Application of Particle Image Velocimetry
Theory and Practice, March 14 -18, 2016

Application of PIV

The main interest of today’s research in fluid mechanics is more and more directed to problems where unsteady and separated flows are predominant. For investigations of flow fields with pronounced spatial structures and/or rapid temporal or spatial changes (transition from laminar to turbulent flow, coherent structures, pitching airfoils in transonic flows with shocks, rotors, test facilities with short run time, etc.) optical experimental techniques, such as Particle Image Velocimetry (PIV) are required which allow to capture the flow velocity of large flow fields instantaneously. An important feature of PIV is that a reliable basis of experimental flow field data is provided for direct comparison with numerical calculations and hence, for validation of flow simulation codes. During the last years an increasing number of scientists have started to utilize the PIV technique to investigate the instantaneous structure of velocity fields in various areas of fluid mechanics. A large number of different approaches for the recording and evaluation of PIV images have been described in literature. This course, which is the 24th course on PIV since 1993 organized by DLR, will mainly concentrate on those aspects of the theory of PIV relevant to applications. Besides giving lectures on the fundamental aspects, special emphasis is placed on the presentation of practical and reliable solutions of problems which are faced during the implementation of this technique in wind tunnels and other test facilities. During practice the participants will have the opportunity to carry out the recording and the evaluation of PIV images by themselves in small groups. Matured developments of the PIV technique such as Stereo PIV, Time Resolved PIV, Micro-PIV and recent innovations in 3D(t)-PIV/4D-PTV (tomographic and digital holographic PIV, Shake-The-Box) will be discussed and demonstrated.

Course materials

A complete set of course notes together with the book 'Particle Image Velocimetry - A Practical Guide (2nd Edition)', published by Springer (2007) and the USB-Stick of proceedings of the PIV’15 symposium will be distributed to the participants at registration.

Who should attend?

This course is mainly intended for engineers, scientists and students, who have already some basic knowledge of the PIV technique and have just started to utilize PIV for their special industrial or scientific applications or plan to do so in near future. During the course many problems arising in the recording and evaluation of PIV images will be treated - in theory as well as in practice.

Program Schedule

Registration will begin at 8:00 on Monday, March 14, 2016 in the Secretary Room of Building 7. Lectures (4 half days) will be giv-
Lecture outline

March 14, 2016, 08:00-16:30

March 15, 2016, 08:30-16:30

March 16, 2016, 08:30-16:30

March 17, 2016, 08:30-16:30
Practice III and Practice IV. Dinner 19:30

March 18, 2016, 08:30-12:30
Practice V. Future aspects of PIV / 4D-PTV. Final discussion.

Preliminary practice outline

I - Optics: imaging, laser illumination, Fourier. Background oriented Schlieren (BOS)
II - Image capture in wind tunnel: seeding, laser, optics, triggering, CMOS recording, optical distortions, TR-Stereo-PIV.
III - Image capture for large scale air flows: Pulsed LEDs, CCD/ sCMOS recording, Helium-Filled-Soap-Bubbles, 4D-PTV (STB)
IV - Evaluation and post processing: cross-correlation methods, data validation, data analysis and presentation.

V - PIV related techniques: video stroboscope, sequencer technique. (Digital) Holographic PIV.

Exhibition

An exhibition of equipment from major manufacturers of PIV systems will take place from March 17 to 18, 2016.

Lecturers

Prof. Michel Stanislas, Laboratoire de Mécanique de Lille, France, is working in the field of Flow Visualization and Particle Image Velocimetry and will present the lectures on the optical aspects of PIV.

Prof. Jerry Westerweel, Delft University of Technology (TUD), The Netherlands, will discuss the theoretical basis of the digital PIV technique.

Dr. Christian Poelma, TUD, will discuss combined PIV/LIF and Micro PIV in his lectures.

Prof. Christian Kähler, UniBw München will discuss Stereo and Multi-plane aspects and the advances in Time Resolved- and long range micro-PIV.

Dr. Gerd Gülker, Carl von Ossietzky Universität, Oldenburg, Germany, is working in the field of Holography and Particle Image Velocimetry and will present the lectures on (digital) holographic PIV.

Dr. Andreas Schröder, Institute of Aerodynamics and Flow Technology, DLR, Göttingen, will organize the PIV course, which was established in 1993 by Dr. Jürgen Kompenhans. In the past Prof. Markus Raffel and Dr. Christian Willert have provided the foundations of PIV application in wind tunnels.

Together with Dr. Klaus Ehrenfried, Dr. Boleslaw Stasicki, Dr. Reinhard Geisler, Dr. Daniel Schanz, Dr. Matteo Novara, Dr. Florian Huhn, Dipl.-Ing. Janos Agocs, Dipl.-Ing. Andre Bauknecht and Dr. Christian Wolf, from DLR, and Dipl.-Ing. Christina Heßeling from Oldenburg University they will present their knowledge and experience in different areas of the PIV technique such as tracer particles, illumination, recording, evaluation, data presentation, 3D(t)-PIV / 4D-PTV and other 3C-PIV techniques.

Additional information

For additional information about the course contact:

Scientific:
Dr. Andreas Schröder
Tel. +49 551 709 2190
Fax +49 551 709 2830
e-mail: andreas.schroeder@dlr.de

Organization:
Mrs. Ilka Micknaus
Tel. +49 551 709 2468 / 2461
Fax +49 551 709 2830
e-mail: pivcourse@dlr.de

DLR
Institute of Aerodynamics and Flow Technology
Bunsenstraße 10
37073 Göttingen, Germany

Deutsches Zentrum
für Luft- und Raumfahrt e.V.
German Aerospace Center

Institute of Aerodynamics and Flow Technology
Bunsenstr. 10
37073 Göttingen, Germany

http://pivcourse.dlr.de