A Python extension for the massively parallel
framework wal.Berla

Martin Bauer*, Florian Schornbaum®, Christian Godenschwager*f, Matthias Markl*, Daniela Anderl*
Harald Kostler* and Ulrich Riide*

* Friedrich-Alexander-Universitit Erlangen-Niirnberg, Cauerstra3e 11, Erlangen, Germany
Email: {martin.bauer,florian.schornbaum,matthias.markl,daniela.anderl,harald.koestler,uli.ruede } @fau.de

T Siemens AG, An der Linde 1, 91301 Forchheim
Email: christian.godenschwager.ext@siemens.com

Abstract—We present a Python extension to the massively
parallel HPC framework WALBERLA. WALBERLA is a frame-
work for stencil based algorithms operating on block-structured
grids, with the main application field being fluid simulations
in complex geometries using the lattice Boltzmann method.
Careful performance engineering results in good scalability to
over 400,000 cores. To increase the usability and flexibility of the
framework, a Python interface was developed. Python extensions
are used at all stages of the simulation pipeline: They simplify
and automate scenario setup, evaluation, and plotting. We show
how our Python interface outperforms the existing a text-file-
based configuration mechanism, providing features like auto-
matic nondimensionalization of physical quantities and handling
of complex parameter dependencies. Furthermore, Python is
used to process and evaluate results while the simulation is
running, leading to smaller output files and the possibility to
adjust parameters dependent on the current simulation state.
C++ data structures are exported such that a seamless interfacing
to other numerical Python libraries is possible. The expressive
power of Python and the performance of C++ make development
of efficient code with low time effort possible.

I. INTRODUCTION

Many massively parallel codes are written for a specific
use-case, making strict assumptions on the scenario being
simulated. These restrictions allow the programmer to optimize
the code for its specific use-case, exploiting information already
available at compile time. This approach is not feasible when
developing a general purpose framework targeted at a variety
of different applications. While the highest priority is still
performance and scalability, at the same time the framework
has to be easy to use, modular, and extensible. However,
performance and flexibility requirements are not necessarily
conflicting goals.

A common approach is to separate compute intensive parts
of the program, so-called kernels, and write several versions
of them, each one being optimized for a special scenario or
a specific target architecture. The framework then selects the
kernel which matches the problem and the hardware best.
Kernels typically are developed in low-level programming
languages like C/C++ or Fortran which allow close control
over the hardware. These system programming languages are
very powerful but also difficult to learn. The complex and

subtle rules often prevent domain experts, who have a limited
programming expertise, to use parallel high performance codes.
While being the best choice for performance critical portions
of the code, these languages are therefore not well suited for
other less time critical framework parts, like simulation setup,
simulation control, and result evaluation. The run time of these
management tasks is usually negligible compared to kernel run
times, since they do not have to be executed as often as the
compute kernels or are per-se less compute intensive. Therefore,
these routines are especially suitable for implementing them
in a higher-level language like Python.

We present a Python extension to the massively parallel
HPC framework WALBERLA which aims to increase the ease
of use and decrease the development time of non time critical
functions, implementing tasks like domain setup, simulation
control, and result evaluation.

II. WALBERLA FRAMEWORK

WALBERLA is a massively parallel software framework
supporting a wide range of applications. Its main application
are simulations based on the lattice Boltzmann method (LBM),
which is reflected in the acronym “widely applicable lattice
Boltzmann solver from Erlangen”. Having initially been a
LBM framework, WALBERLA evolved over time into a general
purpose HPC framework for algorithms that can make use
of a block-structured domain decomposition. It offers data
structures for implementing stencil based algorithms together
with load balancing mechanisms and efficient input and output
of simulation data. WALBERLA has two primary design
goals: Being efficient and scalable on current supercomputer
architectures, while at the same time being flexible and modular
enough to support various applications [1], [2].

In this section, we start by giving a short overview of the
lattice Boltzmann free surface method, followed by a descrip-
tion of the WALBERLA software stack used to implement the
method.

A. Free Surface Lattice Boltzmann Method

The lattice Boltzmann method is a mesoscopic method for
solving CFD problems. It is based on a discrete version of

the Boltzmann equation for gases. The continuous Boltzmann
equation comes from kinetic theory and reads:

of B
S V= QL)

with f(z,&,t) being the continuous probability density function
representing the probability of meeting a particle with velocity
& at position z at time ¢. The left hand side of the equation
describes the transport of particles, whereas the right hand side
Q(f, f) stands for a general particle collision term.

To discretize the velocity space, a D3Q19 stencil, with
19 discrete velocities {e,|a = 0, ...,18} and corresponding
particle distribution functions (PDFs) denoted by f,(x,t), is
used [3] . With a time step length of At, the discrete LB
evolution equation then reads:

fa(l'i + echtat + At) - foz(ziat) = Qa(f)

As discrete LBM collision operator §2,(f), a two relaxation
time scheme (TRT) is used [4], [5]. The time and space
discretization yield an explicit time stepping scheme on a
regular grid, which enables efficient parallelization due to the
high locality of the scheme. To update the 19 PDFs stored in
a cell, only PDFs from the cell itself and neighboring cells are
required.

This basic LBM is extended to facilitate the simulation of
two-phase flows. The free surface lattice Boltzmann method
(FSLBM) is based on the assumption that the simulated liquid-
gas flow is completely dominated by the heavier phase such
that the dynamics of the lighter gas phase can be neglected.
The problem is reduced to a single-phase flow with a free
boundary [6]. Following a volume of fluid approach, for each
cell a fill level ¢ is stored, representing the volume fraction of
the heavier fluid in each cell. The fill level determines the state
of a cell: cells entirely filled with heavier fluid (¢ = 1) are
marked as a liquid cell and are simulated by the LBM described
above, whereas in gas cells (¢ = 0) no LBM treatment is
necessary. Between the two phases, in cells where 0 < ¢ < 1,
a closed layer of so-called interface cells is maintained, tracking
all cells where the free boundary condition has to be applied. A
mass advection algorithm modifies the fill level ¢ and triggers
conversions of cell states.

Additionally, regions of connected gas cells are tracked
with a special bubble model [7]. It calculates the volume of
bubbles, in order to compute the pressure for each gas cell as
fraction of current to initial bubble volume. The gas pressure
is essential for the treatment of the free boundary. Possible
topology changes of bubbles require a sophisticated parallel
algorithm to track bubble merges and splits.

B. Software Architecture

WALBERLA is built out of a set of modules, which can
be grouped into three layers (Fig. 1). The bottom layer
of WALBERLA provides data structures and functions for
implementing stencil-based algorithms on block-structured
grids and will be described in detail in this section. The second
layer consists of specific algorithms which make use of the core
layer. WALBERLA is predominantly used for lattice Boltzmann
simulations, but also phase field and multigrid methods have

free surface

g
Zc
. 58
applications - surface reconstruction 55
(normals, curvature, ...) g ©
- volume of fluid based approach = %
= .=
lbm o
- different collision operators = 9]
(SRT,TRT,MRT) | |5
- calculation of macroscopic quantities = 0
. . = ©
(density, velocity, shear rate) = <
field blocks
- 4D Array - domain decomposition
- AoS, SoA Layout - load balancing
- ghost layers - simulation data container
walBerla Library
Fig. 1. Overview of Software Architecture

been implemented using the framework. The topmost layer is
formed by algorithm extensions, like methods for fluid structure
interaction [8] or the free surface LBM used in this paper.

1) Domain Decomposition: For parallel simulations, the
domain is partitioned into smaller, equally sized sub-domains
called blocks which are then distributed to processes. Blocks
are not only the basis for parallelization, but also the basic unit
of load balancing. Since there might be different computational
efforts required to process each block, it is possible to put
more than one block on a process, balancing the computation
time across all processes.

Ao

Ao

Fig. 2. Domain partitioning: block division and subsequent grid generation.

To illustrate this concept consider a simulation scenario as
depicted in Figure 2. In this scenario, the blood flow through
an artery tree, which is specified by a triangle surface mesh,
has to be simulated. As a first step, the bounding box of the
artery tree is decomposed into blocks, then blocks which do not
overlap the mesh are discarded. In the second step the blocks

are assigned to processes, taking the computational load and
memory requirements of a block into account. In this example,
the computational load of a block is proportional to the number
of fluid cells contained in it. The load balancing also takes
into account neighborhood relations of blocks and the amount
of data which has to be communicated between processes.

2) Fields: Besides being the basic unit of load balancing,
blocks also act as containers for distributed simulation data
structures. In the case of LBM simulations, the main data
structure is the lattice. This lattice is fully distributed to all
blocks, where the local part of the lattice is represented by an
instance of the field class (last stage of Fig. 2).

Fields are implemented as four dimensional arrays, three
dimensions for space, one dimension to store multiple values
per cell. In the LBM case, this forth coordinate is used
to store the 19 PDF values. The field abstraction makes it
possible to switch between an array-of-structures (AoS) and
a structure-of-arrays (SoA) memory layout easily. For many
stencil algorithms, a AoS layout is beneficial since in this case
all values of a cell are stored consecutively in memory. This data
locality results in an efficient usage of caches. However, when
optimizing algorithms to make use of SIMD instruction set
extensions, usually a SoA layout is better suited. Additionally,
operands of SIMD instructions have to be aligned in memory,
resulting in the requirement that the first elements of each
line are stored at aligned memory locations. To fulfill this
restriction, additional space has to be allocated at the end of
a coordinate (padding). This is implemented in the field class
by discriminating between the requested size of a coordinate
and the allocated size of a coordinate. This discrimination is
also helpful when implementing sliced views on fields, which
operate on the original field data, but have different sizes.

WALBERLA offers a synchronization mechanism for fields
based on ghost layers. The field is extended by one or more
layers to synchronize cell data on the boundary between
neighboring blocks. The neighbor access pattern of the stencil
algorithm determines the number of required ghost layers: if
only next neighbors are accessed as in the LBM case, one
ghost layer is sufficient. Accessing cells further away requires
more ghost layers.

C. Performance and Scalability

The WALBERLA framework has been run on various com-
pute clusters, for example on JUQUEEN in Jiilich, on Tsubame
at the GSIC Center at the Tokyo Institute of Technology in
Japan, and on SUPERMUC at LRZ in Munich.

Figure 3 illustrates weak scaling results obtained when
running a LBM based fluid simulation on a dense regular
domain with WALBERLA on SuperMUC in Munich and the
JUQUEEN system in Jiilich. Further weak and strong scaling
results can be found in [9].

IIT. PYTHON INTERFACE

This section gives an overview of the Python interface to
the basic WALBERLA data structures described in the previous
section.

>
1%
S
g 06y
b
0.4
0.2
0.0 : : : :
32 256 1024 4096 32768 131072
#Cores
1.0 w.
0.8 |
>
o
5
g 06y
=
w
0.4t
0.2}
0.0 : : : : :
32 256 1024 8192 65536 458752
#Cores
Fig. 3. LBM weak scaling results with WALBERLA on SuperMUC (top) and

JUQUEEN (bottom)

WALBERLA was designed initially as a pure C++ framework,
the Python interface is developed as an optional extension to
the framework. The motivation for using Python came from
the need for a more flexible simulation setup mechanism. A
text file was used to configure the simulation, which became
increasingly complex over time. Some users wrote Python
scripts to create this configuration file, leading to the idea to
embed Python directly into WALBERLA. It turned out that the
embedding of Python is useful, not only for configuration
purposes, but also for simulation control and analysis as
described in the following section.

The C++ part of waLBerla makes use of various boost
libraries [10] for example for portable filesystem access, for
memory management with smart pointers, and for parsing of
input parameters using regular expression. Since WALBERLA al-
ready depends on boost, we also make use of the boost::python
library [11] to expose our C++ data structures to Python. For
certain tasks, however, it was necessary to use the Python
C-API directly, since the required functionality is not available
in boost::python.

There are two mechanisms for coupling C++ and Python.
The first approach is to create a Python module as shared library
out of the C++ code. Using this solution, the driving code is
written in Python, making use of exposed C++ functionality
in the library. In the second approach, Python is embedded
into the C++ application by linking against libpython. When
the second approach is used, the simulation is driven by C++

code, optionally calling Python functions at certain stages of
the simulation. We choose the second approach, since our
main goal is to extend our C++ simulation code making it
more flexible and easier to use. However, an implementation
of the first approach is currently in development, offering the
possibility to drive simulations using Python code.

To interact with C++ simulation code via Python, the user
supplies a script file, decorated with callback functions as
shown in Listing 1. The code example shows a callback function
as it is often used for custom post-processing or monitoring
of the current simulation.

import walLBerla

@walBerla. callback (”at_end_of_timestep”)
def my_callback(blockstorage , xxkwargs):
for block in blockstorage:
access and analyse simulation data
velocity_field = block[velocity]

Listing 1. Embedding Python into C++ using callback annotations

In this case, the function is called after a simulation time
step has finished, such that all data is in a consistent state. The
callback mechanism exposes all simulation data, passing the
blockstorage object to the function. For simple and intuitive
access, the block collection is exposed as a mapping type,
mimicking the behavior of a Python dictionary. In parallel
simulations, the Python callback function is invoked on every
process, whereas the blockstorage contains only blocks assigned
to the current process. Thus, the loop over all blocks is
implicitly parallelized. If a global quantity has to be calculated,
the data reduction has to be programmed manually using MPI
routines.

The C++ counterpart of the callback function is shown in
Listing 2. A callback object is created, identified by a string
which has to match the decorator string in the Python script.
Then the function arguments are passed, either by reference
(“exposePtr*) or by value (“exposeCopy*). In order to pass
a C++ object to the callback, the class has to be registered
for export using mechanisms provided by boost::python . For
most data-structures, this can be done in a straightforward way,
for the field class however, a special approach has to be taken.
Callback cb (“at_end_of_timestep”);

cb.exposePtr(”blockstorage”, blockStorage);
cb(); // run python function

Listing 2. Embedding Python into C++ using callback annotations

A. waLBerla Field as NumPy Array

The field class is one of the central data structures of
WALBERLA. It is the data structure that end users have to
work with the most, for example when setting up simulation
geometry and boundary conditions or when evaluating and
analyzing the current simulation state. As described above, a
field is essentially a four dimensional array supporting different
memory layouts (AoS and SoA), aligned allocation strategies
and advanced indexing (slices).

A similar data structure widely used in the Python community
is ndarray of the NumPy package [12]. A wide range of
algorithms exist operating on NumPy arrays, for example

linear algebra-, Fourier transformation-, or image processing
routines. To make use of these algorithms, it is desirable to be
able to convert WALBERLA fields efficiently into the NumPy
representation. Copying data between these representations is
not a feasible option due to performance reasons and memory
limitations. Simulations are oftentimes set up in a way to
fully utilize the available memory of a compute node. Big
portions of the allocated memory are occupied by the lattice
i.e. the field. Thus, an export mechanism for fields is required,
which offers read-write access to the field without copying data.
The exposed object should behave like a NumPy array such
that algorithms from the NumPy and SciPy ecosystem can be
used. There are only two options fulfilling these requirements:
either to essentially re-implement ndarray and to export all
functions using mechanisms provided by boost::python. This is
the duck-typing approach popular in Python: the exported field
would behave exactly like a ndarray and could therefore
be used with all algorithms expecting NumPy arrays. Due to
the high implementation effort, this approach was not used.
Instead, we implement the Python buffer protocol [13] which
provides a standardized way to directly access memory buffers.
This protocol supports advanced memory layouts used by
the WALBERLA field class through definition of strides and
offsets. Among others, NumPy arrays can be constructed from
buffer objects, so all requirements can be fulfilled using this
approach, without introducing any dependency of WALBERLA
to the NumPy library. The buffer protocol is not available in
boost::python, so in this case the C-API of Python had to be
used directly.

B. Encountered Difficulties

The two primary goals of WALBERLA, being an HPC
framework, are flexibility and performance. To achieve both
goals, it is necessary to make use of advanced C++ template
mechanisms. Exporting these template constructs to Python
can be difficult since all templates have to be instantiated
with all possible parameter combinations. In situations where
this cannot be done manually, the instantiation is done using
template meta programming. Instantiating and exporting all
possible template parameter combinations would result in long
compile times and would increase the size of the executable
significantly. Thus a tradeoff has to be made and only the
commonly used template parameter combinations are exported
to Python. If, however, a user needs other combinations in his
application, the framework provides a simple mechanism to
configure which template parameter combinations are exported.

IV. SIMPLIFICATION OF SIMULATION WORKFLOW

In this section we demonstrate the usage of the WALBERLA
Python interface by describing the workflow of setting up a
FSLBM scenario. We show how to configure, control, and
evaluate the simulation using Python callback functions.

The following example scenario is a two phase flow problem
in a rectangular channel. A foam is transported through a
channel as depicted in Figure 4. Due to gravity, bubbles rise to
the top of the channel, forming a thin liquid film at the bottom.
A characteristic flow profile is expected, with a parabolic shape

- N O) \
O O “OL T S
_ N (
(> ‘ / \ \\// gravity
Y () () \
J _
) liquid film

Fig. 4. Flow of foam through channel

in the liquid film, and an almost constant velocity in the rest
of the channel. The goal of the simulation is to investigate the
stability of the transported foam and its dependence on surface
properties and rheological parameters.

Desired output quantities of the simulation are gas fractions
and velocities in different parts of the domain. Additionally,
the flow profile and foam stability should be evaluated, when
the pressure gradient which drives the channel is changed, i.e.
when the pressure gradient is switched on and off.

Using this example scenario, we describe how the Python
interface simplifies the configuration and geometry setup of a
LBM simulation.

A. Simulation Setup

To setup a simulation on a regular grid, there are typically
two different kinds of input required. Before the Python
interface was developed, the most flexible choice for domain
initialization, geometry setup, and specification of boundaries
was a voxel-based input file. Such voxel files had to be
generated using external tools. Additional configuration like
discretization options or physical parameters where given in
a second text file. This text file was formatted in a syntax
similar to the JavaScript object notation (JSON), providing
parameters as a hierarchy of key-value pairs. When setting up
LBM simulations, physical parameters have to be converted to
nondimensionalized lattice units [14]. The conversion factors
depend on the choice of discretization parameters. To simplify
this process, the configuration file was extended with special
functionality, enabling the user to easily convert physical to
lattice units. The nondimensionalization problem is, however,
only an instance of a wider range of problems. The problem that
parameters are interdependent and that this interdependency
should be defined by the user in the configuration file.
Parameters can depend on each other in complex ways: consider
the time step length, which should be chosen maximal, subject
to stability constraints. Complex parameter dependencies can
lead to configuration errors. To improve usability, especially for
inexperienced users, configuration mistakes should be detected
before the simulation runs. Therefore, all parameters have to
be checked if they are in a valid range and consistent with
other parameters.

Trying to handle these problems in a flexible and user
friendly way leads towards more and more custom extensions
in the input file, essentially developing a custom scripting
language. Instead of pursuing this approach further the decision

was made to use an existing scripting language like Python.
Python offers libraries that can handle all of the requirements
described above. There are libraries available for defining and
manipulating physical units, making them suitable for solving
nondimensionalization problems [15]. To handle complex
parameter dependencies, we use linear algebra and optimization
routines from SciPy [16]. Also, the ability for symbolic
calculations as provided by the SymPy library [17], proves
useful in a configuration file.

The hierarchical key-value configuration is represented in
Python as a nested dictionary object. This dictionary is built up
in a specially decorated function called by the C++ part of the
framework (first function in Listing 3). For simplicity, the C++
part expects all parameters to be in valid nondimensionalized
lattice units. Nondimensionalization and parameter validation
is completely done in Python.

The definition of domain geometry and boundary condi-
tions can also be handled using a Python callback function,
substituting the previously used voxel file. This callback is
executed once for every cell before the simulation starts. Via
the returned dictionary object the initial cell state is defined,
consisting of initial velocity and density, or of the boundary
type and boundary parameters.

@waLBerla. callback(“config”)
def config():
c={
>Physical” @ {

‘viscosity’ le—6xm*m/s ,

>surface_tension’: 0.072%N/m
Tdx”’ 0.01xm,
#
>Control” : {

“timesteps’ 10000,

vtk_output_interval ’: 100,

}
}

compute_derived_parameters (c)
c[’Physical’][’dt’] = find_optimal_dt(c)
nondimensionalize (c)

return ¢

gas_bubbles=dense_sphere_packing (300,100,100)
@walBerla. callback (”domain_init”)

def geometry_and_boundary_setup(cell):
p_w = c[’Physics]["pressure_west]

if is_at_border(cell , "W’):
boundary = [’pressure’, p_w]

elif is_at_border(cell, 'E’):
boundary = [’pressure’, 1.0]

elif is_at_border(cell, 'NSTB’):
boundary = [’‘noslip’]

else:
boundary = []

return{’ fill_level :1—gas_bubbles.overlap (cell),
’boundary’ :boundary }

Listing 3. Simulation Setup

Listing 3 shows how to set up the channel flow scenario
using a Python file. The first callback function substitutes the
JSON file, providing parameters as a dictionary. Before passing
the parameters to the C++ code, several functions operate on
the dictionary, handling nondimensionalization and calculation

of dependent parameters.

The second callback function handles boundary setup and
domain initialization. In our example scenario, we prescribe a
pressure boundary on the left (east) and right (west) end of the
domain, all other borders are set to no-slip boundary conditions.
In this example, only boundary conditions at domain borders
are set. However, it is possible to set boundaries at arbitrary
cells in the domain. The bubbles are placed in the channel as
a dense sphere packing, where bubble positions are calculated
by a Python function. This routine fills the whole domain
with equally sized bubbles. As shown in Listing 3, the initial
gas fraction of a cell is set using the initialization callback
mechanism.

B. Evaluation

Storing the complete state of a big parallel LBM simulation
results in output files with sizes up to several gigabytes.
Typically, the complete flow field together with cell fill levels
is written to a voxel based file format for analysis. Especially
for free surface simulations not all of this detailed output is
required. When simulating the behavior of foams, only some
higher level information like gas fractions in certain areas or
number, shape, and velocity of bubbles are of interest. These
quantities can be obtained by a post-processing step using
the raw voxel based output of velocity and fill level. For
moderately sized simulations, the raw output can be copied to
a desktop machine and post-processed using graphical tools
like ParaView [18]. For bigger simulations, however, it has
many advantages to do the post-processing directly on the
cluster where the simulation was run. The time for copying the
raw output files can be saved and the post-processing algorithm
itself can be parallelized if necessary. Since the requirements of
this evaluation step vary widely depending on the scenario at
hand, the analysis routines are not included in the core C++ part
of the framework. The post-processing is usually done in user
written, custom Python scripts which have a lower development
time than C++ code. This situation was another motivation
to directly couple our C++ simulation framework to Python,
such that evaluation scripts can run during the simulation and
operate directly on simulation data making the output of raw
voxel data obsolete.

Fig. 5. Cross section of foam flow scenario orthogonal to flow direction
In the evaluation callback functions, we can make use of
the exposed C++ data structures. Since the simulation data
is fully distributed, also the evaluation has to be done in a
distributed way. An example is shown in Listing 4 where the
maximum velocity along the flow direction for the channel
example problem is calculated. The first iteration goes over

all local blocks, extracting the velocity field as NumPy array.
As described above, the NumPy array is only a view on the
already existing data, no copy is made. Using the velocity field,
first the per-process maximum is determined then a global MPI
reduce operation has to be done to obtain the global maximum.

import numpy as np

@waLBerla. callback(“at_end_of_timestep”)
def evaluation(blockstorage , bubbles):
Distributed evaluation
x_vel_max = 0
for block in
vel_field
x_vel_max

blockstorage:

np.asarray (block[’velocity ’])

max(vel_field [:,:,:,0].max(),
x_vel_max)

x_vel_max = mpi.reduce(x_vel_max, mpi.MAX)
if x_vel_max: #valid on root only
log.result(”Max X Vel”, x_vel_max)

Gather and evaluate locally
size=blockstorage . numberOfCells ()
vel_profile_z=gather_slice (x=size [0]/2,
y=size[1]/2,
coarsen=4)
if vel_profile_z: #valid on root only
eval_vel_profile(vel_profile_z)

Listing 4. Simulation Evaluation

Due to the distributed nature of the data, this evaluation
step is still somewhat complex. However, we can simplify it
in some cases, especially when working with smaller subsets
of the data. Let us for example consider the evaluation of the
flow profile in the channel scenario. The velocity profile (as
depicted in Figure 4) in the middle of the channel along a
line orthogonal to the flow direction is analyzed. From this
information we can obtain, for example, the height of the thin
liquid layer at the bottom. To simplify the evaluation routine,
we first collect this one dimensional dataset on a single process,
which is possible since the 1D slice is much smaller than the
complete field. In case it is still too big, the slice can also
be coarsened, meaning that only every n’th cell is gathered.
Then all required data is stored on a single process, enabling
a simple serial evaluation of the results.

C. Simulation Control

The Python interface can not only be used for domain setup
and evaluation but also to interact with the simulation while it
is running using a Python console. This is especially useful
during the development process. One can visualize and analyze
the simulation state with plotting libraries (e.g. matplotlib [19])
and then modify the simulation state interactively.

In case of a serial program, the Python C-API offers high
level functions to start an interactive interpreter loop. For
parallel simulations, this approach is not feasible, since every
process would start its own console.

Instead, a custom solution was developed, where one
designated process runs the interpreter loop, broadcasting
the entered commands to all other processes, which are then
executed simultaneously. The custom interpreter loop reads the
user input line by line, until a full command was entered. This
advanced detection has to be done, since Python commands

can span multiple lines. After a full command was detected, it
is sent to all other processes using a MPI broadcast operation.

There are two ways to start an interactive console while a
simulation is running: in UNIX environments, the user can send
a POSIX signal to interrupt the simulation. The simulation
continues until the end of the current time step, such that
all internal data structures are in a consistent state. Then the
Python console is run, using the standard input/output streams.
A second method based on TCP sockets can be used when
sending POSIX signals is not feasible, for example in Windows
environments or when starting a parallel simulation using a job
scheduler. In this case, the program listens for TCP connections.
When a client connects, the simulation is interrupted after the
current time step such that the user can interact with the
program using a telnet client.

Besides the ability to modify the simulation state inter-
actively, the modification of parameters can of course also
be done automatically. Being able to evaluate the simulation
state in Python, we have information available during the
simulation which previously were acquired in a post-processing
step. This information can be used to modify parameters while
the simulation is running, effectively implementing a feedback
loop.

In the channel flow scenario, this can be used to investigate
foam stability when the inflow boundary is switched on or off.
Evaluation routines are used to determine if the simulation has
reached a steady state, then the driving pressure boundary can
be modified.

D. Summary

To summarize, the Python interface has greatly simplified
the entire simulation toolchain.

A schematic of a typical workflow of using WALBERLA
without the Python extension is depicted in Figure 6. The
configuration is supplied in two different files, one voxel file
for specifying domain geometry and boundary information
and secondly a text based parameter file defining options as a
hierarchical set of key-value pairs.

Voxel File
geometry/boundaries

Config File
JSON-like format

Scenario Specific Application
with custom steering and
evaluation code

!

VTK files

Text Files / Spreadsheet
Result of evaluation routines

Custom Plotting

Fig. 6. Typical simulation workflow without usage of Python Interface

walBerla library

The C++ simulation code itself is also tailored to the scenario,
including custom steering and evaluation functions. Changing

the scenario involves recompilation of the binary. It is not
possible to write a general purpose application in this case
since the customization options of the configuration file are
usually not sufficient. To analyze the simulation, either the
complete flow field is written out in a VTK file for later
post-processing, or results are stored in custom text files or
spreadsheets.

General Purpose Application

walBerla library
Pythop Scrilpt/ModuIe (VTK files)
- configuration
- evaluation

- steering
- plotting (matplotlib)

Typical simulation workflow using Python Interface

Fig. 7.

Figure 7, in contrast, shows how this workflow is simplified
using the Python scripting capabilities of WALBERLA. Whereas
previously the description of how to set up and evaluate one
scenario was spread out over many files, all this information
is now located in a single Python file, or in complex cases,
in a Python module. Results can already be evaluated during
simulation runs, extracting only the quantities of interest. These
reduced results are stored in a relation database, typically using
SQLite due to its low configuration overhead. Of course the
complete simulation data can still be written out to VTK files
but in many cases this not necessary. Visualization and plotting
of the collected results can be implemented in the same script,
leading to a compact and reusable collection of all information
related to a specific simulation setup.

V. CONCLUSION

We showed the advantages of coupling the WALBERLA
C/C++ framework to Python, implementing performance
critical parts in C/C++ and higher level functionality, like
domain setup, simulation control, and evaluation of results, in
Python. We simplified and automated the simulation workflow,
starting from scenario definition up to plotting of the results.
The flexibility and expressive power of Python enables the user
to develop code faster compared to C++. It is therefore also
suitable for prototyping of new methods or boundary conditions,
a task that previously was done using tools like Matlab. The
Python interface of WALBERLA makes the framework more
attractive for domain experts, which typically are not familiar
with C/C++ programming.

REFERENCES

[1] C. Feichtinger, S. Donath, H. Kostler, J. Gotz, and U. Riide, “WaLBerla:
HPC software design for computational engineering simulations,”
Journal of Computational Science, vol. 2, no. 2, pp. 105 — 112,
2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1877750311000111

[2] waLBerla Framework, “http://walberla.net,” Aug 2014.

[3] Y. Qian, D. d’Humieres, and P. Lallemand, “Lattice BGK models for
navier-stokes equation,” EPL (Europhysics Letters), vol. 17, no. 6, p. 479,
1992. [Online]. Available: http://iopscience.iop.org/0295-5075/17/6/001

http://www.sciencedirect.com/science/article/pii/S1877750311000111
http://www.sciencedirect.com/science/article/pii/S1877750311000111
http://iopscience.iop.org/0295-5075/17/6/001

[4]

[5]

[6]

[7

—

[8

[t}

[10]
[11]

[12]

[13

[14]

[15]
[16]

[17]

(18]

[19]

I. Ginzburg, F. Verhaeghe, and D. d’Humieres, ‘“Two-relaxation-time
lattice Boltzmann scheme: About parametrization, velocity, pressure
and mixed boundary conditions,” Communications in computational
physics, vol. 3, no. 2, pp. 427-478, 2008. [Online]. Available:
https://lirias.kuleuven.be/handle/123456789/218788

——, “Study of simple hydrodynamic solutions with the two-relaxation-
times lattice Boltzmann scheme,” Communications in computational
physics, vol. 3, no. 3, pp. 519-581, 2008. [Online]. Available:
https://lirias.kuleuven.be/handle/123456789/218787

C. Korner, M. Thies, T. Hofmann, N. Thiirey, and U. Riide, “Lattice
boltzmann model for free surface flow for modeling foaming,” Journal
of Statistical Physics, vol. 121, no. 1-2, pp. 179-196, 2005.

S. Donath, C. Feichtinger, T. Pohl, J. Gotz, and U. Riide, “Localized
parallel algorithm for bubble coalescence in free surface lattice-boltzmann
method,” in Euro-Par 2009 Parallel Processing. Springer, 2009, pp.
735-746.

J. Gotz, C. Feichtinger, K. Iglberger, S. Donath, and U. Riide, “Large
scale simulation of fluid structure interaction using Lattice Boltzmann
methods and the ‘physics engine’,” in Proceedings of the 14th Biennial
Computational Techniques and Applications Conference, CTAC-2008, ser.
ANZIAM J., G. N. Mercer and A. J. Roberts, Eds., vol. 50, Oct. 2008,
pp- C166—C188, http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/
article/view/1445 [October 29, 2008].

C. Godenschwager, F. Schornbaum, M. Bauer, H. Kostler, and U. Riide,
“A framework for hybrid parallel flow simulations with a trillion cells in
complex geometries,” in Proceedings of SCI13: International Conference

for High Performance Computing, Networking, Storage and Analysis.

ACM, 2013, p. 35.

boost C++ libraries, “http://www.boost.org/,” Aug 2014.

boost.python library, “http://www.boost.org/doc/libs/1_56_0/libs/python/,”
Aug 2014.

S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
a structure for efficient numerical computation,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 22-30, 2011.

Python Buffer Protocol, “https://docs.python.org/3/c-api/buffer.html,” Aug
2014.

M. Junk and D. Kehrwald, “On the relation between lattice variables
and physical quantities in lattice boltzmann simulations,” ITWM Report,
2006.

Python Units Library Pint, “http://pint.readthedocs.org/,” Aug 2014.

E. Jones, T. Oliphant, and P. Peterson, “Scipy: Open source scientific
tools for python,” http://www. scipy. org/, 2001.

D. Joyner, O. Certl’k, A. Meurer, and B. E. Granger, “Open source
computer algebra systems: Sympy,” ACM Communications in Computer
Algebra, vol. 45, no. 3/4, pp. 225-234, 2012.

A. Henderson, J. Ahrens, and C. Law, The ParaView Guide. Kitware
Clifton Park, NY, 2004.

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 0090-95, 2007.

https://lirias.kuleuven.be/handle/123456789/218788
https://lirias.kuleuven.be/handle/123456789/218787
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1445
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1445

	Introduction
	waLBerla framework
	Free Surface Lattice Boltzmann Method
	Software Architecture
	Domain Decomposition
	Fields

	Performance and Scalability

	Python Interface
	waLBerla Field as NumPy Array
	Encountered Difficulties

	Simplification of Simulation Workflow
	Simulation Setup
	Evaluation
	Simulation Control
	Summary

	Conclusion
	References

