array that overloads the arithmetic operators, such
as * and +. Thus, at line 17 the operators use npbackend
rather than NumPy. However, in order to visualize (Fig. 3)
the center array at line 20, Matplotlib accesses the memory
of center directly.

Now, in order to explain what we mean by directly, we
have to describe some implementation details of NumPy. A
NumPy ndarray is a C implementation of a Python class
that exposes a segment of main memory through both a C
and a Python interface. The ndarray contains metadata that
describes how the memory segment is to be interpreted as a
multi-dimensional array. However, only the Python interface
seamlessly interprets the ndarray as a multi-dimensional array.
The C interface provides a C-pointer to the memory segment
and lets the user handle the interpretation. Thus, with the
word directly we mean that Matplotlib accesses the memory
segment of center through the C-pointer. In which case, the
only option for npbackend is to make sure that the computed
values of center are located at the correct memory segment.
Npbackend is oblivious to the actual operations Matplotlib
performs on center.

Consequently, the result of the Matplotlib call is a Python
warning explaining that npbackend will not accelerate the
operation on center at line 20; instead the Matplotlib im-
plementation will handle the operation exclusively.

B. The Backend Interface

The main design objective of the backend interface is
to isolate the calculation-specific from the implementation-
specific. In order to accomplish this, we translate a NumPy
execution into a sequence of primitive function calls, which
the backend must implement.

Fig. 3: The matplotlib result of executing the heat equation solver from figure
2: solve(100,100)

.

Figure 4 is the abstract Python module that a npbackend
must implement. It consists of two Python classes, base
and view, that represent a memory sequence and a multi-
dimensional array-view thereof. Since this is the abstract
Python module, the base class does not refer to any physical
memory but only a size and a data type. In order to implement
a backend, the base class could, for example, refer to the
main memory or GPU memory. Besides the two classes,
the backend must implement eight primitive functions. Seven
of the functions are self-explanatory (Fig. 4), however the
extmethod() function requires some explanation. In order
to support arbitrary NumPy operations, npbackend introduces
an Extension Method that passes any operations through to
the backend. For example, it is not convenient to implement
operations such as matrix multiplication or FFT only using
ufuncs; thus we define an Extension Method called matmul
that corresponds to a matrix multiplication. Now, if a backend
knows the matmul operation it should perform a matrix mul-
tiplication. On the other hand, if the backend does not know
matmul it must raise a NotImplementedError exception.

IV. THE IMPLEMENTATION

The implementation of npbackend consists primarily of the
new npbackend-array that inherits from NumPy’s numpy-array.
The npbackend-array is implemented in C and uses the Python-
C interface to inherit from numpy-array. Thus, it is possible
to replace npbackend-array with numpy-array both in C and
in Python — a feature npbackend must support in order to
support code such as the heat equation solver in figure 2.

As is typical in object-oriented programming, the
npbackend-array exploits the functionality of numpy-array as
much as possible. The original numpy-array implementation
handles metadata manipulation, such as slicing and trans-
posing; only the actual array calculations will be handled
by the npbackend. The npbackend-array overloads arithmetic
operators thus an operator on npbackend-arrays will call the
backend function ufunc (Fig. 4 Line 26). Furthermore, since
npbackend-arrays inherit from numpy-array, an operator on a
mix of the two array classes will also use the backend function.

However, NumPy functions in general will not make use

1 ””” A b s t r a c t module f o r c o m p u t a t i o n backends ”””
2
3 c l a s s base (o b j e c t) :
4 ””” A b s t r a c t ba se a r r a y h a n d l e (an a r r a y has on ly one ←↩

base a r r a y) ”””
5 d e f __init__ (self , size , dtype) :
6 self .size = size # T o t a l number o f e l e m e n t s
7 self .dtype = dtype # Data t y p e
8
9 c l a s s view (o b j e c t) :

10 ””” A b s t r a c t a r r a y view h a n d l e ”””
11 d e f __init__ (self , ndim , start , shape , stride , base) :
12 self .ndim = ndim #Number o f d i m e n s i o n s
13 self .shape = shape # Tuple o f d imens ion s i z e s
14 self .base = base #The base a r r a y t h i s view r e f e r s t o
15 self .start = start*base .dtype .itemsize # O f f s e t from ←↩

base (i n b y t e s)
16 self .stride = [x*base .dtype .itemsize f o r x i n stride] ←↩

Tuple o f s t r i d e s (i n b y t e s)
17
18 d e f get_data_pointer (ary , allocate=False , nullify=False) :
19 ””” Re tu r n a C- p o i n t e r t o t h e a r r a y d a t a (a s a Python ←↩

i n t e g e r) ”””
20 r a i s e NotImplementedError ()
21
22 d e f set_data_from_ary (self , ary) :
23 ””” Copy d a t a from ' a r y ' i n t o t h e a r r a y ' s e l f ' ”””
24 r a i s e NotImplementedError ()
25
26 d e f ufunc (op , *args) :
27 ””” Per fo rm t h e ufunc ' op ' on t h e ' a r g s ' a r r a y s ”””
28 r a i s e NotImplementedError ()
29
30 d e f r e d u c e (op , out , a , axis) :
31 ””” Reduce ' a x i s ' d imens ion of ' a ' and w r i t e t h e r e s u l t ←↩

t o o u t ”””
32 r a i s e NotImplementedError ()
33
34 d e f accumulate (op , out , a , axis) :
35 ””” Accumulate ' a x i s ' d imens ion of ' a ' and w r i t e t h e ←↩

r e s u l t t o o u t ”””
36 r a i s e NotImplementedError ()
37
38 d e f extmethod (name , out , in1 , in2) :
39 ””” Apply t h e e x t e n d e d method ' name ' ”””
40 r a i s e NotImplementedError ()
41
42 d e f r a n g e (size , dtype) :
43 ””” C r e a t e a new a r r a y c o n t a i n i n g t h e v a l u e s [0 : s i z e [”””
44 r a i s e NotImplementedError ()
45
46 d e f random (size , seed) :
47 ””” C r e a t e a new random a r r a y ”””
48 r a i s e NotImplementedError ()

Fig. 4: The backend interface of npbackend.

of the npbackend backend since many of them uses the C-
interface to access the array memory directly. In order to
address this problem, npbackend has to re-implement much
of the NumPy API, which is a lot of work and is prone to
error. However, we can leverage the work by the PyPy project;
PyPy does not support the NumPy C-interface either but they
have re-implemented much of the NumPy API already. Still,
the problem goes beyond NumPy; any library that makes use
of the NumPy C-interface will have to be rewritten.

The result is that the npbackend implements all array
creation functions, matrix multiplication, random, FFT, and all
ufuncs for now. All other functions that access array memory
directly will simply get unrestricted access to the memory.

A. Unrestricted Direct Memory Access

In order to detect and handle direct memory access to
arrays, npbackend uses two address spaces for each array

memory: a user address space visible to the user interface
and a backend address space visible to the backend interface.
Initially, the user address space of a new array is memory
protected with mprotect such that subsequent accesses to the
memory will trigger a segmentation fault. In order to detect and
handle direct memory access, npbackend can then handle this
kernel signal by transferring array memory from the backend
address space to the user address space. In order to get access
to the backend address space memory, npbackend calls the
get_data_pointer() function (Fig. 4, Line 18). Simi-
larly, npbackend calls the set_data_from_ary() function
(Fig. 4, Line 22) when the npbackend should handle the array
again.

In order to make the transfer between the two address
spaces, we use mremap rather than the more expensive
memcpy. However, mremap requires that the source and
destination are memory page aligned. That is not a problem
at the backend since the backend implementer can simply use
mmap when allocating memory; on the other hand, we cannot
change how NumPy allocates its memory at the user address
space. The solution is to re-allocate the array memory when
the constructor of npbackend-array is called using mmap. This
introduces extra overhead but will work in all cases with no
modifications to the NumPy source code.

V. BACKEND EXAMPLES

In order to demonstrate the usability of npbackend, we im-
plement four backends that use four different Python libraries:
NumPy, Numexpr, libgpuarray, and Bohrium, all of whom are
standalone Python libraries in their own right. In this section,
we will describe how the four backends implement the eight
functions that make up the backend interface (Fig. 4).

A. NumPy Backend

In order to explore the overhead of npbackend, we
implement a backend that uses NumPy i.e. NumPy uses
NumPy through npbackend. Figure 5 is a code snippet
of the implementation that includes the base and view
classes, which inherit from the abstract classes in figure
4, the three essential functions get_data_pointer(),
set_data_from_ary(), and ufunc(), and the Exten-
sion Method function extmethod().

The NumPy backend associates a NumPy view
(.ndarray) with each instance of the view class and an
mmap object for each base instance, which enables memory
allocation reuse and guarantees memory-page-aligned
allocations. In [26] the authors demonstrate performance
improvement through memory allocation reuse in NumPy.
The NumPy backend uses a similar technique2 where it
preserves a pool of memory allocations for recycling. The
constructor of base will check this memory pool and, if the
size matches, reuse the memory allocation (line 11-15).

The get_data_pointer() function simply returns a
C-pointer to the ndarray data. The set_data_from_ary()
function memmoves the data from the ndarray ary to the view
self. The ufunc() function simply calls the NumPy library
with the corresponding ufunc. Finally, the extmethod()

2Using a victim cache

1 i m p o r t numpy
2 i m p o r t backend
3 i m p o r t os
4
5 VCACHE_SIZE = i n t (os .environ .get (”VCACHE SIZE” , 10))
6 vcache = []
7 c l a s s base (backend .base) :
8 d e f __init__ (self , size , dtype) :
9 s u p e r (base , self) .__init__ (size , dtype)

10 size *= dtype .itemsize
11 f o r i , (s ,m) i n enumera t e (vcache) :
12 i f s == size :
13 self .mmap = m
14 vcache .pop (i)
15 r e t u r n
16 self .mmap = mmap .mmap (- 1 , size)
17 d e f __str__ (self) :
18 r e t u r n ”<base memory a t %s>”%self .mmap
19 d e f __del__ (self) :
20 i f l e n (vcache) < VCACHE_SIZE :
21 vcache .append ((self .size*self .dtype .itemsize , ←↩

self .mmap))
22
23 c l a s s view (backend .view) :
24 d e f __init__ (self , ndim , start , shape , stride , base) :
25 s u p e r (view , self) .__init__ (ndim , start , shape , stride ,←↩

base)
26 buf = np .frombuffer (self .base .mmap , dtype=self .dtype , ←↩

offset=self .start)
27 self .ndarray = np .lib .stride_tricks .as_strided (buf , ←↩

shape , self .stride)
28
29 d e f get_data_pointer (ary , allocate=False , nullify=False) :
30 r e t u r n ary .ndarray .ctypes .data
31
32 d e f set_data_from_ary (self , ary) :
33 d = get_data_pointer (self , allocate=True , nullify=False)
34 ctypes .memmove (d , ary .ctypes .data , ary .dtype .itemsize * ←↩

ary .size)
35
36 d e f ufunc (op , *args) :
37 args = [a .ndarray f o r a i n args]
38 f = e v a l (”numpy.% s ”%op)
39 f (*args [1 :] , out=args [0])
40
41 d e f extmethod (name , out , in1 , in2) :
42 (out , in1 , in2) = (out .ndarray , in1 .ndarray , in2 .ndarray←↩

)
43 i f name == ” matmul ” :
44 out [:] = np .dot (in1 , in2)
45 e l s e :
46 r a i s e NotImplementedError ()

Fig. 5: A code snippet of the NumPy backend. Note that the backend module
refers to the implementation in figure 4.

recognizes the matmul method and calls NumPy’s dot()
function.

B. Numexpr Backend

In order to utilize multi-core CPUs, we implement a back-
end that uses the Numexpr library, which in turn utilize Just-
In-Time (JIT) compilation and shared-memory parallelization
through OpenMP.

Since Numexpr is compatible with NumPy ndarrays,
the Numexpr backend can inherit most functionality from the
NumPy backend; only the ufunc() implementation differs.
Figure 6 is a code snippet that includes the ufunc() imple-
mentation where it uses numexpr.evaluate() to evaluate
a ufunc operation. Now, this is a very naı̈ve implementation
since we only evaluate one operation at a time. In order
to maximize performance of Numexpr, we could collect as
many ufunc operations as possible into one evaluate()

1 ufunc_cmds = { ' add ' : ” i 1 + i 2 ” ,
2 ' m u l t i p l y ' : ” i 1 * i 2 ” ,
3 ' s q r t ' : ” s q r t (i 1) ” ,
4 # . . .
5 }
6
7 d e f ufunc (op , *args) :
8 args = [a .ndarray f o r a i n args]
9 i1=args [1] ;

10 i f l e n (args) > 2 :
11 i2=args [2]
12 numexpr .evaluate (ufunc_cmds [op] , \
13 out=args [0] , casting= ' u n s a f e ')

Fig. 6: A code snippet of the Numexpr backend.

1 i m p o r t pygpu
2 i m p o r t backend_numpy
3 c l a s s base (backend_numpy .base) :
4 d e f __init__ (self , size , dtype) :
5 self .clary = pygpu .empty ((size ,) , dtype=dtype , cls=←↩

elemary)
6 s u p e r (base , self) .__init__ (size , dtype)
7
8 c l a s s view (backend_numpy .view) :
9 d e f __init__ (self , ndim , start , shape , stride , base) :

10 s u p e r (view , self) .__init__ (ndim , start , shape , stride ,←↩
base)

11 self .clary = pygpu .gpuarray .from_gpudata (base .clary .←↩
gpudata , offset=self .start , dtype=base .dtype , ←↩
shape=shape , strides=self .stride , writable=True , ←↩
base=base .clary , cls=elemary)

12
13 d e f get_data_pointer (ary , allocate=False , nullify=False) :
14 ary .ndarray [:] = np .asarray (ary .clary)
15 r e t u r n ary .ndarray .ctypes .data
16
17 d e f set_bhc_data_from_ary (self , ary) :
18 self .clary [:] = pygpu .asarray (ary)
19
20 d e f ufunc (op , *args) :
21 args = [a .ndarray f o r a i n args]
22 out=args [0]
23 i1=args [1] ;
24 i f l e n (args) > 2 :
25 i2=args [2]
26 cmd = ” o u t [:] = %s ”%ufunc_cmds [op]
27 exec cmd
28
29 d e f extmethod (name , out , in1 , in2) :
30 (out , in1 , in2) = (out .clary , in1 .clary , in2 .clary)
31 i f name == ” matmul ” :
32 pygpu .blas .gemm (1 , in1 , in2 , 1 , out , overwrite_c=True)
33 e l s e :
34 r a i s e NotImplementedError ()

Fig. 7: A code snippet of the ligpuarray backend (the Python binding module
is called pygpu). Note that the backend_numpy module refers to the
implementation in figure 5 and note that ufunc_cmds is from figure 6.

call, which would enable Numexpr to fuse multiple ufunc
operations together into one JIT compiled computation kernel.
However, such work is beyond the focus of this paper – in this
paper we map the libraries directly.

C. Libgpuarray Backend

In order to utilize GPUs, we implement a backend
that makes use of libgpuarray, which introduces a GPU-
array that is compatible with NumPy’s ndarray. For the
two classes, base and view, we associate a GPU-array
that points to memory on the GPU; thus the user ad-

Processor: Intel Xeon E5640
Clock: 2.66 GHz
L3 Cache: 12MB
Memory: 96GB DDR3
GPU: Nvidia GeForce GTX 460
GPU-Memory: 1GB DDR5
Compiler: GCC 4.8.2 & OpenCL 1.2
Software: Linux 3.13, Python 2.7, & NumPy 1.8.1

TABLE I: The Machine Specification

dress space lies in main memory and the backend address
space lies in GPU-memory. Consequently, the implemen-
tation of the two functions get_data_pointer() and
set_data_from_ary() uses asarray() to copy be-
tween main memory and GPU-memory (Fig. 7 Line 14 and
15). The implementation of ufunc() is very similar to the
Numexpr backend implementation since GPU-arrays supports
ufunc directly. However, note that libgpuarray does not support
the output argument, which means we have to copy the result
of an ufunc operation into the output argument.

The extmethod() recognizes the matmul method and
calls Libgpuarray’s blas.gemm() function.

D. Bohrium Backend

Our last backend implementation uses the Bohrium runtime
system to utilize both CPU and GPU architectures. Bohrium
supports a range of frontend languages including C, C++, and
CIL3, and a range of backend architectures including multi-
core CPUs through OpenMP and GPUs through OpenCL. The
Bohrium runtime system utilizes the underlying architectures
seamlessly. Thus, as a user we use the same interface whether
we utilize a CPU or a GPU. The interface of Bohrium is very
similar to NumPy – it consists of a multidimensional array and
the same ufuncs as in NumPy.

The Bohrium backend implementation uses the C interface
of Bohrium, which it calls directly from Python through
SWIG[27]. The two base and view classes points to a
Bohrium multidimensional array called .bhc_obj (Fig. 8).
In order to use the Bohrium C interface through SWIG, we
dynamically construct a Python string that matches a specific
C function in the Bohrium C interface.

The set_bhc_data_from_ary() function is iden-
tical to the one in the NumPy backend. However,
get_data_pointer() needs to synchronize the array data
before returning a Python pointer to the data. This is because
the Bohrium runtime system uses lazy evaluation in order to
fuse multiple operations into single kernels. The synchronize
function (Fig. 8 Line 34) makes sure that all pending opera-
tions on the array have been executed and that the array data
is in main memory, e.g. copied from GPU-memory.

The implementations of ufunc() and extmethod()
simply call the Bohrium C interface with the Bohrium arrays
(.bhc_obj).

VI. BENCHMARKS

In order to evaluate the performance of npbackend, we
perform a number of performance comparisons between a

3Common Intermediate Language

1 i m p o r t backend
2 i m p o r t backend_numpy
3 i m p o r t numpy
4
5 d e f dtype_name (obj) :
6 ””” Re tu rn name of t h e d t y p e ”””
7 r e t u r n numpy .dtype (obj) .name
8
9 c l a s s base (backend .base) :

10 d e f __init__ (self , size , dtype , bhc_obj=None) :
11 s u p e r (base , self) .__init__ (size , dtype)
12 i f bhc_obj i s None :
13 f = e v a l (” bhc . b h m u l t i a r r a y %s new empty ”%←↩

dtype_name (dtype))
14 bhc_obj = f (1 , (size ,))
15 self .bhc_obj = bhc_obj
16
17 d e f __del__ (self) :
18 exec ” bhc . b h m u l t i a r r a y %s d e s t r o y (s e l f . bhc ob j) ”%←↩

dtype_name (self .dtype)
19
20 c l a s s view (backend .view) :
21 d e f __init__ (self , ndim , start , shape , stride , base) :
22 s u p e r (view , self) .__init__ (ndim , start , shape , stride ,←↩

base)
23 dtype = dtype_name (self .dtype)
24 exec ” base = bhc . b h m u l t i a r r a y %s g e t b a s e (base .←↩

bhc ob j) ”%dtype
25 f = e v a l (” bhc . b h m u l t i a r r a y %s new from view ”%dtype)
26 self .bhc_obj = f (base , ndim , start , shape , stride)
27
28 d e f __del__ (self) :
29 exec ” bhc . b h m u l t i a r r a y %s d e s t r o y (s e l f . bhc ob j) ”%←↩

dtype_name (self .dtype)
30
31 d e f get_data_pointer (ary , allocate=False , nullify=False) :
32 dtype = dtype_name (ary)
33 ary = ary .bhc_obj
34 exec ” bhc . b h m u l t i a r r a y %s sy nc (a r y) ”%dtype
35 exec ” bhc . b h m u l t i a r r a y %s d i s c a r d (a r y) ”%dtype
36 exec ” bhc . b h r u n t i m e f l u s h () ”
37 exec ” base = bhc . b h m u l t i a r r a y %s g e t b a s e (a r y) ”%dtype
38 exec ” d a t a = bhc . b h m u l t i a r r a y %s g e t b a s e d a t a (base) ”%←↩

dtype
39 i f data i s None :
40 i f n o t allocate :
41 r e t u r n 0
42 exec ” d a t a = bhc . b h m u l t i a r r a y %←↩

s g e t b a s e d a t a a n d f o r c e a l l o c (base) ”%dtype
43 i f data i s None :
44 r a i s e MemoryError ()
45 i f nullify :
46 exec ” bhc . b h m u l t i a r r a y %s n u l l i f y b a s e d a t a (ba se) ”%←↩

dtype
47 r e t u r n i n t (data)
48
49 d e f set_bhc_data_from_ary (self , ary) :
50 r e t u r n backend_numpy .set_bhc_data_from_ary (self , ary)
51
52 d e f ufunc (op , *args) :
53 args = [a .bhc_obj f o r a i n args]
54 in_dtype = dtype_name (args [1])
55 f = e v a l (” bhc . b h m u l t i a r r a y %s %s ”%(dtype_name (←↩

in_dtype) , op .info [' name ']))
56 exec f (*args)
57
58 d e f extmethod (name , out , in1 , in2) :
59 f = e v a l (” bhc . b h m u l t i a r r a y e x t m e t h o d %s %s %s ”%(←↩

dtype_name (out) , dtype_name (in1) , dtype_name (in2)))
60 ret = f (name , out , in1 , in2)
61 i f ret != 0 :
62 r a i s e NotImplementedError ()

Fig. 8: A code snippet of the Bohrium backend. Note that the backend
module refers to the implementation in figure 4 and note that the
backend_numpy module is figure 5.

Hardware Utiliza-
tion

Matrix Multiplica-
tion Software

Native 1 CPU-core ATLAS v3.10
NumPy 1 CPU-core ATLAS v3.10
Numexpr 8 CPU-cores ATLAS v3.10
libgpuarray 1 GPU clBLAS v2.2
BohriumCPU 8 CPU-cores O(n3)
BohriumGPU 1 GPU O(n3)

TABLE II: The benchmark execution setup. Note that Native refers to a regular
NumPy execution whereas NumPy refers to the backend implementation that
makes use of the NumPy library.

regular NumPy execution, referred to as Native, and the four
backend implementations: NumPy, Numexpr, libgpuarray, and
Bohrium, referred to by their name.

We run all benchmarks, on an Intel Xeon machine with a
dedicated Nvidia graphics card (Table I). Not all benchmark
executions utilize the whole machine; Table II shows the spe-
cific setup of each benchmark execution. For each benchmark,
we report the mean of ten execution runs and the error margin
of two standard deviations from the mean. We use 64-bit
double floating-point precision for all calculations and the size
of the memory allocation pool (vcache) is 10 entries when
applicable.

We use three Python applications that use either the NumPy
module or the npbackend module. The source codes of the
benchmarks are available at the Bohrium project’s website4:

Heat Equation simulates the heat transfer on a surface rep-
resented by a two-dimensional grid, implemented using
jacobi-iteration with numerical convergence (Fig. 2).

Shallow Water simulates a system governed by the Shallow
Water equations. The simulation commences by placing
a drop of water in a still container. The simulation then
proceeds, in discrete time-steps, simulating the water
movement. The implementation is a port of the MATLAB
application by Burkardt5.

Snakes and Ladders is a simple children’s board game that
is completely determined by dice rolls with no player
choices. In this benchmark, we calculate the probability
of ending the game after k-th iterations through successive
matrix multiplications. The implementation is by Natalino
Busa6.

Heat Equation

Figure 9 shows the result of the Heat Equation benchmark
where the Native NumPy execution provides the baseline. Even
though the npbackend invertible introduces an overhead, the
NumPy backend outperforms the Native NumPy execution,
which is the result of the memory allocation reuse (vcache).
The Numexpr achieves a 2.2 speedup compared to Native
NumPy, which is disappointing since Numexpr utilizes all
eight CPU-cores. The problem is twofold: we only provide one
ufunc for Numexpr to JIT compile at a time, which hinders
loop fusion, and secondly, since the problem is memory bound,
the utilization of eight CPU-cores through OpenMP is limited.

4http://www.bh107.org
5http://people.sc.fsu.edu/˜jburkardt/m src/shallow water 2d/
6https://gist.github.com/natalinobusa/4633275

Native
NumPy

Numexpr

Bohrium-CPU

libgpuarray

Bohrium-GPU
0

5

10

15

20

25

30

35
W

al
l-C

lo
ck

 in
 S

ec
on

ds

Fig. 9: The Heat Equation Benchmark where the domain size is 30002 and
the number of iterations is 100.

Native
NumPy

Numexpr

Bohrium-CPU

libgpuarray

Bohrium-GPU
0

20

40

60

80

100

120

140

160

W
al

l-C
lo

ck
 in

 S
ec

on
ds

Fig. 10: The Shallow Water Benchmark where domain size is 20002 and the
number of iterations is 100.

The Bohrium-CPU backend achieves a speedup of 2.6 while
utilizing eight CPU-cores as well.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieve a speedup of 5.6 and 18 respectively. Bohrium-
GPU performs better than libgpuarray primarily because of
loop fusion and array contraction[28], which is possible since
Bohrium-GPU uses lazy evaluation to fuse multiple ufunc
operations into single kernels.

Shallow Water

Figure 10 shows the result of the Shallow Water bench-
mark. This time the Native Numpy execution and the NumPy
backend perform the same, thus the vcache still hides the
npbackend overhead. Again, Numexpr and Bohrium-CPU
achieve a disappointing speedup of 2 compared to Native
NumPy, which translate into a CPU utilization of 25%.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieve a speedup of 3.7 and 12 respectively. Again,

Native
NumPy

Numexpr

Bohrium-CPU

libgpuarray

Bohrium-GPU
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
al

l-C
lo

ck
 in

 S
ec

on
ds

Fig. 11: The Snakes and Ladders Benchmark where the domain size is 10002
and the number of iterations is 10.

Bohrium-GPU outperforms libgpuarray because of loop fusion
and array contraction.

Snakes and Ladders

Figure 11 shows the result of the Snakes and Ladders
benchmark where the performance of matrix multiplication
dominates the overall performance. This is apparent when ex-
amining the result of the three first executions, Native, NumPy,
and Numexpr, that all make use of the matrix multiplication
library ATLAS (Table II). The Native execution outperforms
the NumPy and Numexpr executions with a speedup of 1.1,
because of reduced overhead.

The performance of the Bohrium-CPU execution is signif-
icantly slower than the other CPU execution, which is due to
the naı̈ve O(n3) matrix multiplication algorithm and no clever
cache optimizations.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieves a speedup of 1.5 and 1.9 respectively. It is a
bit surprising that libgpuarray does not outperform Bohrium-
GPU since it uses the clBLAS library but we conclude that
the Bohrium-GPU with its loop fusion and array contraction
matches clBLAS in this case.

Fallback Overhead: In order to explore the overhead of
falling back to the native NumPy implementation, we execute
the Snakes and Ladders benchmark where the backends do not
support matrix multiplication. In order for the native NumPy
to perform the matrix multiplication each time the application
code uses matrix multiplication, npbackend will transfer the
array data from the backend address space to the user ad-
dress space and vice versa. However, since npbackend uses
the mremap() function to transfer array data, the overhead
is only around 14% (Fig. 12) for the CPU backends. The
overhead of libgpuarray is 60% because of multiple memory
copies when transferring to and from the GPU (Fig. 7 Line 13-
18). Contrarily, the Bohrium-GPU backend only performs one
copy when transferring to and from the GPU, which results in
an overhead of 23%.

Native
NumPy

Numexpr

Bohrium-CPU

libgpuarray

Bohrium-GPU
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
W

al
l-C

lo
ck

 in
 S

ec
on

ds

Fig. 12: The Snakes and Ladders Benchmark where the backends does not
have matrix multiplication support. The domain size is 10002 and the number
of iterations is 10.

Heat Equation Shallow Water Snakes and Ladders
0 %

5 %

10 %

15 %

20 %

25 %

Ov
er

he
ad

 in
 re

la
tio

n
to

 N
at

iv
e

Nu
m

Py

Fig. 13: Overhead of npbackend where we compare the NumPy backend with
the native NumPy execution from the previous benchmarks.

Overhead

In the benchmarks above, the overhead of the npbackend is
very modest and in the case of the Heat Equation and Shallow
Water benchmarks, the overhead is completely hidden by the
memory allocation pool (vcache). Thus, in order to measure
the precise overhead, we deactivate the vcache and re-run the
three benchmarks with the NumPy backend (Fig. 13). The ratio
between the number of NumPy operations and the quantity
of the operations dictates the npbackend overhead. Thus, the
Heat Equation benchmark, which has a domain size of 30002,
has a lower overhead than the Shallow Water benchmark,
which has a domain size of 20002. The Snakes and Ladders
benchmark has an even smaller domain size but since the
matrix multiplication operation has a O(n3) time complexity,
the overhead lies between the two other benchmarks.

VII. FUTURE WORK

An important improvement of the npbackend framework
is to broaden the support of the NumPy API. Currently,
npbackend supports array creation functions, matrix multipli-
cation, random, FFT, and all ufuncs, thus many more functions
remain unsupported. Even though we can leverage the work
by the PyPy project, which re-implements a broad range of the
NumPy API in Python7, we still have to implement Extension
Methods for the part of the API that is not expressed well
using ufuncs.

Currently, npbackend supports CPython version 2.6 to 2.7;
however there is no technical reason not to support version
3 and beyond thus we plan to support version 3 in the near
future.

The implementation of the backend examples we present
in this paper has a lot of optimization potential. The Numexpr
and libgpuarray backends could use lazy evaluation in order to
compile many ufunc operations into single execution kernels
and gain similar performance results as the Bohrium CPU and
GPU backends.

Current ongoing work explores the use of Chapel[29] as a
backend for NumPy, providing transparent mapping (facilitated
by npbackend), of NumPy array operations to Chapel array
operations. Thereby, facilitating the parallel and distributed
features of the Chapel language.

Finally, we want to explore other hardware accelerators,
such as the Intel Xeon Phi Coprocessor, or distribute the
calculations through MPI on a computation cluster.

VIII. CONCLUSION

In this paper, we have introduced a unified NumPy back-
end, npbackend, that unifies a broad range of Python code
accelerators. Without any modifications to the original Python
application, npbackend enables backend implementations to
improve the Python execution performance. In order to assess
this clam, we use three benchmarks and four different backend
implementations along with a regular NumPy execution. The
results show that the overhead of npbackend is between 2%
and 21% but with a simple memory allocation reuse scheme
it is possible to achieve overall performance improvements.

Further improvements are possible when using JIT com-
pilation and utilizing multi-core CPUs, a Numexpr back-
end achieves 2.2 speedup and a Bohrium-CPU backend
achieves 2.6 speedup. Even further improvement is possi-
ble when utilizing a dedicated GPU, a libgpuarray backend
achieves 5.6 speedup and a Bohrium-GPU backend achieves
18 speedup. Thus, we conclude that it is possible to accel-
erate Python/NumPy application seamlessly using a range of
different backend libraries.

REFERENCES

[1] G. van Rossum, “Glue it all together with python,” in Workshop
on Compositional Software Architectures, Workshop Report, Monterey,
California, 1998.

[2] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006,
vol. 1.

7http://buildbot.pypy.org/numpy-status/latest.html

[3] E. Jones, T. Oliphant, and P. Peterson, “Scipy: Open source scientific
tools for python,” http://www. scipy. org/, 2001.

[4] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[5] M. Sala, W. Spotz, and M. Heroux, “PyTrilinos: High-performance
distributed-memory solvers for Python,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 34, March 2008.

[6] D. I. Ketcheson, K. T. Mandli, A. J. Ahmadia, A. Alghamdi,
M. Quezada de Luna, M. Parsani, M. G. Knepley, and M. Emmett,
“PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation
Problems,” SIAM Journal on Scientific Computing, vol. 34, no. 4, pp.
C210–C231, Nov. 2012.

[7] J. Enkovaaraa, M. Louhivuoria, P. Jovanovicb, V. Slavnicb, and
M. Rännarc, “Optimizing gpaw,” Partnership for Advanced Computing
in Europe, September 2012.

[8] D. Loveman, “High performance fortran,” Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, vol. 1, no. 1, pp. 25–42, 1993.

[9] B. Chamberlain, S.-E. Choi, C. Lewis, C. Lin, L. Snyder, and W. Weath-
ersby, “Zpl: a machine independent programming language for parallel
computers,” Software Engineering, IEEE Transactions on, vol. 26, no. 3,
pp. 197–211, Mar 2000.

[10] W. Yang, W. Cao, T. Chung, and J. Morris, Applied numerical methods
using MATLAB. Wiley-Interscience, 2005.

[11] C. Sanderson et al., “Armadillo: An open source c++ linear algebra
library for fast prototyping and computationally intensive experiments,”
Technical report, NICTA, Tech. Rep., 2010.

[12] T. Veldhuizen, “Arrays in Blitz++,” in Computing in Object-Oriented
Parallel Environments, ser. Lecture Notes in Computer Science, D. Car-
omel, R. Oldehoeft, and M. Tholburn, Eds. Springer Berlin Heidelberg,
1998, vol. 1505, pp. 223–230.

[13] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 31–39, 2011.

[14] M. Foord and C. Muirhead, IronPython in Action. Greenwich, CT,
USA: Manning Publications Co., 2009.

[15] S. Pedroni and N. Rappin, Jython Essentials: Rapid Scripting in Java,
1st ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2002.

[16] A. Rigo and S. Pedroni, “Pypy’s approach to virtual machine
construction,” in Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06. New York, NY, USA: ACM, 2006, pp. 944–953.
[Online]. Available: http://doi.acm.org/10.1145/1176617.1176753

[17] E. Jones and P. J. Miller, “Weaveinlining c/c++ in python.” OReilly
Open Source Convention, 2002.

[18] D. Cooke and T. Hochberg, “Numexpr. fast evaluation of array expres-
sions by using a vector-based virtual machine.”

[19] T. Oliphant, “Numba python bytecode to llvm translator,” in Proceed-
ings of the Python for Scientific Computing Conference (SciPy), 2012.

[20] A. Klckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 –
174, 2012.

[21] A. Munshi et al., “The OpenCL Specification,” Khronos OpenCL
Working Group, vol. 1, pp. l1–15, 2009.

[22] C. Nvidia, “Programming guide,” 2008.
[23] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-

jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010, oral Presentation.

[24] M. R. B. Kristensen and B. Vinter, “Numerical python for scalable
architectures,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, ser. PGAS ’10. New York,
NY, USA: ACM, 2010, pp. 15:1–15:9.

[25] M. R. B. Kristensen, S. A. F. Lund, T. Blum, K. Skovhede, and
B. Vinter, “Bohrium: Unmodified NumPy Code on CPU, GPU, and
Cluster,” in Python for High Performance and Scientific Computing
(PyHPC 2013), 2013.

[26] S. A. F. Lund, K. Skovhede, M. R. B. Kristensen, and B. Vinter,
“Doubling the Performance of Python/NumPy with less than 100

SLOC,” in Python for High Performance and Scientific Computing
(PyHPC 2013), 2013.

[27] D. M. Beazley et al., “Swig: An easy to use tool for integrating scripting
languages with c and c++,” in Proceedings of the 4th USENIX Tcl/Tk
workshop, 1996, pp. 129–139.

[28] V. Sarkar and G. R. Gao, “Optimization of array accesses by collective
loop transformations,” in Proceedings of the 5th International Confer-
ence on Supercomputing, ser. ICS ’91. New York, NY, USA: ACM,
1991, pp. 194–205.

[29] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The Cascade High
Productivity Language,” in 9th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS
2004). IEEE Computer Society, April 2004, pp. 52–60.

