DLR Portal
Home|Sitemap|Contact|How to find us|Accessibility Imprint and terms of use Privacy Cookies & Tracking |Deutsch
You are here: Home:Projects
Advanced Search
News
Events
Institute
Departments
Projects
Completed Projects
Software
Partners
Publications
Jobs
For students
Service & Links
Contact
Back
Print

ADaMant - Modeling flow physics at the borders of the flight envelope



Highly accurate flow simulations are essential to reliably predict the aerodynamics from the design point beyond the borders of the flight envelope and to evaluate the potential of weight and fuel reduction technologies of low-emission aircraft design. They are the foundation for both, simulation-based certification and the development of fast surrogate models with reduced order. The goal of ADaMant is the development and demonstration of appropriate physical models for highly accurate flow simulation on industrially relevant configurations towards the borders of the flight envelope.

Turbulence resolving simulation over a wing of a high-lift configuration, Credit: ©DLR. All rights reserved

The modeling of turbulent flows using the Reynolds-Averaged Navier-Stokes (RANS)-equations is a key element in highly accurate flow simulations and the standard tool in aviation industries. At the design point of today’s commercial aircraft, RANS models provide the optimal trade-off between efficiency and accuracy. The prediction quality deteriorates towards the border of the flight envelope. Reliable predictions with high accuracy in the flight regime of today’s and future aircraft configurations require a modeling approach that is capable to predict the flow phenomena and their interaction appearing at the borders of the flight envelope. To ensure the applicability in an industrial environment it is necessary to extend the scope of operation of current RANS-models on the one hand and, in regions where the assumptions of the RANS-approach are not valid, to enable turbulence resolving methods by significantly enhancing their efficiency on the other hand. At the borders of the flight envelope it is of particular importance to capture the interaction of different flow phenomena (e.g. laminar-turbulent transition, attached turbulent boundary layers and the separated flow region). In ADaMant, this dependency and mutual interaction of phenomena is addressed. An important goal in ADaMant is the application of extended physical models and their interaction on industrially relevant configurations in collaboration with the users of CFD codes to demonstrate the enhanced capabilities. At the Institute AS, we will perform numerical simulations based on advanced physical modeling for the high-lift configuration of the NASA Common Research Model, where wind tunnel measurements are performed during ADaMant, and evaluate the potential of the improved modeling techniques with respect to accuracy, robustness and efficiency.

 

Name ADaMant - Adaptive Data-driven Physical Modeling towards
  Border of Envelope Applications
Term  1/2021 - 12/2023
Partners DLR Institute of Aerodynamics and Flow Technology (Coordinator)
  DLR Institute of Aeroelasticity
  DLR Institute of Propulsion Technology
  DLR Institute of Software Methods for Product Virtualization
  DLR Institute of Test and Simulation for Gas Turbines
  Systemhaus Technik (DLR)

Contact
Dr. Cornelia Grabe
Head of Department

German Aerospace Center

Institute of Aerodynamics and Flow Technology
, C²A²S²E Center for Computer Applications in AeroSpace Science and Engineering
Göttingen

Tel.: +49 551 709-2628

Fax: +49 551 709-2416

Related Articles
C²A²S²E - Center for Computer Applications in AeroSpace Science and Engineering
High Speed Configurations
DIGIfly - Innovative softwaremethods for digital aircraft design
HiFi-TURB - High precision and fast calculation of relevant flow features
VicToria – Virtual Aircraft Technology Integration Platform
Related Topics
Aircraft Design, Testing and Performance
Aerodynamic
Copyright © 2023 German Aerospace Center (DLR). All rights reserved.