Polymere Nanoverbundwerkstoffe –
Chancen, Risiken, Potentiale

Karl Schulte
Samuel T. Buschhorn, Lars Böger, Jan Sumfleth
and
Malte H.G. Wichmann

Technische Universität Hamburg-Harburg,
Institute of Polymers and Composites
Denickestrasse 15,
21073 Hamburg, Germany

Schulte@tu-harburg.de
Influence of particle size

- Particle size: 10 μm (Fibre), 1 μm (Talcum), 10 nm (Nanotubes)
- Volume content: 30% (Fibre, Talcum), 3% (Nanotubes)
- Number of particles: $\sim 10^6$ (Fibre), $\sim 10^{10}$ (Talcum), $\sim 10^{15}$ (Nanotubes)
- Interface: ~ 0.1 m² (Fibre), ~ 1 m² (Talcum), ~ 100 m² (Nanotubes)
- Aspect ratio: ~ 20 (Fibre), ~ 100 (Talcum), > 1000 (Nanotubes)
Carbon Nanotubes

- Structural differences according to manufacturing
- Purity, defect density & aspect ratio
- Influences on mechanical properties
Dispersion method

Three-Roll-Mill 120 S from Exakt GmbH
- Rollers made of alumina (Al$_2$O$_3$) or steel
- Gap-size: ~ 5 µm

Dispersions

- SWCNT exhibit highest SSA (Specific Surface Area) of all nano-fillers
- SWCNTs show mixture of small agglomerates and good dispersed CNTS
- CB dispersed into aggregate structure (~150 nm)
- Partly dispersed into primary particles (~30 nm)
Dispersion

- MWCNT-NH$_2$ – best dispersion results
- Very few agglomerates observed
- MWCNT-NH$_2$ show sufficient matrix adhesion
- CNTs sticking out of cutted films are covered with matrix

- MWCNT – good dispersion results
- Very few agglomerates observed
- Tendency to form loose aggregates after dispersion
DMTA – Glass Transition Temperature

Braunschweig 2008
Nanocomposites:
⇒ Improved stiffness
⇒ Enhanced strength
⇒ Increased fracture strain

Functionalisation effect

Stress-Strain Diagramme of Epoxy-CNT

Braunschweig 2008
Fracture toughness

- Similar influence on toughness at 0.1 wt.%
- Toughness (K_{IC}) increases by ~ 45%
 at 0.5 wt.-% DWCNT-NH$_2$
 (0.65 -> 0.94 MPa·m$^{1/2}$)

⇒ Identification of toughening mechanisms

Cracks artificially induced due to vacuum drying after etching

- Surface-cracks (~2µm)
- Bridging of DWCNT-NH$_2$ via (500 – 1000 · d)
- Bridging-mechanism observed

Functionaldised MWCNTs (Jeffamine®) in Epoxy

Telescopic pull-out

Matrix

50 nm

25 nm

Braunschweig 2008
TEM – dispersion in ternary systems

Dispersion at the primary particle level

- No formation of TiO$_2$ networks
- Attachment of TiO$_2$ to MWCNTs

Interpenetration of particle networks

- No dispersion at the primary particle level
- Formation of MWCNT and SiO$_2$ domains

Rheological investigations

Steady Rate Sweep

Binary systems
- ▲ 0.95 vol.-% MWCNT
- ◇ 0.47 vol.-% MWCNT
- ▽ 0.95 vol.-% SiO₂
- ▼ 0.95 vol.-% TiO₂

MWCNT:
Strong thixotropy (dense network)

SiO₂:
No thixotropy (but network!)

TiO₂:
No thixotropy (less interactions)
Rheological investigations

Steady Rate Sweep

Same amount of TiO$_2$/SiO$_2$ added:

- **For TiO$_2$:**
 No change of MWCNT-network
 (Dispersion on primary particle level)

- **For SiO$_2$:**
 Change in MWCNT-network formation
 Less interparticle interactions

<table>
<thead>
<tr>
<th></th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>vol.-%</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>η</td>
<td>↓↓</td>
<td>↑</td>
</tr>
</tbody>
</table>

- **Underproportional superposition**
- **Additive superposition**

Braunschweig 2008
Fracture toughness - K_{IC}

Binary systems
- Increase of 15% independent of type of particle
 → Equal mechanisms?
- MWCNT: Doubling of filler content
 → insignificant increase in K_{IC}
 → Maximum in increase in K_{IC}

Ternary systems
- Increase of 30%
 → Addition of the increase in K_{IC} of each type of particle
Electrical properties of CNT/Epoxy composites

Electrical conductivity

Log conductivity [S/m]

Log volume fraction [%]

catalytically-grown carbon nanotubes
Carbon black

Young's modulus 1 [TPa]
Strength 50 – 150 [GPa]
Diameter 3 [nm] SWCNT
10 – 15 [nm] MWCNT
Length 1 [µm] – 1 [mm]
Piezoresistivity - (ir)reversible uniaxial strain

Results in agreement with previous works and theories on RRNs.

Differences explainable through RRN models:

- many interconnects to/from one particle
- few tunneling resistors between contacts
- very sensitive toward orientation change of particles
- relatively stable tunneling resistors
- few interconnects to/from one particle
- many tunneling resistors
- insensitive toward orientation change of particles
- relatively unstable tunneling resistors

Tensile tests – elastic regime

Good linear approximation for MWCNT nanocomposites up to 1.5% strain
- Advantageous for technical exploitation and integration
- MWCNT nanocomposites exhibit “k-factor“ of ~4.3 and ~2.95

Thermal conductivity

Idealised CNT

- Perfect graphitic structure
- Theoretically high thermal conductivity of 6600 W/mK for SWCNTs at RT (based on perfect graphite structure and neglecting boundary effects)

Phonon mechanism dominates conduction of thermal energy

- Defects cause phonon scattering
 ⇒ The larger the number of defects, the larger the defect-scattering losses
- Interfacial boundary scattering
 ⇒ The larger the interface, the larger the boundary scattering losses
Manufacturing of GFRPs

Manufacturing of composites with nanocomposite matrix via VARTM

multiaxial non-crimp-fabric ECR-Glass

-\([0/\pm 45/90/-45]_{as}\)
-\([- (0/90), (90/0)]_s\)

Homogeneous filler distribution over entire specimen

Interlaminar shear-strength - ILSS

- Investigation of interlaminar shear-strength (ILSS) via „short-beam“ 3-Point-Bending-Test

Shear-strength

\[S_H = \frac{3}{4} \frac{F_{\text{max}}}{bd} \]

- Increased ILSS from 31,8 to 34,8 MPa (+9%) (CB)
- Increased ILSS from 31,8 to 37,8 MPa (+19%) (DWCNT-NH₂)

Braunschweig 2008
Cyclic tensile tests - Analysis

Decrease of sample stiffness correlates with increase in resistance

Spontaneous drops in stiffness → local damage (e.g. rupture of fibre bundles)

Correlate with sudden increase in resistance

Assessment of state of fatigue damage

Specimen under dynamic tensile load
GF-NCF-EP+0.3wt.% MWCNT
R measured in z-direction

Acknowledgements:

European Commission
Bundesministerium für Bildung und Forschung BMBF
Deutsche Forschungsgemeinschaft DFG
Deutscher Akademischer Austauschdienst DAAD