Results for the C3.8 test case with the DLR-PADGE code

Ralf Hartmann
Institute of Aerodynamics and Flow Technology
German Aerospace Center

28. May 2013
Test case C3.8: CRM wing/body

Flow conditions (DPW-5, Case 1):

- Mach number: $M = 0.85$
- Target $C_L = 0.5$ (± 0.001)
- Reynolds number: 5×10^6 (based on reference chord $c_{ref} = 275.80$ inch)

Additional information:

- Moment reference center at $(x, y, z)_{ref} = (1325.90, 468.75, 177.95)$ in [inch]
- Reference area (half model): $A_{ref} = 297360$ (inch)2
- Fully turbulent flow, no transition
- Steady-state RANS
- Free air farfield boundary, no modeling of support structures or wind tunnel walls
Test case C3.8: CRM wing/body
Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$

Curved hexahedral mesh (cubic lines) from the workshop homepage
- crm_q3.msh with 79505 elements (initial mesh)
Test case C3.8: CRM wing/body
Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$

Curved hexahedral mesh (cubic lines) from the workshop homepage
- crm_q3.msh with 79505 elements (initial mesh)
Test case C3.8: CRM wing/body
Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$

Curved hexahedral mesh (cubic lines) from the workshop homepage
- crm_q3.msh with 79505 elements (initial mesh)
Test case C3.8: CRM wing/body
Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$

Methods in the DLR-PADGE code used for this test case
Discontinuous Galerkin discretization of the RANS and Wilcox k-ω equations
 ▶ Legendre polynomial basis functions of polynomial degree 1.
 ▶ Roe flux with Harten entropy fix (fix fraction=0.2)
 ▶ BR2 discretization of viscous terms
 ▶ Characteristic farfield boundary conditions
 ▶ Adiabatic wall boundary condition

Flow solver:
 ▶ Backward Euler (fully implicit solver) with ILU preconditioned GMRes
 ▶ Damping of updates to ensure that pressure and density do not decrease more than 20% in each iteration step

Convergence criterion: Reduction of the (vector-) L^2-norm of the residual vector to 10^{-12} relative to freestream conditions
C3.8: Convergence histories for residual-based mesh refinement

initial grid: 318.020 DoFs/eqn, constant $\alpha = 2.25^\circ$

Step 1: 482.988 DoFs/eqn, final $\alpha = 3.047^\circ$

Step 2: 814.048 DoFs/eqn, final $\alpha = 2.773^\circ$

Step 3: 1.414.432 DoFs/eqn, final $\alpha = 2.567^\circ$

Step 4: 2.674.652 DoFs/eqn, final $\alpha = 2.461^\circ$

Step 5: 5.298.416 DoFs/eqn, intermediate $\alpha = 2.292^\circ$

not yet fully converged
(restart of target C_L computations not yet implemented)
Test case C3.8: CRM wing/body

Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$ (± 0.001)

<table>
<thead>
<tr>
<th>ref.step</th>
<th>DoFs/eqn</th>
<th>α</th>
<th>C_D</th>
<th>C_L</th>
<th>C_M</th>
<th>work units</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>318.020</td>
<td>2.25</td>
<td>0.05105</td>
<td>0.3613</td>
<td>-0.0181</td>
<td>21967</td>
</tr>
<tr>
<td>1</td>
<td>482.988</td>
<td>3.047</td>
<td>0.04236</td>
<td>0.5009</td>
<td>-0.0510</td>
<td>101107</td>
</tr>
<tr>
<td>2</td>
<td>814.048</td>
<td>2.773</td>
<td>0.03589</td>
<td>0.5002</td>
<td>-0.0708</td>
<td>235739</td>
</tr>
<tr>
<td>3</td>
<td>1.414.432</td>
<td>2.567</td>
<td>0.03231</td>
<td>0.5005</td>
<td>-0.0853</td>
<td>422396</td>
</tr>
<tr>
<td>4</td>
<td>2.674.652</td>
<td>2.461</td>
<td>0.03034</td>
<td>0.5008</td>
<td>-0.0925</td>
<td>1098356</td>
</tr>
<tr>
<td>5</td>
<td>5.298.416</td>
<td>2.292</td>
<td>0.02876</td>
<td>0.5011</td>
<td>-0.1016</td>
<td></td>
</tr>
</tbody>
</table>
Test case C3.8: CRM wing/body

Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$

$\alpha = 2.292^\circ$, 5.298.416 DoFs/eqn
Test case C3.8: CRM wing/body

Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$

$\alpha = 2.292^\circ$, $5.298.416$ DoFs/eqn
Test case C3.8: CRM wing/body

Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$
Test case C3.8: CRM wing/body
Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$
Test case C3.8: CRM wing/body

Following slides:
- c_p on wing section 04 $\eta = 0.1306$
- wing section 10 $\eta = 0.5024$
- wing section 12 $\eta = 0.7268$
- wing section 14 $\eta = 0.9500$
Test case C3.8: CRM wing/body

Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$

Solution for $\alpha = 2.292^\circ$ on 5 times residual-based refined mesh with 5,298,416 DoFs/eqn.
Test case C3.8: CRM wing/body

Turbulent flow at $M = 0.85$, $Re = 5 \times 10^6$ with $C_L = 0.5$

Solution for $\alpha = 2.292^\circ$ on 5 times residual-based refined mesh with 5.298.416 DoFs/eqn.