Helmholtz Space Life Sciences Research School - SpaceLife

An Interdisciplinary Doctoral Candidate Program
Institute of Aerospace Medicine, Cologne, Germany
Contents

Introduction 4
Scientific Program 6
Topics and Doctoral Theses 8
 Radiation Biology 8
 Gravitational Biology 13
 Astrobiology 19
 Space Physiology and Psychology 21
Professional Training Program 25
 Thesis Supervision 25
 Curriculum 26
Management Structure 40
Members 42
 DLR Institute of Aerospace Medicine 43
 Partner Universities 44
 Associated Partners 45
 Faculty Member Profiles 48
 Profiles of the SpaceLife Associated Partners 77
 Member Group Locations 84
Application 85
Contact 86
The Helmholtz Space Life Sciences Research School (SpaceLife) offers excellent and interdisciplinary training for doctoral students from different fields (biology, physics, psychology, veterinary medicine, nutrition or sports sciences) and all countries. In each generation, up to 25 students can participate in the three-year program. At the DLR, up to 13 doctoral students will participate in SpaceLife. Up to twelve doctoral students at the partner universities can be admitted to SpaceLife. Students will learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions.

Thesis supervision is close meshed by two specialist Supervisors from DLR and the partner university, and a Mentor, as well as annual progress reports by the doctoral student in a Students’ Workshop.

All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or will allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students will learn critical reading of scientific literature, first steps in peer review, scientific writing during preparation of their own publication, and writing of the thesis. The training of soft skills will be offered as block course in cooperation with other Helmholtz Research Schools. The whole program encompasses 246 hours and is organized in semester terms. Most of the lectures will take place in Cologne at the Institute of Aerospace Medicine.

Doctoral students from Hamburg, Kiel, Aachen and Regensburg attend the lectures using teleconference tools, or block courses will be offered. Some elective courses take place at the University of Bonn and the DSHS Cologne. The spokesperson bears responsibility for SpaceLife. SpaceLife is organized by the coordinator and the secretary. The scientific members of SpaceLife form the Faculty which meets annually. The Faculty elects a Faculty Panel who assists the coordinator and the spokesperson in the student selection process and in formation of the curriculum. The doctoral students elect a Doctoral Spokesperson who participates in meetings of the Faculty and the Faculty Panel.
The mission of the Helmholtz Space Life Sciences Research School (SpaceLife) is to contribute to understanding the space frontier and the opportunities, capabilities, and limitations of humans living and working on that frontier and of the spread of life in the universe. The program’s objective is to investigate the complex interactions of space environmental factors and humans or other organisms. To accomplish its mission, SpaceLife implements a broad range of applied and basic scientific research. Thereby it links theoretical and practical approaches of radiation dosimetry, microbiology, basic molecular and cellular research in radiation and gravitational biology with translational and clinical studies. This research is accomplished using ground-based laboratories, microgravity environments, space-analog simulation facilities and if available, space flight opportunities. The long-term goal is to contribute to the “safe, sustained, affordable exploration of the Moon, Mars, and beyond...”. The European Space Agency’s Aurora program and the US Vision for Space Exploration aim ultimately to land people on Mars, although it seems certain that the Moon will be an earlier target.

In the short term, Aurora features robotic missions while at the same time preparing for future human exploration missions. Humans bring speed, agility, versatility and intelligence to exploration in a way that robots cannot. Although it is true that humans will face many dangers and obstacles operating on other planets, mostly due to their physiological limitations when compared to robots, the potential scientific returns is more than sufficient to justify employing astronauts as field scientists on other planets.

However, prior to manned missions to Mars, appropriate guidelines and methods need to be developed to protect the planet from human activities that may be harmful to its environment; this includes preventing the introduction of terrestrial biochemical compounds and microorganisms that could interfere with the search for indigenous Martian life, to protect the Earth from potentially harmful agents brought back from Mars or even sample return missions upon return of the explorers. Answers to these planetary protection issues need to be available well ahead of manned missions to Mars, e.g. by testing planetary protection protocols and guidelines during precursor missions and by investigating the extraordinary capability of terrestrial microorganisms to adapt to and live under extreme environmental conditions.

A key priority of European human spaceflight activities remains the effective use of the International Space Station (ISS) in the next 10 years in order to maximize the return on European investment. This aligns well with the current German Space Life Sciences Program, in which three main scientific fields have been identified in collaboration with the scientific community:
integrative human physiology, biotechnological applications of the microgravity environment, and fundamental biology of gravity and radiation responses. In view of planning long-duration human exploration missions it is imperative that the ISS is used for the preparation of these new endeavors.
The ISS is ideally suited for testing hardware developments, and to perform long-term medical studies, related to future exploration missions to Moon and Mars. These medical studies on humans will be focused on the long-term effects of microgravity, radiation biology, and the psychological effects of long duration flight.
The European Columbus laboratory has been successfully launched on February 7, 2008 and paves the way for the implementation of a significant ISS utilization program which will further advance technical and scientific progress in human spaceflight.

Space life science research embraces the whole range of studies from molecular and cellular biology to whole-organism physiology. In the important area of human physiology and medicine, research in the space environment has demonstrated the potential to provide unique insights into such areas as gene expression, immunological function, bone physiology, and neurovestibular and cardiovascular function. These areas are important for understanding age-related phenomena and a range of terrestrial disease processes (e.g. osteoporosis, muscle atrophy, cardiac impairment, and balance and coordination defects), and as such have potential medical applications in prevention, diagnosis, and therapy here on Earth. Moreover, research in space physiology provides a stimulus for the development of innovative medical technology, much of which is directly applicable to terrestrial medicine.

In fundamental biology, questions on the understanding of the effects of cosmic radiation and of altered gravity (microgravity and hypergravity) on living systems as well as on the origin and distribution of life and its evolution, are tackled. Radiation is an acknowledged primary concern for manned spaceflight and is a potentially limiting factor for long term orbital and interplanetary missions. Results from numerous space probes demonstrate heightened radiation levels compared to the Earth's surface and a change in the nature of the radiation field - particularly the presence of high energy heavy ions. The biological effects of this extraordinary radiation quality and the depths dose distributions in the human body have to be assessed for risk estimation and countermeasure development.

Of central importance is also the elucidation of the mechanisms of gravity perception and signal transduction. While there is an increase in knowledge of the biological and physiological consequences of short-term microgravity, the biological effects of prolonged exposure to low, but non-zero, gravity are largely unknown. For example, more or less open questions are adaptation phenomena to a long-term microgravity environment, the existence of sensitive windows in the development of organisms as well as thresholds of graviperception. There is particular interest in the long-term effects of reduced gravity on the human body as well as on multi-generation experiments with cells and multicellular systems. Of special importance is to determine potential gravity thresholds for different body functions, in particular with regard to loss of muscle and bone mass, reduced cardiovascular capacity, functioning of the central nervous system, and immune system deficiencies.

With respect to future long-term human space missions to Moon and Mars it is of utmost importance to enlarge our knowledge about life in extreme environments, to develop, not only adequate countermeasures to reduce the effects of low gravity, but also to perform research into the effects of space radiation on the human body. Therefore, the Institute of Aerospace Medicine at the DLR establishes the Helmholtz Space Life Sciences Research School (SpaceLife) in order to provide training at the highest level for excellent young scientists.
Space Radiation Biology

Space Radiation Biology seeks to understand the biological effects of cosmic radiation by applying advanced methods of radiation dosimetry and cell biology. For proper risk assessment and amelioration of the effects of radiation encountered in space the knowledge of the radiation distribution throughout the body and hence on the body dose, of the relative biological effectiveness of cosmic radiation, of the effects of other spaceflight factors on the expression of radiation damage, and of the underlying biological responses are necessary.

Scientific Program

Radiation Protection and Space Radiation Measurements

In order to obtain precise data on radiation distribution throughout the body during an Extra Vehicular Activity (EVA), MATROSHKA - an ESA multi-user facility - was developed by the German Aerospace Centre (DLR), Institute of Aerospace Medicine. The key part of the facility is a human phantom upper torso, equipped with numerous radiation detectors. MATROSHKA was mounted on the exterior of the Russian Service Module of the International Space Station (ISS) in February 2004. After an exposure of about 18 month it was brought back inside the ISS and equipped with new detector sets and is still operating. The data gathered - in cooperation with Institutes worldwide - are used to reduce uncertainties in risk estimates for radiation-induced cancer, and for the refinement of the shielding needs for vehicles used for future long duration missions. They serve as benchmarks for space radiation models and radiation transport calculations and have important implications for ISS crew health and mission planning.

Topics and Doctoral Theses

Besides the MATROSHKA experiment, the group is in charge – as contractor for ESA – for the personal dosimetry of European Astronauts. This activity is supplemented by area dose measurements at several locations inside the European COLUMBUS Module. The development of active radiation detectors – in cooperation with the University of Kiel – for the European ExoMars and the US MSL Mission, as well as the determination of the radiation load on aircrew (LUFTHANSA) are further fields of study.

All space studies are accompanied by an extensive ground based intercalibration program. The detection efficiency of various passive (thermoluminescence detectors, nuclear track etch detectors) and active (silicon detectors, tissue equivalent proportional counters) radiation detectors is investigated in various heavy ion and neutron fields, in an international program.
Simulations of the radiation exposure for human missions in Low Earth orbit and beyond – correlation with measured space radiation data

Topic of Doctoral Thesis
Simulations of the radiation environment and the radiation load on humans in earth orbit is an essential task to be followed. Besides the measurements performed onboard the ISS – as for example in the framework of the MATROSHKA experiment – calculations are performed to simulate the radiation environment and the interaction of radiation with matter. The measured data acts thereby as a “benchmark” to verify the applied calculation codes.

In the frame of the PhD thesis calculations for the radiation environment and the radiation load onboard the ISS should be performed. The baseline should be the intercomparison of various input functions – as the different models for the GCR environment – as well as the intercomparison of various radiation transport codes – either based on Monte Carlo or on the solution of the one dimensional Boltzmann equation. Based on the output of this work a set of input functions and transport codes should be chosen to simulate various radiation experiments currently performed onboard the ISS – as MATROSHKA. The further aim of the thesis is to develop a concise set of radiation simulation tools – acting as a baseline requirement for further dose calculations and risk assessment for long duration human space flight.

Thesis Description
Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth. The determination of the radiation load on humans in earth orbit is an essential task to be followed. Besides the measurements performed onboard the ISS – as for example in the framework of the MATROSHKA experiment – calculations are performed to simulate the radiation environment and the interaction of radiation with matter. The measured data acts thereby as a “benchmark” to verify the applied calculation codes.
Radiation Biology

Radiation Protection and Space Radiation Measurements

Topic of Doctoral Thesis
Construction and ground based verification of a miniaturized active radiation measurement system based on silicon detector technology

DLR Supervisor
Dr. Günther Reitz
++49 2203 601 3137
Guenther.reitz@dlr.de
Dr. Thomas Berger
++49 2203 601 3135
thomas.berger@dlr.de

University Supervisor
Prof. Dr. Robert F. Wimmer-Schweingruber
+49 (0)431 880 3964
wimmer@physik.uni-kiel.de

Thesis Description
The current system of radiation detectors onboard the International Space Station is based on active and passive radiation measurement systems. While active radiation detectors are capable of data storage and download in real-time – as well as having alarm functions for high radiation dose levels – due to Solar Particle Events – passive detectors have to be downloaded to ground for data evaluation. Besides the measurement of the radiation environment onboard the ISS, DLR also performs routinely measurement flights onboard aircraft, since also aircrew members are seen as occupational workers. The aim of this PhD thesis is to develop a miniaturized active radiation detector system, capable to determine radiation field parameters as absorbed dose, LET spectra, neutron dose and the biological relevant dose equivalent.

Scientific Program

Doctoral Theses

The system will be based on well established silicon detector technology and will consist in a baseline configuration of three silicon detectors arranged in a X / Y / Z assembly. Besides the construction of the system various ground based intercalibration experiments for detector verifications at Heavy Ion Accelerators as well as in different Neutron fields are foreseen. The output should be a small robust, easy to handle – battery driven active detector system for usage in aircraft as well as in space dosimetry.

Measured dose rate for an active silicon detector system applied onboard the International Space Station ISS

The radiation environment (“Particle Shower”) in the Earth atmosphere
Cellular Radiation Effects and Bystander Effects

For risk assessment and countermeasure development, pathways playing important roles in radiation induced cancerogenesis have to be understood. In view of its tumor-promoting capacity, Nuclear Factor κB (NF-κB) is an important factor involved in the modulation of environment-induced gene expression, especially in the interplay of the pro-apoptotic 53 pathway and the pro-survival NF-κB pathway after low and high dose radiation. The transcription factor p53 plays a central role as a principal regulator of the G1 cell cycle checkpoint in maintaining the integrity of genome after exposure to DNA-damaging agents, thereby acting as a tumor suppressor. p53 protein regulates the expression of specific genes involved in growth regulation and apoptosis, while NF-κB regulates the expression of specific anti-apoptotic genes involved in innate and adaptive immunity and in oncogenesis. Activation of the NF-κB pathway gives transformed cells a growth and survival advantage and further renders tumor cells resistant to chemo- and radiation therapy.

NF-κB also enhances the expression of degradative enzymes, supporting the idea that it makes a major contribution to tumor progression.

At the Institute of Aerospace Medicine, the biological effects of cosmic radiation are analyzed by several approaches: Different radiation qualities (sparsely ionizing X-rays, densely ionizing α-particles and accelerated heavy ions as well as neutrons) are supposed to have different induction potencies for the NF-κB and the p53 pathway. Their effect on the biological outcome (alterations in gene expression, cell cycle arrest, apoptosis and other types of cell death, DNA repair) will be analyzed by microarrays, real-time quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR), translocation vectors with fluorescent marker proteins and immunofluorescence (confocal microscopy), pulsed field gel electrophoresis, inhibitor and RNA interference studies, apoptosis assays and flow cytometric cell cycle analysis.
Exposure of human cells to ionizing radiation can provoke cell cycle, leading to cellular senescence or premature differentiation, and different types of cell death: apoptosis, necrosis, mitotic catastrophe. Previous experiments with space relevant radiation qualities have shown that two important pathways are activated by fluences that can be reached during long-term missions: the NF-κB and the p53 pathway.

In this thesis, the contribution of these pathways to different cellular outcomes (cell cycle arrest, survival, DNA repair, different types of cell death) will be analyzed by functional knockout of key components of the pathways using an RNA interference approach. Small interfering RNA constructs (shRNA) will be transfected in human cells and their functionality assessed by qRT-PCR.

Activation of the p53 pathway by ionizing radiation, flow cytometric analysis of irradiated human lung epithelial cells carrying a p53-responsive reporter plasmid.
For better risk estimation and development of appropriate countermeasures, the study of the cellular radiation response is necessary. Exposure of human cells to ionizing radiation can provoke active cellular responses (cell cycle arrest, DNA repair, apoptosis or other forms of cell type) which rely on gene expression changes. Previous high-dose-rate experiments have shown up-regulation of several target genes of the important NF-κB and p53 stress response pathways (e.g. GADD45β, NFKBIA, p21, p53R2). In this work, a comprehensive study of NF-κB and p53 target gene expression after high and low dose and dose rate exposure of human cells to ionizing radiation by commercially available qRT-PCR arrays will be performed and correlated with different cellular outcomes.

Expression of the growth arrest and DNA damage inducible gene GADD45β and of the inhibitor of NF-κB gene (NFKBIA) in human embryonic kidney cells after exposure to nucleus-targeted α-particles

Exposure of human cells to energetic heavy ions at the “Grand Accélérateur des Ions Lourds” (GANIL) in Caen, France

Radiation Biology

Cellular Radiation Effects and Bystander Effects

Topic of Doctoral Thesis
Cellular Radiation Effects and Bystander Effects: Gene expression modulation in the cellular radiation response

DLR Supervisors
Dr. Christa Baumstark-Khan
++49 2203 601 3140
christa.baumstark-khan@dlr.de
Dr. Christine E. Hellweg
++49 2203 601 3243
christine.hellweg@dlr.de

University Supervisor
Prof. F. Kreuzaler (RWTH Aachen)
++49 (0)241 80 266 33/55
molbio@bio1.RWTH-Aachen.de

Thesis Description
Radiation is a potentially limiting factor for long term orbital and interplanetary missions. The exposure of astronauts to space radiation differs in quality and quantity compared to other occupationally exposed radiation workers.
SpaceLife

Gravitational Biology

The evolution of life on Earth occurred under the persistent influence of gravity. As gravity is constant with respect to its direction and magnitude, the vectorial information of gravitational acceleration is a most reliable reference point for orientation. Sensors for the gravity stimulus, specialized organelles for gravity sensing and mechanisms for active responses have been found in unicellular organisms as well as in multicellular animal and plant systems. Recent studies support the hypothesis that gravity is perceived either by intracellular receptors (statocyst-like organelles), heavy cell organelles (such as nucleus) and/or by sensing the cell mass by means of ion channels located in the cell membrane. Consequently the question arises about a general gravisensitivity of cells including mammalian cells. Though severe effects of microgravity on cells (e.g. lymphocytes) have been stated, the development of complex organisms occurs more or less undisturbed under this condition. However, a systematic approach and multi-generation experiments with animals and plants in microgravity are necessary as they are the key players in life support systems which are necessary for long-term manned space missions.

Space simulation facilities

In addition to rather exclusive experiments under real microgravity conditions, different ground-based methods have been developed to achieve either the status of functional weightlessness or hypergravity (artificial gravity) conditions. The DLR Institute of Aerospace Medicine has a long-term experience in developing and using space simulation facilities: so-called clinostats enable the rotation of a sample perpendicular to the gravitational field assuming that a continuously reoriented biological system does not perceive the gravitational stimulus. The results of some experiments also performed in real microgravity conditions support this hypothesis. Various clinostat devices have been constructed enabling a broad variety of experimental performances (e.g. microscopic observation of the sample during rotation in a clinostat). Combination with our irradiation facilities (see section Radiation Biology) enables the investigation of the combined effect of functional weightlessness and radiation. Correspondingly, different centrifuge devices – such as centrifuge microscope (NIZEMI = Niedergeschwindigkeits- Zentrifugenmikroskop) - complete our experimental scenario. Furthermore, the Institute of Aerospace Medicine is the facility responsible centre for Biolab, a laboratory facility on ISS. Biolab provides the possibility to investigate various cell types and small biological systems (plants and animals) under microgravity conditions.

Scientific Program

Doctoral Theses
Scientific Program

Thesis Description
Few is known about the effects of long-term altered gravity conditions on the development and the physiology of organisms. In particular, it has never been analyzed if altered gravity such as hypergravity may affect interactive processes among plant and animal species housed within a closed bioregenerative life support system. Such devices are favored in numerous conceptual studies and comparatively simple entities have already been developed due to the following reasons: Such systems are regarded to be of high value in analyzing trophic, ecophysiological parameters eventually leading to solutions concerning the provision of animal protein, oxygen and further consumables for long-term manned space missions, and these systems are useful platforms to maintain experimental animals and plants under altered gravity conditions.

OMEGAHAB (Oreochromis mossambicus Euglena gracilis Aquatic Habitat) – Flight module

Doctoral Theses
OMEGAHAB is an aquatic life support system developed by the universities of Erlangen and Hohenheim. It is dedicated for testing various physiological parameters and the interaction of unicellular algae (E. gracilis, a phytoflagellate) and developing cichlid fish (O. mossambicus). It has been successfully flown in the FOTON M-3 space/satellite mission. Within this system, the algae profit from the fish waste products and the fish profit from the oxygen of the algae.

Aim of the thesis is to study the influence of increased acceleration (hypergravity up to 3g) on different physiological parameters of the organisms. Thus, the life support system has to be adapted to the short arm human centrifuge (SAHC) at DLR. Then, the system will be exposed to hypergravity conditions under the variation of time and amount of acceleration. Experiment analyses will cover computer analysis of videos (behavior and morphometric parameters of the organisms) up to morphological investigations including light (laser-scan, fluorescence) as well as biochemical/molecular analyses.

Euglena gracilis

Gravitational Biology

Space simulation facilities

Topic of Doctoral Thesis
Physiology and interaction of organisms under altered gravity conditions using a bioregenerative life support system

DLR Supervisors
Prof. Dr. Ralf Anken
++49 2203 601 3420
ralf.anken@dlr.de
PD Dr. Ruth Hemmersbach
++49 2203 601 3094
ruth.hemmersbach@dlr.de

University Supervisor
PD Dr. Markus Braun
++49 228 732686
mbraun@uni-bonn.de

Further partners
Institute of Plant Ecophysiology, University of Erlangen-Nürnberg & Institute of Zoology, University of Hohenheim

Oreochromis mossambicus
SpaceLife

Gravitational Biology

Space simulation facilities

Topic of Doctoral Thesis

DLR Supervisor
Dr. Sven Baerwalde
++49 2203 601 3130
sven.baerwalde@dlr.de

University Supervisor
Prof. Heiko Strüder
Institute of Motor Control and Movement Technique (German Sport University Cologne)
++49 221 4982 4190
strueder@dshs-koeln.de

Scientific Program

Thesis Description
Studies of the last decade have well documented influences of changes in gravitational forces on cardiovascular, muscle and bone physiology. Beyond these topics, there has been an increased focus on the interactions between central nervous activity and changing gravity conditions. Recent studies have related hypergravity (hyper-g) to decreases in both sensorimotor and cognitive abilities. Due to technical and organizational limits, it has not been possible to apply imaging methods to study brain metabolism in a hyper-g environment. Therefore, it remains unclear whether these alterations in sensorimotor and cognitive function are the primary physiological effects of changed gravity conditions, or whether they are secondary effects associated with environmental and physiological factors such as for example workload or hemodynamic changes. The use of the DLR short arm human centrifuge (SAHC) in combination with electromyography offers a unique research platform to explore possible effects of changed gravity conditions on human physiology and psychology. Standardized low resolution brain electromagnetic tomography (sLORETA) enables spatial identification and analysis of brain cortical activity via traditional EEG recordings and has recently been established to show gravity induced changes (weightlessness & hyper-g).

Aims of this doctoral thesis are to correlate central and peripheral parameters of artificial gravity as well as the impact of artificial gravity on mood and sleep regulation. Subjects will be exposed to various gravity levels, as 0,38 Gz (Martian acceleration) and 1 Gz as both proposed to be used in countermeasures protocols, as well as higher levels as two and three times terrestrial gravity (Gz) while wearing an active electrode cap (ActiCap®, Brain Products, Munich). Apart from the electroencephalogram (EEG) a wide variety of peripheral physiological parameters (e.g. heart rate, blood pressure, electromyogram (EMG), motor performance) and psychological parameters (mood) will be recorded in order to correlate central and peripheral aspects of hyper-g and its influence on performance and wellbeing. These extensive experiments seem to be of fundamental interest as the SAHC is planned to be used during manned space flight to act as a countermeasure to weightlessness induced deficits in physiological and performance parameters.

Doctoral Theses

Spatial Life

Satellite
Movement
Dr. DLR Supervisor
++49 stress/sven.baerwalde@dlr.de

Prof. University Supervisor
Institute

The Topic of Doctoral Thesis
Space
Gravitational
facilities

facilities

Gravitational Biology

Space simulation

Topic of Doctoral Thesis

DLR Supervisor
Dr. Sven Baerwalde
++49 2203 601 3130
sven.baerwalde@dlr.de

University Supervisor
Prof. Heiko Strüder
Institute of Motor Control and Movement Technique (German Sport University Cologne)
++49 221 4982 4190
strueder@dshs-koeln.de

Scientific Program

Thesis Description
Studies of the last decade have well documented influences of changes in gravitational forces on cardiovascular, muscle and bone physiology. Beyond these topics, there has been an increased focus on the interactions between central nervous activity and changing gravity conditions. Recent studies have related hypergravity (hyper-g) to decreases in both sensorimotor and cognitive abilities. Due to technical and organizational limits, it has not been possible to apply imaging methods to study brain metabolism in a hyper-g environment. Therefore, it remains unclear whether these alterations in sensorimotor and cognitive function are the primary physiological effects of changed gravity conditions, or whether they are secondary effects associated with environmental and physiological factors such as for example workload or hemodynamic changes. The use of the DLR short arm human centrifuge (SAHC) in combination with electromyography offers a unique research platform to explore possible effects of changed gravity conditions on human physiology and psychology. Standardized low resolution brain electromagnetic tomography (sLORETA) enables spatial identification and analysis of brain cortical activity via traditional EEG recordings and has recently been established to show gravity induced changes (weightlessness & hyper-g).

Aims of this doctoral thesis are to correlate central and peripheral parameters of artificial gravity as well as the impact of artificial gravity on mood and sleep regulation. Subjects will be exposed to various gravity levels, as 0,38 Gz (Martian acceleration) and 1 Gz as both proposed to be used in countermeasures protocols, as well as higher levels as two and three times terrestrial gravity (Gz) while wearing an active electrode cap (ActiCap®, Brain Products, Munich). Apart from the electroencephalogram (EEG) a wide variety of peripheral physiological parameters (e.g. heart rate, blood pressure, electromyogram (EMG), motor performance) and psychological parameters (mood) will be recorded in order to correlate central and peripheral aspects of hyper-g and its influence on performance and wellbeing. These extensive experiments seem to be of fundamental interest as the SAHC is planned to be used during manned space flight to act as a countermeasure to weightlessness induced deficits in physiological and performance parameters.

Doctoral Theses

Spatial Life

Satellite
Movement
Dr. DLR Supervisor
++49 stress/sven.baerwalde@dlr.de

Prof. University Supervisor
Institute

The Topic of Doctoral Thesis
Space
Gravitational
facilities

facilities

Gravitational Biology

Space simulation

Topic of Doctoral Thesis

DLR Supervisor
Dr. Sven Baerwalde
++49 2203 601 3130
sven.baerwalde@dlr.de

University Supervisor
Prof. Heiko Strüder
Institute of Motor Control and Movement Technique (German Sport University Cologne)
++49 221 4982 4190
strueder@dshs-koeln.de

Scientific Program

Thesis Description
Studies of the last decade have well documented influences of changes in gravitational forces on cardiovascular, muscle and bone physiology. Beyond these topics, there has been an increased focus on the interactions between central nervous activity and changing gravity conditions. Recent studies have related hypergravity (hyper-g) to decreases in both sensorimotor and cognitive abilities. Due to technical and organizational limits, it has not been possible to apply imaging methods to study brain metabolism in a hyper-g environment. Therefore, it remains unclear whether these alterations in sensorimotor and cognitive function are the primary physiological effects of changed gravity conditions, or whether they are secondary effects associated with environmental and physiological factors such as for example workload or hemodynamic changes. The use of the DLR short arm human centrifuge (SAHC) in combination with electromyography offers a unique research platform to explore possible effects of changed gravity conditions on human physiology and psychology. Standardized low resolution brain electromagnetic tomography (sLORETA) enables spatial identification and analysis of brain cortical activity via traditional EEG recordings and has recently been established to show gravity induced changes (weightlessness & hyper-g).

Aims of this doctoral thesis are to correlate central and peripheral parameters of artificial gravity as well as the impact of artificial gravity on mood and sleep regulation. Subjects will be exposed to various gravity levels, as 0,38 Gz (Martian acceleration) and 1 Gz as both proposed to be used in countermeasures protocols, as well as higher levels as two and three times terrestrial gravity (Gz) while wearing an active electrode cap (ActiCap®, Brain Products, Munich). Apart from the electroencephalogram (EEG) a wide variety of peripheral physiological parameters (e.g. heart rate, blood pressure, electromyogram (EMG), motor performance) and psychological parameters (mood) will be recorded in order to correlate central and peripheral aspects of hyper-g and its influence on performance and wellbeing. These extensive experiments seem to be of fundamental interest as the SAHC is planned to be used during manned space flight to act as a countermeasure to weightlessness induced deficits in physiological and performance parameters.
Scientific Program

For human melanocytes, it has been shown that signaling via the second messenger cyclic guanosine 3':5'-monophosphate (cGMP) plays an important role in melanocyte biology, e.g., the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP pathway is involved in UVB-induced melanogenesis and melanocyte-extracellular matrix component interactions, which may contribute to loss of melanocytes or melanoma metastasis. In addition, we found that different guanylyl cyclase isoforms are responsible for cGMP synthesis in melanocytic cells. Furthermore, we could demonstrate that the cGMP turnover is altered under variable gravity conditions (hypergravity): normal melanocytes and nonmetastatic, but not highly metastatic cells responded with an increase in cGMP efflux under conditions of reduced cGMP hydrolysis or accelerated cGMP synthesis, which was related to an enhanced expression of the multidrug resistance proteins 4/5 as selective cGMP exporters as shown on mRNA and protein levels using real-time polymerase chain reaction and flow cytometric analysis.

Doctoral Theses

Thus, cGMP appears to be important in the adaptation process of human melanocytes to gravitational stress and important for malignant transformation. The scientific goal is therefore to investigate the role of NO and cGMP-modulated gene expression which is involved in (patho)physiological processes such as the regulation of melanocyte and melanoma cell proliferation and apoptosis, melanogenesis, cell-cell and cell-extracellular matrix interactions, or metastasis under the conditions of simulated and/or real microgravity (s. Space simulation facilities) with or without an irradiation.
For human melanocytic cells, it has been shown that signaling via the nitric oxide (NO) and cyclic guanosine 3':5'-monophosphate (cGMP) plays an important role in the melanocyte biology, e.g., the NO/soluble guanylyl cyclase (sGC)/cGMP pathway is involved in UVB-induced melanogenesis, melanocyte-extracellular matrix (ECM) component interactions, which may contribute to loss of melanocytes (e.g., vitiligo) or melanoma metastasis and in the response of human melanocytic cells to hypergravity. The aim of the thesis will be to investigate whether the NO/cGMP-pathway is involved in the regulation of melanocyte and melanoma cell growth, melanogenesis, and cell-ECM interactions under the conditions of simulated microgravity with or without an irradiation. These studies could be essential with respect to the minimization of the skin disease risk, especially melanoma for astronauts during long-term spaceflight.
Sci entific Program

Physiological processes in the skin including erythema, inflammation, and cancerogenesis. The soluble guanylyl cyclase (sGC), a key transducer in the NO signaling, catalyzes the formation of guanosine 3’,5’-cyclic monophosphate (cGMP). For human melanocytic cells, we and others have shown that signaling via the NO-cGMP play an important role in melanocyte (patho)biology, e.g., the NO/sGC/cGMP pathway is involved in UVB-induced melanogenesis and melanocyte-extracellular matrix (ECM) interactions, which may contribute to loss of melanocytes (e.g., vitiligo) or melanoma metastasis. Melanoma is a deadly skin cancer that arises from transformed melanocytes and is characterized by a resistance to chemotherapy. Moreover, we found differential expression of guanylyl cyclase (GC) in melanocytic cells. Normal human melanocytes (NHMs) and non-metastatic melanoma cells (MCs) predominantly express the sGC, which appears to be associated with melanogenesis, whereas the absences of NO-sensitive sGC, but up-regulated activities of the natriuretic peptide-sensitive membrane isoforms were found in highly metastatic phenotypes.

Doctoral Theses

Finally, we were able to show, that NHMs and non-metastatic MCs, but not highly MCs respond to long-term hyper-g exposure with an extrusion of cGMP under conditions of reduced cGMP hydrolysis or accelerated cGMP synthesis (e.g., by NO). The elevated cGMP efflux was related to hyper-g-induced increase in the expression of the selective cGMP exporter the multidrug resistance proteins 4 and 5. The effects of extracellular cGMP in the cell-cell communications particularly in the interplay of MCs with other cell types of the tumor microenvironment including endothelial cells are however not well investigated. In the frame of the current space exploration, studies on the influence of altered gravity on melanocyte (patho)physiology are of special interest. The aim of the thesis will be to investigate the role of NO, natriuretic peptides and cGMP in melanoma-endothelial cell interactions (important for metastasis) using centrifuges and/or clinostats. These studies could be essential with respect to the minimization of the risk and/or treatment of skin disease particularly of melanoma that contain high levels of vascularization for astronauts during long-term spaceflight.
Astrobiology is the interdisciplinary study of life in the universe, focused primarily on investigations to the origin, distribution and evolution of life. One major astrobiological research topic encompasses the question of what kind of environments can life tolerate. In the last decades the number of organisms discovered at locations, which would have been classified still recently as ‘life-hostile’, has increased immensely. Examples of such extremophilic terrestrial organisms are microorganisms from hot springs, hydrothermal vents, deserts, permafrost, salt crystals, and very acid or basic water. The increasing knowledge of the microbial adaptability and its fundamental molecular mechanisms enable the estimation of their hypothetical viability on other planets in our solar system, e.g. on Mars. The ability of life to move beyond Earth will depend upon the potential for microorganisms to utilize resources, and to adapt and evolve in extraterrestrial environments. Viable microorganisms might be transported by natural events such as impacts or by robotic spacecraft, but they most certainly will accompany human missions. Life forms will be challenged by extremes in temperature, pressure, radiation and the availability of nutrients. Studies of adaptation and survival will indicate not only whether microbial life can expand its evolutionary trajectories beyond Earth but also how it can play key supporting roles in human exploration.

The Lehrstuhl für Mikrobiologie and the Archaea Centre of the University of Regensburg have a long-lasting expertise in isolating, growing and characterizing extremophilic Bacteria and Archaea. These microorganisms are able to thrive under physicochemical conditions which are extreme and hostile for most life forms known on this planet. They are a rich resource of model organisms also for studying the effect of conditions in outer space or on other planets of our solar system, concerning radiation of various kinds (UV, ionizing), and extreme draught, i.e. low water pressure. While the Archaea Centre in Regensburg has tested the microorganisms under several kinds of extreme conditions, further astrobiological experiments cannot be performed in Regensburg.

The Research School provides the unique opportunity to join the biological resources of the Regensburg Archaea Centre with the equipment and expertise of the DLR research group ‘Photo- and Exobiology’, where laboratory and space experiments concerning research on viability and adaptability to space as well as to simulated Martian conditions are accomplished. The molecular and cellular mechanisms for the adaptation to extreme environmental conditions and the capability to repair different kinds of damages will be investigated in several microbial model organisms. The response of cells exposed to vacuum and ionizing radiation will be tested, and the cellular content of small and large molecules which are known to help microorganisms to sustain extreme conditions, like compatible solutes and protein complexes called chaperonins will be analyzed. Both molecules have been described to accumulate to great extent in the cytosol upon exposure to stress conditions.

The results of these ongoing investigations are also important for the development of ESA planetary protection guidelines for the future exploration of our solar system.
Scientific Program

kGy, which induce 150 to 200 DNA double-strand breaks per chromosome. Regarding its polyextremophile features, *D. radiodurans* has been considered a model for astrobiological studies concerning the survival under space or Mars conditions. Recently, a novel thermophilic, hydrogen-oxidizing bacterium, called *Hydrogenothermus marinus* has been isolated from a marine hydrothermal area of Vulcano Island, Italy. First experiments could show that cells of this microaerophile microorganism are very resistant to desiccation, even under aerobic conditions. While very few is known about the radiation and desiccation resistance of thermophilic bacteria, a direct comparison of *H. marinus* with one of most radiation-resistant microbe on Earth will give insights in the UV photobiology and desiccation resistance of these bacteria. The terrestrial UV spectrum extends from about 290 to 400 nm, but shorter wavelengths may become more prevailing in the future due to the loss of ozone in the stratosphere. Therefore, it is crucial to gain a better understanding of the damaging effects of polychromatic environmental UV radiation as well as the mechanisms for repair of this damage. In previous studies of the DLR Exobiology workgroup, the induction and repair of UV-induced photoproducts in various microorganisms was examined, but other kinds of damage remain to be elucidated. In this thesis, new methods will be used to study in detail the survivability and DNA damage profiles induced by different qualities of UV radiation, as well as the repair kinetics in *D. radiodurans* and *H. marinus* to determine effectiveness of selected DNA repair pathways in both species. Further on, oxidative protein damage by radiation- or desiccation-induced radicals will also be of great interest, since this is considered to be one of the factors of cellular ageing processes.

Doctoral Theses

shorter wavelengths may become more prevailing in the future due to the loss of ozone in the stratosphere. Therefore, it is crucial to gain a better understanding of the damaging effects of polychromatic environmental UV radiation as well as the mechanisms for repair of this damage. In previous studies of the DLR Exobiology workgroup, the induction and repair of UV-induced photoproducts in various microorganisms was examined, but other kinds of damage remain to be elucidated. In this thesis, new methods will be used to study in detail the survivability and DNA damage profiles induced by different qualities of UV radiation, as well as the repair kinetics in *D. radiodurans* and *H. marinus* to determine effectiveness of selected DNA repair pathways in both species. Further on, oxidative protein damage by radiation- or desiccation-induced radicals will also be of great interest, since this is considered to be one of the factors of cellular ageing processes.
for deconditioning long duration mandatory effective countermeasures. Handicapped observed sarcopenia countermeasures are conditions. However, observed changes are comparable to processes observed during ageing or in handicapped people with inborn or chronic diseases of the neuromusculo-skeletal system. Insofar, the foreseen projects will aim at astronauts, ageing people and patients. Under consideration are special training measurements and nutraceuticals with a postulated positive effect on muscle and/or bone mass and function. To conduct research in this field on Earth, methods using 6° head-down tilt bed rest (HDTBR) as a simulation model for muscle and bone unloading (immobilization) are utilized.

The adequate stimulus for muscle growth keeping or increasing muscle trophy and strength is a given by a combination of high intense muscle contraction and passive stretches. These stimuli are e.g. provided by concentric‐eccentric resistive exercise or by jumps and landings. Bone growth is locally triggered by strain and the best strain pattern in a bone is naturally generated by high intense muscle work or by impacts like the heel impact on ground during running.

A most time efficient training of all leg muscles is given by a leg press like apparatus. In microgravity, heavy weights cannot provide counter forces for muscle training. Existing, even newly developed training devices do not fulfill the required efficiency of a training method for microgravity.

Bone and muscle loss in space
Microgravity is a challenging environment for the human organism. In particular, the mechanical loading of muscles and bones in the back, the hip area, and the legs is severely reduced in microgravity compared to earthbound conditions. This leads to sarcopenia and osteoporosis. For long-term spaceflight, the deconditioning of the musculo-skeletal system belongs to the most risky physiological changes observed in response to microgravity. To obtain health and effectiveness of astronauts especially for planned long-duration space flights, it is mandatory to develop efficient countermeasures. Current countermeasures are either less effective or too time-consuming for application during long-term mission. New developments are mandatory in order to keep muscle and bone function during the astronauts’ long-term flight. However, the observed changes are comparable to processes observed during ageing or in handicapped people with inborn or chronic diseases of the neuromusculo-skeletal system. Insofar, the foreseen projects will aim at astronauts, ageing people and patients. Under consideration are special training measurements and nutraceuticals with a postulated positive effect on muscle and/or bone mass and function. To conduct research in this field on Earth, methods using 6° head-down tilt bed rest (HDTBR) as a simulation model for muscle and bone unloading (immobilization) are utilized.

The adequate stimulus for muscle growth keeping or increasing muscle trophy and strength is a given by a combination of high intense muscle contraction and passive stretches. These stimuli are e.g. provided by concentric‐eccentric resistive exercise or by jumps and landings. Bone growth is locally triggered by strain and the best strain pattern in a bone is naturally generated by high intense muscle work or by impacts like the heel impact on ground during running.

A most time efficient training of all leg muscles is given by a leg press like apparatus. In microgravity, heavy weights cannot provide counter forces for muscle training. Existing, even newly developed training devices do not fulfill the required efficiency of a training method for microgravity.

Scientific Program

We therefore intend to verify and apply a Sensodrive-leg press as an upgrade and technological progress of the current flywheel device. Robotic controlled Sensodrives have originally been developed for ultra light weight robotic arms on the ISS. This novel technology combined with a leg press allows the application of various patterns of force and velocity at any angle of the hips, the knees, or the ankles during leg movement. During training the subject must not adapt to the physical properties of the device, but like a physiotherapist the device with its one intelligent robotic motor control also adapts to the needs of the subject. Time optimized and variable training stimuli and protocols can be developed, that provide optimum intense and maximum save stimuli for all groups of leg muscles and bones. The simulation of naturally earth bound situations like hopping or trampoline jumping will potentially also keep up motor control and balance. Little is known about the interrelations between muscle fatigue and the growth stimulus of training. The combination of the Sensodrive leg press and a lower body negative pressure device will be built to study the effects of alterations in muscle perfusion by gravity independent simulation of various levels of orthostasis.

Doctoral Theses

We therefore intend to verify and apply a Sensodrive-leg press as an upgrade and technological progress of the current flywheel device. Robotic controlled Sensodrives have originally been developed for ultra light weight robotic arms on the ISS. This novel technology combined with a leg press allows the application of various patterns of force and velocity at any angle of the hips, the knees, or the ankles during leg movement. During training the subject must not adapt to the physical properties of the device, but like a physiotherapist the device with its one intelligent robotic motor control also adapts to the needs of the subject. Time optimized and variable training stimuli and protocols can be developed, that provide optimum intense and maximum save stimuli for all groups of leg muscles and bones. The simulation of naturally earth bound situations like hopping or trampoline jumping will potentially also keep up motor control and balance. Little is known about the interrelations between muscle fatigue and the growth stimulus of training. The combination of the Sensodrive leg press and a lower body negative pressure device will be built to study the effects of alterations in muscle perfusion by gravity independent simulation of various levels of orthostasis.
Space Physiology

Bone and muscle loss in space

Topic of Doctoral Thesis
Development and verification of a time efficient training for lower and upper leg muscles using a robotic controlled Sensodrive leg press

DLR Supervisor
PD Dr. Jochen Zange
++49 2203 601 3456
jochen.zange@dlr.de

University Supervisor
Prof. Dr. Joachim Mester
DHS Kölın
++49 221 4982 4830
mester@dshs-koeln.de

Thesis Description
The adequate stimulus keeping or increasing muscle volume and strength is given by a combination of high intense muscle contraction and passive stretches. These stimuli are e.g. provided by concentric-eccentric resistive exercise. A most time efficient training of all leg muscles is given by a leg press like apparatus. In microgravity, heavy weights cannot provide counter forces for muscle training. We propose the verification and application of a robotic controlled Sensodrive leg press which allows the application of various patterns of force and velocity at any angle of the hips, the knees, or the ankles during leg movement.

Using this instrument a set of short and motivating exercise profiles shall be developed and verified for their efficiency in increasing muscle volume and strength in sedentary subjects during ambulant training or preventing leg muscle from disuse atrophy during simulated microgravity conditions like bed rest or unilateral leg suspension.

Leg cross section (thigh)

Muscle action potentials (Electromyogramm, EMG)
Space Physiology

Bone and muscle loss in space

Topic of Doctoral Thesis
Peripheral perfusion, peripheral fatigue, and their interaction in the control of muscle growth and fiber type composition during strength training using a robotic controlled device

DLR Supervisor
PD Dr. Jochen Zange
++49 2203 601 3456
jochen.zange@dlr.de

University Supervisor
Prof. Dr. Joachim Mester
++49 221 4982 4830
mester@dshs-koeln.de

Thesis Description
The adequate stimulus for muscle growth keeping or increasing muscle volume and strength is given by a combination of high intense muscle contractions and passive stretches. These stimuli are e.g. provided by concentric-eccentric resistive exercise. It is generally assumed that muscle work and passive loading determined growth and strength whereas the processes of fatigue determined muscle endurance parameters. However, little is known about the mechanistic interrelations between muscle perfusion and the processes of peripheral fatigue and the growth stimulus of training.

The combination of a robotic controlled Sensodrive leg press and a lower body negative pressure device will be used for a well controlled application of various types of work and loading in combination with alterations in muscle perfusion by various levels of simulated orthostasis. Immediately after training and during recovery from training the interstitial and systemic activity of hormones controlling protein synthesis, proteolysis, and angiogenesis will be analyzed in samples generated by microdialysis in muscle and in blood.

Muscle and bone visualization

Robotic controlled training under lower body negative pressure (LBNP) orthostasis (A. Hoff)
Methods and measurement equipment were developed and tested in numerous terrestrial and space experiments using a simulation of a spacecraft docking on a space station. An integral problem in the interpretation of any physiological measurement as a strain indicator is the individuality of human physiological reactions. In our approach we differentiated individual systemic psychophysiological responses to mental load into Autonomic Outlet Types (AOT). The AOT was defined as the individual systemic outcome pattern of the common activation reaction of the autonomic nervous system to psychological stressors, which is assessable by non-invasive physiological measurements. The AOT is characterized by the physiological measurement with the largest changes over a protocol including a series of changes between rest and mental load. Studies of pulse or heart rate (HR) and heart rate variability (HRV) and of voice frequency parameters as indicators of emotional stress have proven the applicability, feasibility, and usefulness of psychophysiological measurements under field conditions. For practical applications physiological correlates of different functional body subsystems have to be integrated into one common indicator of “physiological costs”. The statistical methodology of integrating the measured correlates of physiological processes into a “strain scale” is based on the assumption that all physiological measurements have a “normal working range” which can be approximately described by a linear function. Once linearity is demonstrated, one can use statistical methods for detecting independent linear information (factor analysis), subsequently integrating the found vector room by a standard vector sum (root of the sum of factor weight squares) as Psychophysiological Arousal Vector (PAV). The elaboration of the mathematical functions will be based on the data of the classification procedure for the AOT. We will consider the statistical approach (or model) of the PAV to be verified, if the individual differences in the single physiological parameters between the AOT groups found during the mentally loading protocol are also found in the data obtained during the FST - but without indication of differences between the AOT groups in the calculated PAV-data during the FST. Furthermore we will demonstrate that these deindividualized strain indices still provide the possibility of grouping and differentiation e.g. by means of cluster analysis.
The three-year program reflects the increasing importance of interdisciplinarity in life science research and provides comprehensive training for scientific, methodological and “soft” skills. The program will provide training and translational research towards a career in life sciences and space research. The SpaceLife program consists of a three-year research project as well as introductory and advanced lectures, student workshops, journal clubs, the active attendance of congresses, participation in laboratory and transferable skill courses.

Thesis supervision

Expert supervision throughout the research activities leading towards a doctoral degree within 3 years is regarded of the utmost importance. In addition to the day-to-day supervision, each doctoral student has a Thesis Advisory Committee (TAC). The main task of the TAC is to guide the doctoral students throughout their thesis work and to monitor and evaluate the progress of the research project and the individual development of the doctoral student.

The TAC consists of three faculty members. First and second Supervisors are chosen on the basis of their research specialty in order to provide as far as possible the complete scientific expertise required to realize the proposed thesis project.

The DLR Supervisor is a scientist at the Institute of Aerospace Medicine working at the laboratory where the research is being performed. At least one member of each TAC must be a university professor.

The Mentor is a scientist from a different scientific field and gives general advise to the doctoral student, e.g. for career planning. The TAC will help to design and monitor the trainee’s thesis work and will help the trainee to establish contacts inside and outside the institution.

Following the submission of a project proposal after one month, and an initial report meeting after 3 to 6 months, TAC meetings are scheduled on an annual basis. TAC meetings include a written report and an oral presentation which covers the theoretical background, research progress, results obtained so far and experiments to be done in the future. The Initial Report focuses on the detailed outline of the thesis project and planning for future experiments. The 3rd Annual Report meeting defines the work to be done prior to writing and submitting the thesis, and the time frame for obtaining the doctorate. TAC meetings can be integrated in the Students’ Workshop or organized separately.

Day-to-day supervision in the lab
The three-year doctoral program is divided into six semesters (half-years). In addition to the laboratory-based experimental thesis work, doctoral students participate in a structured training program, which consists of 246 hours of practical courses, workshops, lectures, seminars, and journal clubs. The curriculum of training is composed of mandatory and elective modules:

- Introductory Lectures during the 1st and 2nd semester (mandatory)
- Advanced Lectures during the 3rd semester (elective)
- Students’ Workshop during the 1st, 4th and 6th semester (mandatory)
- Seminars, Workshops and Experimental Courses (elective, 30 h during the program)
- Journal Club during the 2nd, 3rd, 5th and 6th semester (mandatory)
- 2 ½ days soft skill training per year (mandatory)
- Additional soft skill training based on individual needs (DLR education program), e.g. project management (optional)
- Active participation in a Workshop or Conference (mandatory)
- Internal Seminars (optional)

Students’ Workshop

In the 1st semester, each student is given a valuable opportunity to present his/her research project including the hypothesis, methods to be applied and the work schedule. During the 4th Semester, students are once again given the opportunity to present the current findings of their research projects in front of the class and TAC, giving the student valuable feedback on how they are progressing. This enables the student not only to develop his/her presentation skills but to critically analyze their own findings and those of others. During the last term, the students present the final report on their thesis.

Journal Clubs

Journal Clubs are held during the second, third, fifth and sixth semester in the working groups of the Institute of Aerospace Medicine and the Partner Universities. They offer the opportunity to read papers together and to discuss them with members of the working group. Each student is required to present an original paper and review. The topic of the original paper is always related to the general field of the student’s research project, requiring the student to research and subsequently present the topic in a succinct and critical way. Doctoral students will familiarize with critical reading, preparation of manuscripts and scientific figures, and designing of a doctoral thesis and a research proposal in the Journal Clubs.

Internal Seminars

Doctoral students participate at the Internal Seminars organized by the Institute of Aerospace Medicine. International renowned scientists are invited to present their scientific work in Cologne. At least once during the doctoral thesis work, each doctoral student will have the opportunity to present the own scientific work to a large audience.

Conferences/Symposia

Participation in national as well as international conferences will be encouraged. The trainee will have to present her/his work at least during one conference either by a poster or an oral presentation, which will be financially supported.
SpaceLife

Professional Training Program

Career Day
During the third year of the program, the doctoral students attend or organize and chair a Career Day, for example during the Space Life Science Congress ("Medicine and Mobility") organized by members of the Institute of Aerospace Medicine, during which invited speakers from academia, industry, scientific journals and funding bodies present career paths to the students.

Optional lab rotations
Optional lab rotations will be encouraged on an individual basis, especially if
- the graduate training is conducted in a research area different from the undergraduate studies
- the thesis work is interdisciplinary
- the thesis requires methods which are not established in the hosting lab.

External work of trainees
If appropriate, the trainees will have the opportunity of a short-term stay in a partner institute or organization, in industry, or in a specialized laboratory to complement her/his skills or to carry out work that cannot be done within the partnering institutions. This might also be abroad. The trainees can apply for support through SpaceLife.

Final examination
The doctoral examination can comprise a public presentation of the trainee in which she/he will present the results of her/his doctoral work which will subsequently be discussed with the auditorium, depending on the regulations of the university.

Curriculum

<table>
<thead>
<tr>
<th>Semester</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective Course</td>
<td>Soft Skills</td>
<td>Soft Skills</td>
<td>Soft Skills</td>
<td>Soft Skills</td>
<td>Soft Skills</td>
<td>Soft Skills</td>
</tr>
<tr>
<td>Seminar, Practical Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students' Workshop</td>
<td>Journal Club</td>
<td>Journal Club</td>
<td>Students' Workshop</td>
<td>Journal Club</td>
<td>Journal Club</td>
<td>Journal Club</td>
</tr>
<tr>
<td>Research Project Presentation</td>
<td>Critical Reading</td>
<td>How to publish</td>
<td>Progress Report</td>
<td>Thesis Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Lectures</td>
<td>Advanced Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrobiology, Radiation & Gravitational Biology, Space Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introductory Lectures
As the doctoral program is open to candidates from diverse backgrounds, the 1st semester, as well as part of the 2nd, concentrates on the basics of Space Life Sciences. Doctoral students participate in a mandatory lecture covering the topics space medicine, radiobiology, astrobiology and gravitational biology. The lectures introduce the space life sciences research program and the theoretical background of the topic and provide the scientific background of the applied methods. The learning success is controlled by a written exam.

Space Life Sciences

Space Medicine

Semester
1st

Duration
6 h

Subjects
History of Space Medicine, Atmosphere, Radiation, Space Weather
Space Transport Systems, Space Station
Human Physiology in Space I: Short an mid-term adaptation
Human Physiology in Space II: Longterm adaptation, Countermeasure Development
Astronaut Selection, Training, Work Schedule in Space, EVA, Medical Problems
Future Plans for Human Spaceflight
(Gerzer)

Learning Objectives
Basic Information on Space Physiology and Medicine - medical problems during short-term and long-term manned space missions and their solutions available currently.

Prerequisites for the Course
Participation in SpaceLife

Radiation Biology

Semester
1st

Duration
6 h

Subjects
Interplanetary radiation field (Heber)
Radiation Environments on Planets & other Celestial Bodies (Wimmer-Schweingruber)
Earth Radiation Environment and Space Radiation - Quantities and Measurements (Berger)
Radiation Exposure during Space Missions (Reitz, Berger)
Biological Effects of Space Radiation (Hellweg), Acute & Chronic Radiation Effects in Humans (Baumstark-Khan)

Learning Objectives
Overview of the space radiation environment, with emphasis on energetic particle environment in interplanetary space & planetary magnetospheres; Introduction to dose quantities for radiation protection in space, comprehensive survey of space radiation measurements with view to future human mission to Mars, radiation exposure during space missions & biological risks for humans.

Prerequisites for the Course
None
Introductory Lectures

Astrobiology

Semester
2nd

Duration
6 h

Subjects
1. Steps to Life (Horneck tbc)
2. History of Life on Earth (Rabbow)
3. Life under Extreme Conditions (Huber)
4. Looking for Life, Searching the Inner Solar System (Rettberg)
5. Interplanetary Transfer of Life (Panitz)
6. Astrobiological Space Experiments - Past and Present (Rabbow)

Learning Objectives

ad 1. Understanding the definitions of life, definition and aim of astrobiology, formation of the precursors of life (atoms, molecules of life), how and where.

ad 2. Learning the records of life, the sources of prebiotic organic molecules, the fossil records, the molecular biology record; understanding general strategies of life for adaptation to extreme environments, metabolism, growth & survival.

ad 3. Understanding the adaptation of specialized extremophiles to high and low temperatures, to high salinity, to high pressure, to low water activity.

ad 4. Understanding the prerequisites of habitability, the habitable zone of our solar system; learning astrobiological aspects of Mars, its history of water, results from past and ongoing missions to Mars, planned missions to Mars.

ad 5. Learning the hypothesis of "Panspermia" and "Lithopanspermia", experimental tests of those and conclusions from the results.

ad 6. Knowing the ongoing and planned astrobiological space experiments

Prerequisites for the Course

Basic knowledge in natural sciences, i.e. physics, chemistry, biology

Gravitational Biology

Semester
2nd

Duration
6 h

Subjects

Theoretical Background in Gravitational Biology:
1. Methods on ground and in space (flight opportunities)
2. Graviperception in unicellular systems
3. Gravity related signal transduction pathways
4. Graviperception in multicellular systems (plants, animals)
5. Life Support Systems, Exploration

Learning Objectives

Fundamental aspects and experimental approaches in gravitational biology.

Prerequisites for the Course

None
Advanced Lectures

During the 3rd semester, doctoral students participate in an advanced lecture in a topic of their interest. They elect at least one advanced lecture from one of the following topics:

- Space Physiology
- Radiation Biology
- Gravitational Biology
- Astrobiology
- Aerospace Dosimetry
- Extraterrestrial Physics
- The Interplanetary Medium

Space Physiology

Semester
3rd

Duration
10 h

Subjects
Cardiovascular System, Fluid & Salt balance (Guest Speaker)
Skeletal System & Muscles (Zange)
Neurosensory & Vestibular System (Balance & Motion Sickness) (Guest speaker)
Immunological & Hormonal Response (Guest speaker)
Medical Research aboard the ISS (Ruyters)
Current Countermeasure Developments (Zange)
Psycho-Sociological Aspects (Johannes)
Human Health Concerns for Lunar & Martian Exploration (Gerzer)

Learning Objectives

Detailed Insight into Space Physiology, including ground based research, space analogs (bed rest etc.), and development of countermeasures. Refreshing of knowledge from introductory cours.

Prerequisites for the Course

Introductory Lectures "Space Life Sciences", "Space Medicine"
Advanced Lectures

Radiation Biology
Semester
3rd
Duration
30 h
Subjects
Natural and man-made sources of radiation; Types of ionizing radiation; Radiation interaction with matter; Radiation quantities, Physics of radiation absorption; Radiation dosimetry and dosimeters (Berger)
Interactions of radiation with matter: Chemistry of radiation absorption in solutions & living systems. Radiation protectors: Chemistry of radiation scavenging (Baumstark-Khan)
DNA damage: DNA as the principle target of radiation killing; Single and double strand DNA breaks; Mechanisms of DNA repair (Hellweg);
Chromosomal aberrations & their use as 'radiation dosimeters' (Baumstark-Khan)
Cytosol and radiation response: Mechanisms of signal transduction from the cytosol to the nucleus, or vice versa, factors influencing radiation response of mammalian cells; Important gene products (Hellweg)

Subjects (continued)
Characteristics of cell survival curves - interpretive models based on target theory or repair theory; Radiosensitivity of various tissues. Role of oxygen in modifying the chemistry of radiation damage and cellular radio sensitivity; Mammalian cell radio sensitivity: Interphase, reproductive and apoptotic cell death; Cellular factors that modify radiation response: The role of the cell cycle in influencing radiation response (Baumstark-Khan)
Use of radiation for cancer therapy: Deficient vascularisation, high interstitial pressure and hypoxia in solid tumors; Significance of tumor physiology for radiation treatment; Tumor regrowth and tumor cure assays. (Baumstark-Khan)
Low dose effects on humans: The mechanisms of radiation-induced mutagenesis and carcinogenesis; Oncogenes and suppressor genes; Susceptibility of various organs; Risks of developing cancers from present-day sources; The hereditary effects of radiation; Effects on the embryo and fetus (Baumstark-Khan)
Whole body irradiation - acute effects of high doses: Prodromal syndromes; Cerebro-vascular,

Subjects (continued)
gastrointestinal and haematopoietic syndromes;
Mean lethal doses; Treatments for whole body exposure. (Baumstark-Khan)
Lessons from Hiroshima, Nagasaki and Chernobyl: Acute & chronic health effects on those exposed; Assessment of exposure doses; Assessment of present day risks, & radiation protection standards (Baumstark-Khan)

Learning Objectives
The course RADIATION BIOLOGY will focus on the biological changes which follow the interaction of ionizing and non-ionizing radiation with living matter from molecular interactions to whole body responses. Particular emphasis will be placed on the role of ionizing radiation in the treatment of cancer, mechanisms of radiation-induced carcinogenesis, and changes in normal and tumor cells at the molecular, cellular and tissue level. The course includes the biological aspects of environmental radiation exposure.

Prerequisites for the Course
Introductory Lecture "Radiation Biology"
Advanced Lectures

Gravitational Biology

<table>
<thead>
<tr>
<th>Semester</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>4 x 1.5 h</td>
</tr>
</tbody>
</table>

Subjects
1. Gravity Effects on Cells
2. Gravity Effects on Animals
3. Space Biological Experiment Design. Graviperception in Unicellular Systems
4. Graviperception in Multicellular Systems (Plants, Animals)
5. Life Support Systems, Exploration

Learning Objectives
Enhanced aspects and experimental approaches in gravitational biology; dedicated examples from experiments under altered space conditions

Prerequisites for the Course
Introductory Lecture "Gravitational Biology"

Astrobiology

<table>
<thead>
<tr>
<th>Semester</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>6 x 1 h</td>
</tr>
</tbody>
</table>

Subjects
1. *Bacillus subtilis* - a Model Organism for Space Research (Möller)
2. Pitfalls of Detecting Life (Rabbow)
3. Planetary Protection (Rettberg)
4. Hyperthermophile Archaea tbc (Huber)
5. Robotic Solar System Exploration - Europa, Titan, Enceladus (Panitz)
6. Human Missions (Horneck tbc)

Learning Objectives (continued)
ad 3. Understanding the aim of PP, learning the regulations and related methods, their advantages and disadvantage.
ad 4. Understanding the specialization of extremophiles drawing the example of hyperthermophiles: metabolism, adaptation strategies
ad 5. Knowing the robotic space missions connected to Astrobiology, past, present and future, understanding their rationale
ad 6. Understanding the complexity and constrains of human missions in general and to Mars in particular, their opportunities and the consequences for the target planet

Prerequisites for the Course
Introductory Lecture "Astrobiology"
Advanced Lectures

Aerospace Dosimetry (CAU Kiel 060374)

Semester
3rd or 5th

Duration
30 h

Subjects
Radiation environment, including the origin and composition of primary particles, interaction of these primaries with matter (e.g., ionization, electromagnetic and hadronic interactions, secondary particle production)

Methods for measurements
Characterization and analysis of radiation in space

Physical and medical parameters in dosimetry like LET; dose; effective dose and quality factor (Heber)

Learning Objectives
The students learn the basic principles and applications of experimental measurements and interaction of radiation with matter as well as properties of different radiation environments important to humans in space

Prerequisites for the Course
Introductory Lecture "Radiation Biology"

Extraterrestrial Physics (CAU Kiel 060346)

Semester
1st or 3rd

Duration
30 h

Subjects
The course gives a solid introduction to the Earth's space environment starting with the atmosphere, ionosphere, magnetosphere, and continuing with the origin of the solar wind, its interaction with planetary bodies and the overall structure of the heliosphere.

(Heber, Wimmer-Schweingruber)

Learning Objectives
Understanding of the Earth's space environment
Understanding of particle propagation and acceleration

The Interplanetary Medium (CAU Kiel)

Semester
2nd or 4th or 6th

Duration
30 h

Subjects
The interplanetary medium (Heliosphere) fills the space between the planets. It has its origin in the solar wind emanating from the Sun and interacting with the interstellar medium. Several properties of the interplanetary medium are important for our understanding of radiation exposure of astronauts and, in some cases, of aircraft crews. The interplanetary medium and its boundary region with the interstellar medium modulate galactic cosmic rays; it is also the medium through which solar energetic particles propagate (Heber, Wimmer-Schweingruber)

Learning Objectives
Understanding of the large-scale structure & origins of the heliosphere; Capability to interpret real-time space weather data & knowledge of data sources

Prerequisites for the Course
Introductory Lecture "Radiation Biology"
Seminars, Workshops and Experimental Courses

Elective Seminars, Workshops and Experimental Courses are offered in the first, third and fifth semester of the program. During the three year period, Doctoral students should participate in 30 hours of electives courses. The participation in each course must be discussed with the primary Supervisor.

The workshop "Biomathematics" combines lectures and exercises, and provides skills towards the quantitative analysis of experimental data and experiment configuration and study design. Experimental Courses cover different methods in space life science research. A series of laboratory courses that have already been installed by the partner institutions will offer the trainees a special training in specific areas including laboratory as well as theoretical work.

Seminars

Role of Nutraceuticals as Countermeasures in Prevention of Organ Degradation (RFWU Bonn)

Semester 3rd
Duration 30 h
Subjects Basics of nutrient related organ functions: Role of glutamine, omega3 fatty acids, secondary plant products (polyphenols), vitamins (D, E) and mineral/trace elements (calcium, selenium, zinc) on gut integrity, bone/muscle metabolism and immune response
Presentation of actual research work (journal club) (Stehle)

Learning Objectives
Evaluation of the effects of dietetic measures on organ integrity and function
Formulation and implementation of dietetic measures in practice
Planning of clinical studies

Prerequisites for the Course
Introductory Lecture "Space Medicine"

Structure and function of adaptation processes;
Performance and ageing;
Performance diagnostics (DSHS Köln)

Semester 2nd or 4th or 6th
Duration 15 x 1 h
Subjects General physiological mechanisms of adaptation
Definition of metabolic and mechanical stimuli between micro- and ultra-loading
Biological response to stimuli at organ- and cell-level
Age depending adaptation
Empirical approaches to adaptation (time course) (Mester)

Learning Objectives
Establish an understanding of adaptation between stimulus and molecular mechanisms
Tuning of stimuli under various conditions (from microgravity to bedrest to ultrahigh loads)

Prerequisites for the Course
Introductory Lecture "Space Medicine"
Seminars

Gravitational Biology
(RFWU Bonn)

Semester
2nd or 3rd

Duration
15 h

Subjects
Enhanced Background in Gravitational Biology:
1. Methods on ground and in space (flight opportunities)
2. Graviperzeption in unicellular systems
3. Graviperception in multicellular systems (plants, animals)
4. Life Support Systems, Exploration
 (Hemmersbach, Braun)

Learning Objectives
Enhanced aspects and experimental approaches in gravitational biology; dedicated examples from experiments under altered space conditions

Prerequisites for the Course
None

Heliospherical Astroparticle Physics & Dosimetry
(CAU Kiel)

Semester
3rd or 5th

Duration
30 h

Subjects
During the seminar student will present recent research in the following topics: Structure of the heliosphere, planetary magneto- and atmospheres; processes and stability. The composition, acceleration and propagation of charged particles in magnetized plasmas including scattering, drifts, magnetospheric transmission and secondary particle production in matter; dependence on solar activity. Spectral measurements of particle radiation and standards for space dosimetry measurements (e.g. LET, (effective) dose).

Learning Objectives
Students learn how to work out and present fundamental and recent research topics in heliospheric astroparticle physics, with emphasis on acceleration and transport of energetic particles and galactic cosmic rays in the heliosphere, planetary magneto- and atmospheres, as well as basic principles and methods in space dosimetry.

Prerequisites for the Course
Introductory Lectures "Radiation Biology"
Aerospace Dosimetry (CAU Kiel 060374) or The Interplanetary Medium or Extraterrestrial Physics (CAU Kiel 060346)
Seminars

Current Topics in Space Physics (CAU Kiel)

Semester
2nd, 3rd, 4th, 5th or 6th

Duration
30 h

Subjects
The students read and present two papers from the recent space physics literature. During the course of the seminar, a broad range of current space physics is covered. Thus, the students are exposed to current problems in the subject as well as a real-life presentation atmosphere (Heber, Wimmer-Schweingruber).

Learning Objectives
Presentation skills
Use of presentation software
Overview of current topics in space physics

Prerequisites for the Course
Introductory Lecture "Radiation Biology"
Extraterrestrial Physics (CAU Kiel 060346)

Workshop

Biomathematics
(Universität zu Köln)

Semester
2nd, 3rd, 4th, 5th or 6th

Duration
30 h

Subjects
- Theory of Probabilities
- Descriptive and Inferring Statistics
- Confidence Intervals
- Significance Tests
- Non-parametric Tests
- Correlation, Regression
- Epidemiology
- Clinical Study and Experimental Design
- Variance Analysis, Crossover (Lehmacher).

Learning Objectives
Acquire statistical tools for data interpretation in doctoral thesis

Prerequisites for the Course
None
Practical Training

Microgravity Simulation and Hyper-g Stimulation

Semester
1st, 2nd, 3rd, 4th, 5th or 6th

Duration
10 h

Subjects
Types of Klinostats
Centrifuges
Experiment Preparation and Implementation (Hemmersbach, Ivanova)

Learning Objectives
Overview of Altered Gravity Experimental Methods (for Beginners)
Safe and Efficient Working with the Microgravity Simulation and Centrifuges Facilities at the Institute of Aerospace Medicine (for Advanced Students)

Prerequisites for the Course
For Beginners: None
For Advanced Students (Planning to use the Experimental Facilities in their Thesis): Knowledge About Mammalian Cells and Cell Culture Techniques

Microscopic and Analytic Techniques

Semester
1st, 2nd, 3rd, 4th, 5th or 6th

Duration
10 h

Subjects
Light Microscopy, Phase Contrast Microscopy (Baumstark-Khan)
Fluorescence Microscopy (Hellweg)
Digital Photography and Image Analysis (Axiovision) (Hellweg)
Confocal Microscopy (Hemmersbach)
Fluorescence and Radioimmunoassays (Ivanova)

Learning Objectives
Safe and Efficient Working with the Microscopes at the Institute of Aerospace Medicine for Documentation and Analysis of Living or Fixed Cells with or without Immunological or Immunofluorescent Staining

Cell Culture Techniques

Semester
1st, 2nd, 3rd, 4th, 5th or 6th

Duration
10 h

Subjects
Preparation of Buffer and Media
Sterile Working Techniques
Routine Culturing (Medium Change, Passages, Phase Contrast Microscopy, Freezing and Thawing of Cells, Counting of Cells)
Preparation of Cells for Experiments
Mycoplasma Detection
Genetically Altered Cell Lines (Baumstark-Khan, Hellweg, Ivanova)

Learning Objectives
Safe and Efficient Working with Cell Cultures without Contaminations
Working with Genetically Altered Organisms According to German Laws

Prerequisites for the Course
Basic Laboratory Experience
Practical Training

Flow Cytometry
Semester
1st, 2nd, 3rd, 4th, 5th or 6th
Duration
10 h
Subjects
Parameters, Probes and Labels (Hellweg)
Data Analysis (Hellweg)
Troubleshooting (Hellweg)
DNA Content / Cell Cycle Analysis (Baumstark-Khan)
Reporter Protein Analysis (Hellweg)
Antibody Staining: Cell Surface and Intracellular Antigens (Ivanova)

Learning Objectives
Safe and Efficient Working with the Fluorescent Activated Cell Scanner (FACScan) at the Institute of Aerospace Medicine for Analysis of Mammalian Cells

Prerequisites for the Course
Basic Knowledge of the Principles of Flow Cytometry

Thermoluminescence Dosimetry and Nuclear Track Etch Detectors
Semester
1st, 2nd, 3rd, 4th, 5th or 6th
Duration
10 h
Subjects
Introduction to passive radiation detectors
Thermoluminescence detectors - Principles and Data evaluation procedures
Nuclear Track Etch Detectors - Principles and Data evaluation procedures
Thermoluminescence detectors for space applications - practical examples of detector evaluation based on experiments performed in space and at heavy ion medical accelerators.
Nuclear Track Etch Detectors - practical examples of detector evaluation based on experiments performed in space and at heavy ion medical accelerators (Berger)

Learning Objectives
The course focuses on the principle of passive radiation dosimetry, introduces thermoluminescence and nuclear track etch detectors, gives an overview of their application for space radiation dosimetry and will enable the students to work on laboratory data evaluation systems, including evaluation of detectors exposed in space.

Prerequisites for the Course
Introductory Lectures "Radiation Biology"
SpaceLife

Professional Training Program

Practical Training

Non-invasive & Invasive Methods in Physiology

Semester
1st, 2nd, 3rd, 4th, 5th or 6th

Duration
10 h

Subjects
Muscle: Performance tests, MRI and ultrasound, EMG, MRS, blood parameter and microdialysis, taking, conserving and analysing biopsies
Cardio-vascular system: Test scenarios: tilt table, LBNP, ergometer, centrifuge; measurements: ECG, porta press, impedance, rebreathing (Zange)

Learning Objectives
Measurement of physical and chemical parameters and their validity in interpretation as physiological variables
Statistical reliability of measure outcomes
Phenomena and their precise recording in quantity and time course.
How to analyze the mechanism behind a phenomenon?

Prerequisites for the Course
Lectures “Space Medicine” and “Space Physiology”

Research in Extraterrestrial Physics

Semester
1st, 2nd, 3rd, 4th, 5th or 6th

Duration
30 h

Subjects
Methods for the characterization and analysis of radiation in space: Basic principles of the measurements by particle detectors using different methods (e.g. dEx/dx-E-method, dE/dx-dE/dx-method, dE/dx-v-method) including the determination of important radiation parameters & variation of these parameters with the solar cycle and the position in space (Heber, Wimmer-Schweingruber, Boettcher, Burmeister)

Learning Objectives
Basic principles & applications of experimental & analysis methods for characterization of the radiation and its modulation in the heliosphere, planetary magnetosphere and atmospheres.

Prerequisites for the Course
Introductory Lectures “Radiation Biology”
“Aerospace Dosimetry” or “The Interplanetary Medium” or “Extraterrestrial Physics”

Practical Exercises in Instrument Development

Semester
2nd, 4th, or 6th

Duration
30 h

Subjects
The course begins with a summary of nuclear physics & electronics which is required to understand the operating principles of particle or radiation detection instruments. Various types of detection techniques are introduced, as are relevant electronics concepts such as pulse shaping etc. Additional topics are Monte-Carlo & other numerical techniques (Wimmer-Schweingruber, Boettcher, and Steigies).

Learning Objectives
Understanding of the underlying nuclear physics and relevant electronics
Knowledge of key detection technologies
Capability to interpret “raw” radiation measurements

Prerequisites for the Course
Introductory Lectures “Radiation Biology”, Introductory Physics & Electronics Classes
SpaceLife Management Structure

The Spokesperson of SpaceLife is Prof. Dr. R. Gerzer, director of the DLR Institute of Aerospace Medicine (Figure). The Coordinator Dr. C. Hellweg, scientist in the Radiobiology department of the Institute, coordinates the activities of SpaceLife (applicants’ selection, curriculum, evaluation, public relations).

A Secretary assists the coordinator in all administrative processes of SpaceLife, including setup of the Research School webpage, organization of the curriculum, and support for the doctoral students (visa application, living space).

The thesis Supervisors at the DLR and the partner universities and scientists who conduct courses in the Research School form the SpaceLife Faculty. All faculty members will be invited for a kick-off meeting before start of the Research School and for subsequent annual meetings.

<table>
<thead>
<tr>
<th>Spokesperson: Prof. R. Gerzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator: Dr. C.E. Hellweg</td>
</tr>
</tbody>
</table>

Faculty - Members of SpaceLife from DLR and Universities

Faculty Panel - Selection Committee

Doctoral Spokesperson

<table>
<thead>
<tr>
<th>Space Radiation Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR</td>
</tr>
<tr>
<td>Dr. G. Reitz</td>
</tr>
<tr>
<td>Dr. T. Berger</td>
</tr>
<tr>
<td>Dr. C. Baumstark-Khan</td>
</tr>
<tr>
<td>Dr. C.E. Hellweg</td>
</tr>
<tr>
<td>Uni Kiel</td>
</tr>
<tr>
<td>Prof. B. Heber</td>
</tr>
<tr>
<td>Prof. R.F. Wimmer-Schweingruber</td>
</tr>
<tr>
<td>RWTH Aachen</td>
</tr>
<tr>
<td>Prof. R. Gerzer</td>
</tr>
<tr>
<td>Prof. F. Kreuzaler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gravitational Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR</td>
</tr>
<tr>
<td>Dr. K. Ivanova</td>
</tr>
<tr>
<td>PD Dr. R. Hemmersbach</td>
</tr>
<tr>
<td>PD Dr. R. Anken</td>
</tr>
<tr>
<td>Uni Bonn</td>
</tr>
<tr>
<td>PD Dr. M. Braun</td>
</tr>
<tr>
<td>RWTH Aachen</td>
</tr>
<tr>
<td>Prof. R. Geizer</td>
</tr>
<tr>
<td>Prof. F. Kreuzaler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Astrobiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR</td>
</tr>
<tr>
<td>Dr. R. Möller</td>
</tr>
<tr>
<td>Dr. P. Rettberg</td>
</tr>
<tr>
<td>Dr. E. Rabbow</td>
</tr>
<tr>
<td>Uni Regensburg</td>
</tr>
<tr>
<td>Dr. H. Huber</td>
</tr>
<tr>
<td>Prof. M. Thomm</td>
</tr>
<tr>
<td>Prof. R. Wirth</td>
</tr>
<tr>
<td>PD Dr. R. Rachel</td>
</tr>
<tr>
<td>RWTH Aachen</td>
</tr>
<tr>
<td>Dr. C. Panitz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Physiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR</td>
</tr>
<tr>
<td>PD Dr. J. Zange</td>
</tr>
<tr>
<td>Dr. B.W. Johannes</td>
</tr>
<tr>
<td>DSHS Köln</td>
</tr>
<tr>
<td>Prof. J. Mester</td>
</tr>
<tr>
<td>Prof. H. Strüder</td>
</tr>
<tr>
<td>Uni Bonn</td>
</tr>
<tr>
<td>Prof. P. Stehle</td>
</tr>
</tbody>
</table>

Individual Thesis Advisory Committee (TAC)

First and Second Supervisors, Mentor (DLR and Universities)
SpaceLife

Management Structure

During the kick-off meeting, a Faculty Panel of five members will be elected, and the curriculum of SpaceLife will be determined. The Faculty Panel will form the Selection Committee during the interview week and will assist the Spokesperson and the Coordinator in the selection process. The doctoral candidates in SpaceLife will have an employment contract with the DLR or the partner universities or a scholarship contract with SpaceLife. Furthermore, a Doctorate Contract between the DLR and the doctoral student keeps records of the rights and duties of the doctoral student, the DLR and the Supervisors, and the doctorate regulations of the university. A synopsis of the doctoral thesis containing the name of the student, the names and institutions of the Supervisors and of the Mentor, title and description of the thesis, start of the thesis, and a work plan including milestones, risk assessment and alternatives will be attached to the Doctorate Contract. The approval of the University Supervisor to accept the candidate as doctoral student is also part of the Doctorate Contract.

The TAC will be formed as described above. The doctoral students invite the TAC for their thesis presentations in the Students’ Workshop (1st, 4th and 6th semester) and arrange an independent meeting with the TAC during the first month of the thesis to discuss the subject and approach. The doctoral students elect a Doctoral Spokesperson during the first Students’ Workshop. The Doctoral Spokesperson participates in meetings of the Faculty Panel or the full SpaceLife Faculty. In conflict situations, the Mentor and the Doctoral Spokesperson develop a solution together with the doctoral student and the Supervisors.

SpaceLife can make use of the infrastructure of the Institute of Aerospace Medicine, including the laboratories and meeting rooms of different sizes for the lectures and workshops. The internal communication will be facilitated by means of an intranet teamsite accessible to all members of SpaceLife, which will be operated by the Coordinator and the Secretary. The lectures and workshops will be transmitted online to the partners in Hamburg, Regensburg, Kiel and Aachen, using teleconference tools to be installed (webcam, microphone and loudspeaker). At the DLR, the video conference software Adobe Connect Professional is provided by T-Systems-SFR. Doctoral students from the universities of Bonn and Cologne can attend the courses personally.

SpaceLife will be evaluated annually by questionnaires to the doctoral students, the Supervisors and the lecturers. Results of the evaluation will be discussed in the annual SpaceLife Faculty meeting and the curriculum will be adapted accordingly.
Deutsches Zentrum für Luft- und Raumfahrt

Institut für Luft- und Raumfahrtmedizin
Prof. Dr. Rupert Gerzer

Strahlenbiologie
Dr. Christa Baumstark-Khan
Dr. Thomas Berger
Dr. Christine Hellweg
Dr. Ralf Möller
Dr. Elke Rabbow
Dr. Petra Rettberg
Dr. Günther Reitz

Weltraumphysiologie
Dr. Krassimira Ivanova
PD Dr. Jochen Zange

BSSC
Prof. Dr. Ralf H. Anken
Dr. Sven Baerwalde
PD Dr. Ruth Hemmersbach

Psychologie
Dr. Bernd-W. Johannes

Deutsche Sporthochschule (DSHS), Köln

The German Research Center of Elite Sport
Prof. Dr. paed. Dr. h.c. mult. Joachim Mester
Prof. Heiko Strüder

Christian-Albrechts-Universität (CAU) zu Kiel

Institut für Experimentelle und Angewandte Physik
Extraterrestrische Physik
Prof. Robert F. Wimmer-Schweingruber
Heliosphärische Astroteilchenphysik
Prof. Bernd Heber

Universität Regensburg

Lehrstuhl für Mikrobiologie und Archaeenzentrum
Dr. Harald Huber
PD Dr. Reinhard Rachel
Prof. Dr. Michael Thomm
Prof. Dr. Reinhard Wirth

Universität Hamburg

Fakultät für Erziehungswissenschaft, Psychologie und Bewegungswissenschaft

Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen

Botanik und Institut für Biologie I
Prof. Dr. Fritz Kreuzaler

Institut für Flugmedizin, Zentrum für Medizin & Mobilität
Prof. Dr. med. Rupert Gerzer
Dr. rer. nat. Corinna Panitz

Rheinische Friedrich-Wilhelms-Universität Bonn

Institut für Molekulare Physiologie und Biotechnologie der Pflanzen (IMBIO)

Gravitationsbiologie
PD Dr. Markus Braun

Institut für Ernährungs- und Lebensmittelwissenschaften

Fachgebiet Humanernährung
Prof. Dr. Peter Stehle
Within the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR), the Institute of Aerospace Medicine is the only research institution that primarily deals with life science problems concerning traffic, aviation, and space flight.

The Institute's research activities are focused on the central task of providing for the health and performance of the persons involved (pilot, crew, passenger, astronaut, motorist, resident etc.).

Furthermore, from a medical point of view the development of countermeasures to protect humans from the effects of weightlessness, like the loss of bone and muscle mass is one of our main tasks to enable long-term stays of humans in space for example.

At the same time, when conducting research under microgravity conditions basic functions of the human body are examined by eliminating the interfering influence of gravity in a system-physiological approach. In the field of psychology the selection of qualified personnel (pilots, astronauts, air traffic controllers) and the development of suitable scientific instruments for the selection procedure are another main task of the Institute. Finally, we also deal with the problem of adaptation of life to extreme environments and take part in projects that are concerned with the search for life in space.
The Institute for Experimental and Applied Physics at the CAU in Kiel has a long-lasting experience in extraterrestrial physics and heliospherical astroparticle physics.

Since many years, a main focus at the Institute for Molecular Physiology and Biotechnology of Plants (IMBIO) at the University of Bonn, Germany, is gravitational biology.

The Department of Nutrition and Food Science (IEL) - Nutritional Physiology at the University of Bonn investigates nutrient utilization and demands in microgravity, the relationship of Vitamin D, calcium and bone health and nutrition in the elderly.

The Lehrstuhl für Mikrobiologie and the Archaea Centre of the University of Regensburg stand for excellent expertise in isolating, growing and characterizing extremophilic Bacteria and Archaea into the Astrobiology field of SpaceLife.

Expertise in Astrobiology and in Space Physiology is contributed by the Institute of Aerospace Medicine at the RWTH Aachen.

The Institute of Botany at the RWTH has established expertise in cell biology, microbiology and plant biology, combined with experience in space life sciences, particularly by participation in the Space Research Group – Project Mars, a students’ working group at the RWTH Aachen.

The Institute for Training Science and Sports Informatics of the DSHS Köln, Germany, contributes excellent expertise in the development and evaluation of efficient countermeasures to muscle and bone degradation during space missions.

The Institute of Motor Control and Movement Technique of the DSHS Köln has excellent professional competence in exercise neuroscience and investigates the effects of artificial gravity on the brain.
Members

PD Dr. Franz Rödel
Klinik für Strahlentherapie und Onkologie
Strahlenbiologie
Universitätsklinikum
Theodor-Stern-Kai 7
60590 Frankfurt
Germany

Prof. Michael F.G. Schmidt
Institut für Immunologie und Molekularbiologie
Fachbereich Veterinärmedizin
FU Berlin
Luisenstraße 56
10117 Berlin
Germany

Prof. Dr. Reinhard Hilbig
Universität Hohenheim
Institut für Zoologie (220)
Garbenstr. 30 – BIO II
70599 Stuttgart
Germany

Prof. Klaus Palme
Institute of Biology II
Molecular Plant Physiology
Schänzlestr. 1
79104 Freiburg
Germany

National Associated Partners

Prof. Leo Brunnberg
Fachbereich Veterinärmedizin
Klinik und Poliklinik für kleine Haustiere (WE20)
FU Berlin
Oertzenweg 19b
14163 Berlin
Germany
Members

Prof. Dr. Hanns-Christian Gunga
Zentrum für Weltraummedizin
Charité-Universitätsmedizin
Berlin
Arnimallee 22
14195 Berlin
Germany

Priv.-Doz. Dr. Michael Lebert
Friedrich-Alexander-Universität
Erlangen-Nürnberg
Institut für Botanik und
Pharmazeutische Biologie
Lehrstuhl für Botanik I
Staudtstr. 5
91058 Erlangen
Germany

Prof. Dr. Dr. Oliver Ullrich
Institut für Immunologie
Medizinische Fakultät
Otto-von-Guericke-Universität
Leipziger Str. 44
39120 Magdeburg
Germany
Members

Prof. Dr. Fengyuan Zhuang
Beihang University
(Beijing University of Aeronautics
and Astronautics)
XueYuan Road No. 37
Haidian District
Beijing
China

International Associated Partners

Prof. Dr. Dr. Oliver Ullrich
Full Professor and Chair
Institute of Anatomy
Faculty of Medicine
University of Zurich
Winterthurer Str. 190
CH-8057 Zurich
Switzerland

Dr. Isabelle Testard
Laboratoire d’Accueil en
Radiobiologie avec les Ions
Accélérés (LARIA)
CIMAP – GANIL
Bd Henri Becquerel
BP 5133
F-14070 CAEN Cedex 5
France
Profiles of the Members
Scientific Career
1991 Diploma in Biology
1995 PhD in Natural Sciences (Zoology)
1999 Habilitation (Zoology)
2008 Professorship (apl)

Professional Experience
1992 Scientific Employee, Zoological Institute, University of Hohenheim, Germany
Since 2008 Scientific Employee, Zoological Institute, German Aerospace Center, Cologne, Germany

Research Topics
Biology, inner ear otolith calcification in fish, fish as model system in understanding motion sickness susceptibility, neuroscience, neurovestibular behaviour, sensorimotoric disorders, aquatic life support systems.

Space Related Activities:

Selected Publications

Dr. Sven Baerwalde

Scientific career
1994 state exam in biology, sports sciences, pedagogy, psychology
2001 PhD in zoology

Professional Experience
1995 Research associate, Medical High School Hannover, Department of Physiology
1997 Research associate, DLR, Institute of Aerospace Medicine, Microgravity User Support Center
2000 GLOBE project manager, DLR, Institute of Space Operations and Astronaut Training
2003 Coordinator, Institute of Aerospace Medicine, Biomedical Science Support Center, BSSC
Since 2007 Head Biomedical Information Technology, Institute of Aerospace Medicine, BSSC
Since 2007 Team leader of the short-arm human centrifuge operations and clinical trial team

Awards:
Letter of Appreciation from the U.S. Ambassador Daniel R. Coats
Letter of Appreciation by the University Corporation for Atmospheric Research (UCAR)

Research Topics
Exercise physiology

Space related activities
Countermeasure development for astronauts using a short-arm human centrifuge as method. In this context, special focus refers to cardio-vascular, bone and muscle research.

Selected Publications
Chudalla R; Baerwalde S; Schneider G; Maassen N (2006) Local and systemic effects on blood lactate concentration during exercise with small and large muscle groups. Pflügers Archiv European Journal of Physiology: 452 (6).
Dr. Christa Baumstark-Khan

Institute of Aerospace Medicine Radiation Biology, Cellular Biodiagnostics
Linder Höhe
51147 Cologne
Germany

Phone: ++49 2203 601 3140
E-mail: Christa.baumstark-khan@dlr.de
Website: http://www.dlr.de/me/

Scientific Career
1978 Diploma in Biology
1985 PhD in Radiobiology
2004 Lecturer at University of Applied Sciences Bonn-Rhein-Sieg

Professional Experience
1982 Research scientist
1991 Experimental Radiology & Radiation Biology, Radiologic University Clinics, Medical Faculty, University of Bonn, Germany
1991 Project scientist
1993 Preparation of KINETICS experiment, NASA Spacelab mission IML-2
1995 Research scientist, DLR, Institute of Aerospace Medicine, Radiation Biology
1998 Group Leader of the Project Group Human Radiation Risk, Aerospace Medicine, University Clinics, RWTH Aachen
2000 Group Leader, DLR Institute of Aerospace Medicine, Cellular Biodiagnostics
Since 2000

Research Topics
Biological effects of different environmental stressors at the cellular & molecular level (radiation, esp. heavy & light ion exposure, nanoparticles, mechanical stress) - Gene expression & signal transduction in mammalian cells, Apoptosis and cell cycle control
Bacterial cyto- & genotoxicity assays
Molecular bone metabolism under conditions of space flight

Space related activities
Co-Investigator:
IML-2: Cellular Repair of Radiation Damage, KINETICS; TRIPLE-LUX.
Principal Investigator:
‘Cellular Responses to Radiation in Space (CERASP): The effects of single and combined space flight conditions on mammalian cells’ - to be flown.
‘Modifications of Cellular Signalling Pathways and DNA damage Processing by Radiation in Space (CELLPATH)’ - to be flown

Selected Publications
Dr. Thomas Berger

Scientific Career
1998 Diploma in Physics
2003 PhD in Radiation Physics

Professional Experience
2003- Postdoc, Institute of Aerospace Medicine, DLR, Cologne, Germany
Since Scientific Employee, Institute of Aerospace Medicine, DLR, Cologne, Germany

Research Topics
Radiation protection and dosimetry for human space flight and for aircrew
Development and investigation of the radiation detection properties of active and passive radiation detectors
Organization of ground based radiation intercalibration campaigns

Space Related Activities
Co-Investigator in the space experiments:
MATROSHKA, DOSIS, ExoMARS, ALTEINO, BRADOS – Space ICCHIBAN.
Ground-based radiation detector studies at the Heavy Ion Medical Accelerator HIMAC, Chiba, Japan; the CERF High Energy Neutron Field, CERN, Switzerland, the iThemba Neutron Field, Capetown, South Africa

Selected Publications
Berger T, Hajek M (2008), TL-efficiency-Overview and experimental results over the years. Radiation Measurements, 43(2-6): 146-156.

Scientific Career
1991 Diploma in Biology
1994 PhD in Natural Sciences (Botany)
1999 Habilitation (Botany)

Professional Experience
1995- DFG Fellowship, University Canberra, Australia
1999- Professor (C3), University Bonn, Germany
2001- Senior Scientist, University Erlangen, Germany
Since- Project Coordinator, IMBIO, University of Bonn, Germany
Since- Project Manager at DLR
Since- Space Agency, Germany

Awards
1991 Heinrich-Hörlein Award, Univ. Bonn
2002 Thora Halstead Young Investigator Award, American Society of Gravitational & Space Biology (ASGSB)

Research Topics
Biology, Plant signal transduction, tip growth, gravity perception, plant cytoskeleton, biosensors, experimentation microgravity

Space Related Activities
Experiments flown on Space-Shuttles:
STS-55 (2nd German Spacelab Mission D2, 1993)
STS-65 (1994)
STS-81 (1997)
TEXUS Sounding rockets: 21, 25, 28, 29, 30, 37, 43
MAXUS 3 & 5
Parabolic Plane Flight Campaigns

Selected Publications

Gravitropic responses of plant organs
Prof. Dr. Rupert Gerzer

Scientific Career
- 1977: Dr. med., Univ. of Munich
- 1987: Habilitation, University of Munich
- Since 1992: Head, Institute of Aerospace Medicine, DLR Cologne and Head, Institute of Aerospace Medicine, RWTH Aachen

Professional Experience
- 1978-1980: DFG Fellow, University of Heidelberg, Germany
- 1980-1983: DFG Fellow abroad, Vanderbilt University, Nashville, TN, USA
- 1986-1988: Resident Internal Medicine, University of Munich, Germany
- 1992: Founder, DFG Clinical Research Group, University of Munich, Germany
- 2005: Space Life Sciences Award, International Academy of Astronautics
- Since 2007: Head, University Council, University of Applied Sciences Bonn

Research Topics
- Signal transduction pathways, esp. cyclic GMP, Space Physiology, Telemedicine

Space Related Activities
- Participation in many space missions as a scientist and in the present function; member, Board of Trustees, International Academy of Astronautics since 1999; President, German Society for Aerospace Medicine, 1999-2001; Editor-in-Chief, Acta Astronautica since 2008

Selected Publications
Prof. Dr. Bernd Heber

Scientific Career
1991 Diploma in Physics Christian-Albrechts-Universität Kiel, Germany
1997 Dr. rer. nat./PhD, Christian-Albrechts-Universität Kiel, Germany
2004 Habilitation, Universität Osnabrück, Germany

Professional Experience
1991- Research Associate, Christian-Albrechts-Universität Kiel, Germany
1997 Research Associate, Centre Etude Atomique, Saclay, France
1998- Research Scientist, Max-Planck-Institute for Aeronomie, Katlenburg-Lindau, Germany
2001 Assistant, Universität Osnabrück, Germany
2005 Assistant: Universität Stuttgart, Germany
Since 2005 Full Professor, Christian-Albrechts-Universität Kiel, Germany, Institute for Experimental and Applied Physics

Awards
1992 Group Achievement Award “Ulysses Jupiter Flyby”

Research Topics
Sun and heliosphere
Cosmic radiation
Interaction of cosmic radiation with the atmosphere

Space Related Activities
Since Co-I: Ulysses/Kiel Electron Telescope
1997 P-I: Ulysses/Kiel Electron Telescope
Since 2006 P-I: Proton Helium Instrument
Since 2006 Co-I: STEREO/ Electron Telescope

Selected Publications

Rover for the US Mars Science Laboratory (MSL) Mission
Dr. Christine Hellweg

German Aerospace Center (DLR)

Institute of Aerospace Medicine

Radiation Biology, Cellular Biodiagnostics

Linder Höhe
51147 Cologne
Germany

Phone: ++49 2203 601 3243
E-mail: christine.hellweg@dlr.de
Website: http://www.dlr.de/me/

Scientific Career

1996 Approbation as Veterinarian
2001 PhD in Veterinary Medicine

Professional Experience

2001- Postdoc, Dermatology, University of Cologne, Germany
2001- Postdoc, Institute of Aerospace Medicine, DLR, Cologne, Germany
Since- Scientific Employee, Institute of Aerospace Medicine, DLR, Cologne, Germany

Research Topics

Biological effects of different environmental stressors at the cellular and molecular level (radiation, especially heavy and light ion exposure, nanoparticles, mechanical stress) - Gene expression and signal transduction in mammalian cells, Apoptosis and cell cycle control Molecular bone metabolism under conditions of space flight

Space Related Activities

Co-Investigator in the space experiments CERASP and CELLPATH

Ground-based radiobiological studies at the heavy ion accelerators GANIL (Caen, France) and GSI (Darmstadt, Germany), at the neutron reactor FRMII (Garching, Germany) and the PTB microbeam (Braunschweig, Germany)

Selected Publications

Heavy ion exposure campaign at GANIL, Caen, France
Priv.-Doz. Dr. Ruth Hemmersbach

Scientific Career
1985 Diploma in Biology
1988 PhD in Natural Sciences (Zoology)
1998 Habilitation (Zoology)

Professional Experience
1985-1992 Doctoral grant, PostDoc at the Institute of Aerospace Medicine, DLR, Cologne, Germany
1992-2005 Scientific Employee at the Institute of Aerospace Medicine, DLR, Cologne, Germany
Since 2005 Head of the group Interdisciplinary Gravity Research at the BSSC, Institute of Aerospace Medicine, DLR, Cologne, Germany

Awards
1991 Junior Scientist Award of the DLR
1992 Zeldovich Award of the Cospar Life Sciences behaviour, sensorimotoric disorders, aquatic life support systems.

Research Topics
Gravitational biology; perception of gravity on the cellular level; gravisensors in unicellular systems; experiments under altered gravitational stimulation; simulation of functional weightlessness; scientific user support

Space Related Activities
TEXUS 27 (1990); TEXUS 28 (1991)
MAXUS 2 (1995)
Shuttle-Mission SMM06 (1997)
TEXUS 39 (2001)

Selected Publications

Gravitaxis of cells
Scientific Career
1982 Diploma in Biology
1987 PhD in natural sciences (Microbiology)

Professional Experience
1987-1990 PostDoc at the Institute for Microbiology, University of Regensburg, Germany
1990- Permanent position (Akad. Oberrat) at the Institute for Microbiology, University of Regensburg, Germany; Work group leader for microbial research projects

Research Topics
Isolation and characterization of novel hyperthermophilic Archaea and Bacteria;
Physiology and molecular biology of extremophilic microorganisms;
Optimization of fermentation processes in biogas plants;
Bacterial leaching of sulfidic ores by Archaea and Bacteria.

Space Related Activities
Ground-based studies on the resistance of extremophilic microorganisms to radiation, desiccation and high vacuum conditions (collaboration with the DLR in Cologne, Germany, group of Dr. Petra Rettberg).

Selected Publications

Electron micrographs and fluorescence image of the Nanoarchaeum equitans-Ignicoccus hospitalis Co-culture

Dr. Krassimira Ivanova

Institute of Aerospace Medicine
Space Physiology

Linder Höhe
51147 Cologne
Germany

Phone: ++49 2203 601 3074
E-mail: krassimira.ivanova@dlr.de
Website: http://www.dlr.de/me/

Scientific Career
1971 Diploma in Chemistry (Thesis in Spectroscopy), TU Dresden
1984 PhD (Biology), Med. Academy (MA), Sofia
1985 Diploma in Theoretical Medical Chemistry, MA, Sofia
1990 Habilitation (Biochemistry), MA, Sofia
1988 PhD, Medical Faculty, Amsterdam University

Professional Experience
1972- Assistant & Associated Professor, Departments of Pharmacology, Medical Chemistry & Biochemistry, Medical University, Varna
1991- Research Scientist, Division of Clinical Pharmacology, Medizinische Klinik Innenstadt, University of Munich, Germany
Since- Research Scientist, Head of Cell- & Molecular Biology Subdivision, Division of Space Physiology, Institute of Aerospace Medicine, DLR
Since- Adjunct Research Scientist Department of Pathology, Academic of Amsterdam, Netherlands

Research Topics and Space Related Activities
Role of cGMP signalling in the melanocyte response to hyper-g (DLR-IBMP).

Selected Publications:

Dr. Bernd Wolfgang Johannes

Institute of Aerospace Medicine
Aviation and Space Psychology

Sportallee 54a
D-22335 Hamburg
Germany

Phone: +49 40 513096 36
E-mail: bernd.johannes@dlr.de
Website: http://www.dlr.de/me/

Scientific Career
1981 Diploma in Psychology
1991 PhD in Psychology

Professional Experience
1987- Scientific Assistant, Central Institute of Cardiovascular Research, Academy of Sciences (AdW), Berlin, Germany
1991- Scientific Assistant, Max-Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
1995- Scientific Assistant, Dept. Physiology, Free University Berlin, Germany
Since 2002 Scientific Employee, DLR, Institute of Aerospace Medicine, Hamburg, Germany

Research Topics
Human factors in extreme environments
Performance-Strain research

Space Related Activities:
1996- Neurolab-B on space station MIR
1999 Participant 110-day-Isolation study SFINCCS, IBMP, Moscow
2008 HealthLab on International Space Station

Selected Publications:

Equipment for Neurolab
Scientific Career
1971 Diploma in Biology
1974 PhD in Natural Sciences
1986 Habilitation

Professional Experience
1981- Assistant, Max-Planck-Institute for Breeding Research
Since- Professor for Botany, RWTH Aachen

Awards:
1974 Godecke Forschungspreis

Research Topics
Photorespiration
Gene Technology
Chromatin
Maize Mutants
White Biotechnology

Space Related Activities:
Member of the Space Research Group – Project Mars

Selected Publications:

Enhanced growth of transgenic plants with modified photosynthesis.
Deutsche Sporthochschule (DSHS)

Prof. Dr. Dr. h.c. mult. Joachim Mester

Institute for Training Science and Sports Informatics

Am Müngersdorfer Sportpark 6
50933 Köln
Germany

Phone: +49 221 4982 4830
E-mail: mester@dshs-koeln.de
Website: http://www.dshs-koeln.de/train/index.htm

Scientific Career
1974 State examination in Sports Science, University of Bochum
1978 PhD (Motoric Learning, Movement Coordination)
1984 Habilitation (Diagnostics of Sense Organs, Motor Learning, Training)

Professional Experience
1974 Scientific Assistant at the Institute of Sports Medicine, Ruhr University Bochum
1985 Appointment as Professor at the DSHS, Head of the Institute of Training Science and Mechanics

Awards
1984 Carl-Diem-Plakette (Deutscher Sportbund) for the Habilitation thesis
1994 Dr. h.c. Sportuniversität Budapest
2004 Dr. h.c. Universität Jyväskylä, Finnland

Research Topics
Analysis of human adaptation to training
Scientific support in top performance sport: national teams in alpine skiing, tennis, ski-jumping, fencing, rowing, track and field

Space Related Activities:
Empirical Modeling of human performance and adaptation under normal conditions and µg
Research cooperation with DLR

Selected Publications:
Dr. Ralf Möller

![Dr. Ralf Möller](image)

Institute of Aerospace Medicine
Radiation Biology

Linder Höhe
51147 Cologne
Germany http://www.dshs-koeln.de/train/index.htm

Phone: ++49 2203 601 3145
E-mail: Ralf.Moeller@dlr.de
Website: http://www.dlr.de/me/

Scientific Career

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Diploma in Biology</td>
</tr>
<tr>
<td>2007</td>
<td>PhD in Natural Sciences (Microbiology, Biochemistry)</td>
</tr>
</tbody>
</table>

Professional Experience

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-</td>
<td>PhD student, German 2007</td>
</tr>
<tr>
<td></td>
<td>Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany and German Aerospace Center, Cologne, Germany</td>
</tr>
<tr>
<td>Since</td>
<td>Scientific Employee, German Aerospace Center, Cologne, Germany</td>
</tr>
</tbody>
</table>

Research Topics

- Microbiology, Astrobiology
- Radiation biology, DNA repair, DNA protection
- Gene expression analyses, Regulation networks on microbial model systems
- Space Related Activities
 - Visiting scientist at NASA KSC, USA; ISRL NIRS, Japan; MPI-IB, Germany; Co-investigator of DFG- "Meteorite ejection and life", ESA/DRL-"ADAPT" und "PROTECT"

Selected Publications:

Dr. Corinna Panitz

Universitätsklinikum Aachen
Institut für Flugmedizin,
Zentrum für Medizin & Mobilität

Kullenhofstr. 52
52074 Aachen
Germany

Phone: +49 241 80 88 723
E-mail: cpanitz@ukaachen.de
Website: http://www.ukaachen.de/content/institution/4125624

Scientific Career
1989 Diploma in Biology
1993 PhD in Biology

Professional Experience
1994- Educational work - two children
2000- Scientific employee at the German Aerospace Center, Cologne, Germany
2005- Scientific employee at the present RWTH Aachen

Research Topics
Exo/Astrobiology, Photobiology, Microbiology, Genetics, space experiments.

Space Related Activities:
PI for ESA Ground experiment SSOIUX Candy
Co-Investigator of Space experiments:
MARSTOX I and II on BIOPAN IV, V and VI

ADAPT and PROTECT on EXPOSE-E
TRIPLE-LUX in Biolab, Columbus on ISS
Coordinator for Ground Simulation of all EXPOSE-R space experiments
Coordinator for of Rose Consortium and EVT and EST Program for EXPOSE-R space experiments
SPORES on EXPOSE-R

Selected Publications:

Biological samples accommodated for EXPOSE-R EST
Dr. Elke Rabbow

Scientific Career
1993 Diploma in Biology
2000 PhD in Biology

Professional Experience
1999-2000 Scientific employee at DLR
2000-2005 Scientific employee at RWTH Aachen
2005-Present Scientific employee at the German Aerospace Center, Cologne, Germany

Research Topics
Exo/Astrobiology, Photobiology, Microbiology, Genetics, space experiments.

Space Related Activities:
ESA Point of Contact/coordination of EXPOSE on ISS
PI for DFG-Project Impact II
Co-Investigator of Space experiments:
SURVIVAL I on BIOPAN III
MARSTOX I and II on BIOPAN IV, V and VI
SPORES on EXPOSE-R

TARDIS on BIOPAN VI
ADAPT and PROTECT on EXPOSE-E
TRIPLE-LUX in Biolab, Columbus on ISS
Coordinator for ESA Ground experiment SSIOUX
Coordinator for Ground Simulation of all above space experiments
DFG-Project UV radiation and Deinococcus radiodurans
Coordinator for DLR-EnviHab

Selected Publications:

External payloads EuTEF and SOLAR in the cargo bay of STS 122

SpaceLife | 65
Scientific Career

1982 Diploma in Biology, University of Düsseldorf

1987 PhD at the Technical University of Munich

Professional Experience

1987- PostDoc at the MPI for Biochemistry, Munich

1988- PostDoc at the MRC-LMB in Cambridge, England

since- Permanent position at the Institute for Microbiology, University of Regensburg, Germany; group leader for Ultrastructure and Electron Microscopy in Microbiology since 2004 Head of the Centre of Electron Microscopy

Research Topics

- Structural characterization of hyperthermophilic Archaea and Bacteria
- Cell surface, membrane proteins and Surface layer of extremophilic microorganisms
- Cell-cell and cell-surface interaction of Archaea

Selected Publications:

Electron micrograph of an ultrathin section of *Ignicoccus hospitalis*
Dr. Günther Reitz

Institute of Aerospace Medicine
Radiation Biology

Linder Höhe
51147 Cologne
Germany

Phone: ++49 2203 601 3137
E-mail: guenther.reitz@dlr.de
Website: http://www.dlr.de/me/

Scientific Career

1972 Diploma in Physics
1990 PhD in Biophysics

Professional Experience

1975- Scientific Employee, Institute of Aerospace Medicine, DLR, Cologne
2004- Head of the Radiation Protection, Biology Section

Since 2004
Awards:
Scientific Award of DGLRM

Research Topics

Radiation Protection and Dosimetry for human space flight and for aircrew. Development and investigation of the radiation detection properties of active and passive radiation detectors. Organization of ground based radiation intercalibration campaigns.

Space Related Activities:

- **Project manager:**
 - SL1 experiment Microorganisms
 - Free Flyer Biostack on LDEF
 - Payload element Radiation on D2
 - Dosimetry Mapping in US Lab

- **Co-investigator:**
 - Biostack Experiments on IML2 and D2 and BIOPAN

Selected Publications:

Dr. Petra Rettberg

Scientific Career
1977-1983
Study of Chemistry, Ruhr-Universität Bochum, Germany
1983-1988
Dissertation (Dr. rer. nat.), Ruhr-Universität Bochum, Germany
1988-1992
Junior research scientist, ‘Radiation Biology’, Max-Planck-Institute for Radiation Chemistry, Mülheim, Germany
1992-1995
‘Radiation Biology’, DLR, Institute of Aerospace Medicine, Radiation Biology, Köln, Germany
1995-present
‘Photo- & Exobiology’, DLR, Institute of Aerospace Medicine, Radiation Biology, Köln, Germany

Research Topics
Exo/Astrobioiology, Photobiology, Microbiology, Genetics, space experiments.

Space Related Activities:
Co-Investigator of the following international space experiments:
SURVIVAL II on BIOPAN I and II
SURVIVAL I on BIOPAN III, UVRAD of the mission D-2
REPAIR of the mission IML-2
KINETICS of the mission IML-2
UVE of the mission Mir’97
EXOBIOLGIE of the mission PERSEUS, HighRad of the FOTON M-3 mission), Lithopansperma of the FOTON M-3 mission, PROTECT since 2008 on the ISS, SPORES (2008 on the ISS), UREY (2013, ExoMars)

Awards:
2001 DLR-Competition of Visions, 2. Place

1993 Planck Scholarship, University Mülheim, Ruhr-Universität, Germany
1992 Scholarship of the Max-Planck-Society
1988-1988 Head of the research group ‘Radiation Biology’, Max-Planck-Institute for Radiation Chemistry, Mülheim, Germany
1988-1992 Head of the research group ‘Radiation Biology’, DLR, Institute of Aerospace Medicine, Radiation Biology, Köln, Germany

Institute of Aerospace Medicine Radiation Biology
Linder Höhe
51147 Cologne
Germany
Phone: ++49 2203 601 4637
E-mail: petra.rettberg@dlr.de
Website: http://www.dlr.de/me/

Principal Investigator of the following international space experiments:
MARSTOX I of the mission FOTON M-2, MARSTOX II on the FOTON M-3 mission, ADAPT since 2008 on the ISS
TRIPLELUX (2009 on the ISS)

Selected Publications:
Prof. Dr. Peter Stehle

Institut für Ernährungs- und Lebensmittelwissenschaften (IEL) - Ernährungsphysiologie
Endenicher Allee 11-13
53115 Bonn, Germany

Phone: ++49 228 73 3680
E-mail: p.stehle@uni-bonn.de
Website: www.nutrition.uni-bonn.de

Scientific Career
1981 Diploma in Nutrition Sciences, University Hohenheim-Stuttgart, Germany
1984 PhD in Nutrition Sciences
2001 Habilitation in Nutritional Biochemistry

Research Topics
Vitamin D, calcium and bone health; nutrient utilization and demands in microgravity; amino acid, peptide, phospholipid metabolism; nutrient bioavailability (experimental models, human studies); nutrition in the elderly

Selected Publications:

Professional Experience
1984- Postdoc, Department of Biological Chemistry & Nutrition Science, University Hohenheim-Stuttgart, Germany
1992-1994 Associate Professor, Department of Biological Chemistry & Nutrition Science, University Hohenheim-Stuttgart, Germany
since- University Professor in Nutritional Physiology, University Bonn, Germany

Awards:
1994 Konrad-Lang-Preis, Deutsche Gesellschaft für Ernährungsmedizin (DGEM)
2004 Arnold-Durig-Gedächtnisvorlesung, Österreichische Gesellschaft für Ernährung (ÖGE)

Space Related Activities:

Selected Publications:
Univ.-Prof. Dr. Heiko Strüder

Institute of Motor Control and Movement Technique
Am Sportpark Müngersdorf 6
50933 Köln
Germany

Phone: +49 221 4982 4190
E-mail: strueder@dshs-koeln.de
Website: http://www.dshs-koeln.de/IMB

Scientific career
1993 PhD in Exercise Science
2001 Professorship (C3) for Sports Medicine, TU Chemnitz
2002 Professorship (C4) for Exercise Science, German Sport University (DSHS) Cologne

Professional Experience
Since 2002 Director of the Institute of Motor Control and Movement Technique at the DSHS Cologne
Since 2006 Vice President for Research at the German Sport University Cologne

Awards
1993 Arno Arnold Award of the German Federation of Sport Physicians
1993/94 Toyota Award at the German Sport University Cologne
1993/94 Compliments at the “Carl-Diem” competition of the German Sport Federation

Research Topics
Exercise Neuroscience
Serotonergic system
Artificial gravity and the brain

Space related activities
Participation in the ESAS MARS500 and ANARCTICA program
Parabolic flights
Human centrifuge

Selected Publications

Exercise Neuroscience
Serotonergic system
Artificial gravity and the brain

SpaceLife | 70
Prof. Dr. Michael Thomm

Scientific Career
1980 Dipl.-Biol. (Master of Science), Univ. of Munich
1983 Dr. rer. nat. (Ph.D.), Univ. of Regensburg (Microbiology)
1988 Dr. rer. nat. habil., Univ. of Regensburg (Microbiology)

Professional Experience
1983 Postdoctoral fellow at the University of Regensburg (Prof. Dr. Karl O. Stetter)
1988 Research assistant at the University of Regensburg Department of Microbiology
1991-2002 University of Kiel: Full professor of Microbiology, Head of the Institute of General Microbiology
2002- present University of Regensburg, Germany: Full professor of Microbiology, Head of the Department of Microbiology & Archaeencenter

Research Topics
Mechanism of transcription in Archaea;
Regulation of transcription in Archaea and Eukarya;
Microbiology of methanogenes and of hyperthermophiles;
Head of fermentation facility (11 fermenters - Archaeencenter Regensburg)

Space Related Activities:
Cultivation of chemolithotrophic microorganisms which are only dependent upon the presence of water and volcanic gases like hydrogen, CO₂, and H₂S

Selected Publications:
Christian-Albrechts-Universität (CAU) zu Kiel

Prof. Dr. Robert F. Wimmer-Schweingruber

Scientific Career
1983 Studies in Physics, University of Bern, Switzerland
1991 Diploma in Theoretical Physics
1994 PhD in Experimental Physics
2001 Habilitation in Experimental Physics

Professional Experience
1995-1996 Postdoc, University of Maryland, College Park, MD, USA
1996-2001 Research Fellow, University of Bern, Switzerland
2001-2002 Senior Scientist (Oberasistent), University of Bern, Switzerland, teaching at university level
Since 2002 University professor at the IEAP, University of Kiel, Germany
2004-2006 2-year term as executive director of the IEAP

Research Topics
Solar and heliospheric physics, planetology, radiation detection

Space Related Activities
Co-Investigator of instruments on numerous space missions
Co-Principal Investigator for Solar Orbiter / EPD
Principal Investigator for LEO/RadMo

Selected Publications

Mathematisch-Naturwissenschaftliche Fakultät
Institut für Experimentelle und Angewandte Physik (IEAP)
Leibnizstr. 11
24098 Kiel

Phone: +49 431 880 3964
E-mail: wimmer@physik.uni-kiel.de
Website: http://www.ieap.uni-kiel.de/et/ag-wimmer/index.php

DOSTEL on EuTEFF in STS-122 Cargo Bay
Prof. Dr. Reinhard Wirth

Lehrstuhl für Mikrobiologie und Archaeenzentrum

Universitätsstrasse 31
93053 Regensburg, Germany

Phone: ++49 941 943 1825
E-mail: Reinhard.Wirth@Biologie.Uni-Regensburg.de
Website: http://www.biologie.uni-regensburg.de/Mikrobio/Thomm/Arbeitsgruppen/wirth.htm

Scientific Career
1976 Dipl.-Biol., University of Regensburg
1980 Dr. rer. nat., University of Regensburg
1989 Dr. rer. nat. habil., University of Munich

Professional Experience
1980- Postdoctoral fellow at the University of Munich, Germany
1983-1985 Postdoctoral fellow at the University of Michigan, Ann Arbor, USA, Prof. Don Clewell
1985- Research assistant at the University of Munich, Germany
Since- Professor (C3) at the University of Regensburg, Germany

Research Topics
Cell surface appendages (flagellae, fimbriae and pili) of Archeae and their role in adhesion, motility, biofilm formation, etc.

Space Related Activities
ESA project „Communities of archeae and specific bacterial communities on spacecrafts and in their clean room environment“

Selected Publications

Pyrococcus furiosus binds by flagella to grains of sand in its biotop.
PD Dr. Jochen Zange

Institute of Aerospace Medicine
Space Physiology

Linder Höhe
51147 Cologne
Germany

Phone: ++49 2203 601 3456
E-mail: jochen.zange@dlr.de
Website: http://www.dlr.de/me/

Scientific Career
1985 Diploma in Biology
1990 PhD in Natural Sciences (Biology)
2006 Habilitation in Human Physiology

Professional Experience
1988-1990 Postdoc, Max-Planck-Institute for System Physiology, Dortmund, Germany
1990-1991 Postdoc, Institute of Animal Physiology, Heinrich-Heine-Universität Düsseldorf, Germany
Since 1991 Researcher at the Institute of Aerospace Medicine, Cologne, current position: Head of subdivision 'Integrative Muscle Physiology’

Research Topics
Physiology and pathophysiology of human skeletal muscle.
Development and testing of countermeasures and therapies against muscle weakness.

Development of non invasive methods for research in applied human physiology and for diagnosis of muscle diseases.

Space Related Activities
PI: EuroMir ‘94, ’95, ’95E, and MIR ‘97, ’97E.
Col ESA-MAP-Med30
ESA Topical Team Member: “Skeletal Muscle” and “Artificial Gravity”

Selected Publications

Profiles of the Associated Partners
Research Topics
Pathogenesis and Therapy of Osteoarthritis in Dogs
Experimental Surgery
Neurosurgery: Herniated Vertebral Disc
Orthopedics: New methods of fracture care

Selected Publications

Charité Universitätsmedizin Berlin

Prof. Hanns-Christian Gunga

Campus Benjamin Franklin Institut für Physiologie
Arnimallee 22
14195 Berlin
Germany

Phone: ++49 30 8445 1656
E-mail: Hanns-Christian.Gunga@charite.de
Website: http://www.zwmb.de/

Scientific Career
1980 Diploma in Geology-Palaeontology
1987 State examen in Medicine
1989 Dissertation Dr. med. (Berlin)
1997 Habilitation/PhD (Physiology), Free University Berlin, Berlin
2004 Professorship, Charité University Medicine Berlin, Berlin

Professional Experience
1980 Scientific Assistant, Department of Physiology, Free University Berlin, Germany
1987 Visiting Researcher, Santiago de Chile
1996 Visiting Researcher, Santiago de Chile
2000 Speaker of the Center of Space Medicine
Since 2008 Vice Director of the Department of Physiology, Charité University Medicine Berlin, Campus Benjamin Franklin
1995 Group Leader, Max-Delbrück-Laboratory, Cologne, Germany
Since 2002 Group Leader, Professor, Institute for Biology II, University of Freiburg, Germany

Research Topics
Space medicine, blood physiology, cardiovascular physiology, renal physiology, comparative physiology in extreme environments

Space Related Activities
Pl: EUROMIR’94 (Principal Investigator, CVP-Erythropoietin)
ESA-CNES L-TBR’94 (Principal Investigator, Erythropoietin)
MIR’97 (Principal Investigator, Erythropoietin-Serum Transferrin Receptor)
Neurolab 2000 (Principal Investigator, Psycho-Physiology)
Co-I: ISEMSI’90, EXEMSI’92, MIR’92, D-2, ALTAIR, EUROMIR’94, HUBES’94
Several Parabolic Flight Campaigns and Bed Rest Studies

Selected Publications

Prof. Reinhard Hilbig

Institute for Zoology (220)
Faculty of Natural Sciences
Garbenstr. 30 – BIO II
D-70599 Stuttgart
Germany
Phone: ++49 711 459-23349
E-mail: r hilbig@uni-hohenheim.de
Website: https://www.uni-hohenheim.de/

Research Topics
Basic neurobiological adaptation mechanisms of fish to altered gravity conditions
Artificial ecosystems
Space biology

Selected Publications
PD Dr. Michael Lebert

Universität Erlangen-Nürnberg

Scientific Career
1987 Diploma in Biology
1991 PhD in Natural Sciences (Biochemistry)
1999 Habilitation (Botany)

Professional Experience
1991 Postdoc, Pullman, Wa., USA
Since Senior scientist,
1993 University of Erlangen, Germany

Research Topics
Euglena gracilis (‘beast’)
Environmentally controlled signal perception and signal transduction in microorganisms
Artificial ecosystems
Space biology

Selected Publications

Scientific Career
1977 Diploma in Chemistry
1981 PhD in Natural Sciences (Chemistry)
1993 Habilitation (Botany), University of Cologne
2001 Professorship, University of Freiburg

Professional Experience
1978 Scientific Employee, Biochemistry Institute, University of Ulm, Germany
1981 Visiting Researcher, Salk Institute for Biological Studies in San Diego (USA)
1984 SFB Scholarship, Cologne, Germany
1985 Scientific Employee, Max-Planck-Institut für Züchtungsforschung, Cologne, Germany
1995 Group Leader
2002 Max-Delbrück-Laboratory, Cologne, Germany
Since Group Leader

Research Topics
Physiology, genetics and metabolism of Arabidopsis thaliana

Awards
1995 G-Prize (for “longterm application oriented research; Intospace, Paris)
2002 Max-Planck-Forschungspreis für internationale Kooperation

Selected Publications

Johann Wolfgang Goethe-Universität Frankfurt am Main

PD Dr. Franz Rödel

Scientific Career
1991 Diploma in Biology
1995 PhD in Natural Sciences, University of Erlangen-Nürnberg
2004 Habilitation (Molecular Radiation Biology)

Professional Experience
1991 Scientific Employee, Institute for Microbiology, University of Erlangen-Nürnberg, Germany
1995 Scientific Project Leader, Medicon Publisher, Munich, Germany
1997 Seminar Project Management, Grundig Academy Nürnberg, Germany
1997 Scientific Employee, Radiotherapy Clinic, University of Erlangen-Nürnberg, Germany
Since Group Leader, Radiotherapy Clinic, University of Frankfurt, Germany

Awards
2000 Günther-von-Pannewitz-Award
2004 Hermann-Holtbusen-Award

Research Topics

Development of new vectors with Selected Publications

Universitätsklinikum Klinik für Strahlentherapie und Onkologie Strahlenbiologie

Theodor-Stern-Kai 7
60590 Frankfurt
Germany

Phone: ++49 69 6301 6637
E-mail: Franz.Roedel@kgu.de
Website: http://www.strahlentherapie.kgu.de/Weber-Uns

http://www.strahlentherapie.kgu.de/Ueber
Website:
Phone:
Germany
60590
Theodor
Frankfurt
am Main
Univ.-Prof. Dr. Michael F.G. Schmidt

Scientific Career
- 1973: Diploma in Biology
- 1975: Dr. rer. nat. in Biochemistry, Virology, Genetics
- 1987: Habilitation (Biochemistry and Virology)
- 1986: Professorship

Professional Experience
- 1972: Teaching Assistant, Faculty of Vet. Med., Giessen, Germany
- 1973: Research Assistant, Faculty of Vet. Med., Giessen University
- 1974: Post Doc, Faculty of Vet. Med., Giessen University
- 1977: Research Fellow, Dept. of Microbiology & Immunology, Washington University, School of Medicine, USA
- 1980: Senior Researcher, Faculty of Vet. Med., Giessen University
- 1982: Research Associate (C1), Virology Department, Faculty of Vet. Med., Giessen
- 1986: Associate Professor, Dept. of Biochemistry, Faculty of Medicine, Kuwait University
- 1990: Full Professor, Dept. of Virology, Faculty of Vet. Med., FU Berlin, Germany
- 1993: Full Professor and Chairman

Research Topics
- Enveloped viruses (emphasis influenza virus); membrane biochemistry (vesicular transport, secretion); protein modifications (glycosylation, fatty acylation); intestinal immunity; osteoarthrosis, gene therapy; inflammation

Selected Publications

Fachbereich Veterinärmedizin
Institut für Immunologie und Molekularbiologie

Philippstr. 13
10115 Berlin
Germany

Phone: ++49 30 2093 6468
E-mail: schmidt.mfg@vetmed.fu-berlin.de
Website: http://www.vetmed.fu-berlin.de/einrichtungen/institute/weo/index.html

SpaceLife | 82
Prof. Fengyuan Zhuang

School of Biological Science and Medical Engineering
XueYuan Road No. 37
HaiDian District
Beijing 100191
China
Phone: ++86-10-82339670
E-mail: zhuangfy@buaa.edu.cn, zhuangfy@yahoo.com.cn
Website: http://www.buaa.edu.cn

Scientific Career
1962 Diploma in Physics

Professional Experience
1962 Teaching Assistant
1980 Lecturer, Physics Dept.
Beijing University
1980 Visiting Scholar,
1983 Applied Mechanics &
Engineering/Bioengineering,
Biomachanics, University of
California, San Diego, USA
1983 Lecturer Physics Dept.,
1984 Beijing University
1984 Associate Prof.
2001 Prof. Director, Dept. of
Biomechanics &
Biorheology, Research
Institute, China-Japan
Friendship Hospital
1985 Director of Hemorheology
1989 Dept. Beijing Heart Lung, &
Blood Vascular Center
2001 Director, Founder of Bioen-
geering Dept., (now School
of Biological Science & Medi-
cal Engineering), Beijing
University of Aeronautics &
Astronautics (BUAA)
2001 Director of Bioscience
& Bioengineering Institute
Since Prof. School of Biological
2001 Science and Medical
Engineering, BUAA

Research Topics
Effects of gravity on the cardio-
vascular system, remodeling of
cardiovascular vessels.
Effects of microgravity on immune
cells and endothelial cells.
Mechanobiology studies on
gravisensing of mammalian cells
Cell biomechanics

Space Related Activities
General Secretary for the 16th IAA
Humans in Space Symposium, May
21-24, 2007 Beijing
Co-Chair of 2nd Sino-German
Symposium on Space Life Sciences,
Oct. 13-18, 2008, Beijing
Principle investigator - muscle
atrophy of C. elegans - on Chinese
Biosatellite SHIJIAN B (2006)
Co-investigator - 10th DLR parabolic
flight campaign (effects of
microgravity on migration- and
adhesion-regulating signal
pathways in cells of the immune
system, Cologne, Germany (2007)

Selected Publications
Wang C, Sang C, Higashibata A,
Ishioka N, Rong L, Yang C, Sun Y,
of muscle-related genes and
proteins after spaceflight in
Caenorhabditis elegans. Progress
in Biochemistry and Biophysics
Gao ZY, Liu F, Yu ZQ, Bai X, Yang
C, Zhuang FY, Ruan CG (2008)
Effects of von Willebrand Factor
Concentration and Platelet
Collision on Shear-induced Platelet
Activation, Thrombosis and
Haemostasis, 100: 60-68.
The force induced by organelles’
gravity in the microfilament is in
the range of 0.1-1pN, Acta
Astronautica, 63: 923-928.
SpaceLife

Application

SpaceLife is open to highly qualified and motivated applicants from all countries, and it is committed to an equal opportunity policy. Applicants should hold a Master’s or other degree with excellent grades comparable to a German University Diploma in psychology, biology, physics, and nutrition or sports sciences. SpaceLife gives the opportunity to carry out a full-time doctoral thesis at the end of which the doctoral students will receive a Dr. rer. nat., Dr. hum. biol., Dr. oec. troph., Dr. med. vet. Dr. rer. medic. or Dr. Sports Sciences. Per age-group, up to 13 doctoral students at the DLR and up to 12 from the partner universities can participate in the program. Furthermore, doctoral students who have already started their thesis at the DLR or the partner universities can apply for admission to SpaceLife and are also subjected to the selection process described below.

Applicants are invited to send
- their curriculum vitae,
- list of publications,
- copy of their diploma/master theses,
- past and present research interests,
- copies of masters/diploma certificates (with translation if not in German, English or French) and
- contact addresses of two referees.

The two referees will be asked by the SpaceLife coordinator to submit confidential letters of recommendation. Linguistic proficiency in English can be demonstrated by taking a standardized test (e.g., the TOEFL). Selected applicants will be invited for an interview with faculty members. The partners of SpaceLife jointly conduct the central selection procedure. The applications will be subjected to a competitive multi-step evaluation procedure.

Evaluation of applications

The first evaluation takes into account the applicants’ national education system, and is carried out by experts on the respective educational system. Applicants will be contacted by phone for assessment of proficiency in English.

Applications of candidates which meet the requirements of SpaceLife are recommended for further assessment by the faculty members, who jointly short-list the candidates to be invited for the interview days in Cologne. Invitations are sent approximately six weeks in advance.

During the interview days, each candidate conducts several interviews with faculty members to discuss research experience, motivation and interests. The interviews with group leaders result in a first assessment of candidates. All applicants proceed to a final interview with a Selection Committee, which consists of five faculty members. Taking the assessment of the interviewing faculty members into account, the Selection Committee evaluates the overall qualification of the candidate, and recommends to the spokesperson and the coordinator of SpaceLife whom to admit to the program.

Offers of admission

Offers of admission to SpaceLife are made by the end of the selection week. The offers include in general the affiliation to the SpaceLife program and to a research group. The individual starting date will be agreed with the primary Supervisor.
SpaceLife

Contact

German Aerospace Center (DLR)
Institute of Aerospace Medicine
SpaceLife
Linder Höhe
51147 Cologne
Germany

Spokesperson
Prof. Dr. Rupert Gerzer
Institute of Aerospace Medicine
Head
Phone: ++49 2203 601 3115
E-mail: rupert.gerzer@dlr.de

Coordinator
Dr. Christine Hellweg
Institute of Aerospace Medicine
Radiation Biology
Cellular Biodiagnostics
Phone: ++49 2203 601 3243
E-mail: christine.hellweg@dlr.de

Secretary
Anna-Maria Trautmann
Institute of Aerospace Medicine
Radiation Biology
Phone: ++49 2203 601 3011
E-mail: anni.trautmann@dlr.de