24. Juli 2019

Trieb­werk­s­ent­wick­lun­gen mit Me­tho­den der Künst­li­chen In­tel­li­genz

Einstieg in die LOX/Methan-Technologie
Ein­stieg in die LOX/Me­than-Tech­no­lo­gie
Credit: ArianeGroup

Einstieg in die LOX/Methan-Technologie

Er­folg­rei­cher Test ei­ner 30-Ton­nen-Schub­kam­mer am Kom­po­nen­ten­prüf­stand P3 in Zu­sam­men­ar­beit mit Aria­ne­Group. Das DLR greift in der Ent­wick­lung ei­nes LOX/Me­than An­triebs auch auf Er­fah­run­gen aus dem DLR-in­ter­nen Ent­wick­lungs­pro­jekt LU­MEN zu­rück, wel­ches das Ziel hat, ei­nen ei­ge­nen LOX/Me­than-De­mons­tra­tor in der 3-Ton­nen-Schub­klas­se zu ent­wi­ckeln.
  • Maschinelles Lernen, ein Teilgebiet der Künstlichen Intelligenz (KI), trägt bei, die Entwicklung von Flüssigraketenantrieben effizienter und sicherer zu machen.
  • Durch KI erzeugte Modelle liefern Vorhersagen, die um den Faktor 1.000 schneller sind als vergleichbare Rechnungen, die zum Beispiel mit numerischer Strömungsmechanik angefertigt wurden.
  • Resultate sind unter anderem eine geeignetere Wärmeübergangsmodellierung für Brennkammerauslegungen sowie eine verbesserte Zustandsüberwachung bei Triebwerktests.
  • Eine umfangreiche und qualitativ hochwertige Datenbasis aus Jahrzehnte langem Prüfstandsbetrieb stellt eine einzigartige Grundlage für den Einsatz datenbasierter Verfahren bei der Triebwerksentwicklung dar.
  • Schwerpunkte: Raumfahrt, Technologien im Raumtransport, Künstliche Intelligenz

Für zukünftige Raketentriebwerke ist die Treibstoffkombination Flüssigsauerstoff (LOX) und Flüssigmethan (LCH4) von großem Interesse: Ein LOX/LCH4-Triebwerk hat das Potenzial, die Kosten des in den 1980er Jahren entwickelten europäischen Hauptstufentriebwerks Vulcain um den Faktor zehn zu verringern und stellt zudem eine wiederverwendbare Triebwerkslösung in Aussicht. Bei der Entwicklung dieser Technologie bringt das Deutsche Zentrum für Luft- und Raumfahrt (DLR) in Lampoldshausen seine Kompetenzen als europäischer Test- und Entwicklungsstandort für Flüssigraketentriebwerke ein. Bei der Modellierung von komplexen Prozessen setzen die DLR-Wissenschaftler nun künstliche neuronale Netze – eine Form des maschinellen Lernens – ein: Für das DLR-Projekt „LUMEN“, in dem derzeit ein LOX/ LCH4-Triebwerksdemonstrator entwickelt und am Forschungs- und Technologieprüfstand P8 getestet wird, wurden so Dynamiken des Wärmeübergangs innerhalb der Kühlkanäle berechnet.

Diese Vorhersage des Wärmeübergangs innerhalb der Kühlkanäle der Brennkammer ist für die Auslegung des Triebwerkdemonstrators von großer Bedeutung. Einfache, empirische Korrelationen liefern jedoch nur zum Teil ausreichend genaue Vorhersagen und weisen meist einen sehr kleinen Gültigkeitsbereich auf. Rechnungen mithilfe von numerischer Strömungsmechanik, die an experimentellen Daten validiert wurden, stellen eine überzeugende Alternative dar. Der Nachteil dieser Rechnungen ist jedoch deren Berechnungsaufwand, der es praktisch unmöglich macht, solche Rechnungen in umfassende Optimierungen zu integrieren. Aus diesem Grund haben DLR-Wissenschaftler die Modellierung des Wärmeübergangs mithilfe künstlicher neuronaler Netze, einer speziellen Form des maschinellen Lernens, intensiv studiert. Anhand einer Vielzahl geeigneter Simulationen erlernte dazu ein neuronales Netz die zugrundeliegenden Dynamiken des Wärmeübergangs innerhalb der Kühlkanäle. Es konnte gezeigt werden, dass das so trainierte Modell den Wärmeübergang mit hoher Genauigkeit über einen großen Gültigkeitsbereich vorhersagen kann und die Vorhersage um den Faktor 1.000 schneller ist, als vergleichbare, numerische Strömungsmechanik-Rechnungen.

Zusammenführung von Experimental- und Simulationsdaten

„Der Einsatz von Künstlicher Intelligenz, insbesondere Algorithmen aus dem Bereich des sogenannten maschinellen Lernens, birgt riesiges Wertschöpfungspotenzial für die Erforschung und die Entwicklung zukünftiger Raumfahrtantriebe. Diese Algorithmen können Fähigkeiten zur Vorhersage aus Daten selbständig erlernen und anschließend für datenbasierte Berechnungen, Optimierungen und Entscheidungen genutzt werden“, sagt Dr. Günther Waxenegger-Wilfing, DLR-Wissenschaftler im Institut für Raumfahrtantriebe und ergänzt: „Wir sehen einen weiteren Vorteil darin, dass mithilfe solcher Algorithmen die Erkenntnisse aus Experimental- und Simulationsdaten systematisch zusammengefasst werden können und die resultierenden Modelle sowohl präzise sind als auch kurze Antwortzeiten aufweisen. Dieser Umstand verdeutlicht, wie zukünftig die Auslegung von Flüssigraketentriebwerken dank zuverlässiger KI effizienter, mit geringerer Entwicklungszeit und damit geringeren Kosten gelingen kann.“

Die Voraussetzungen für den Einsatz datenbasierter Verfahren sind am DLR Lampoldshausen national und zu einem gewissen Grad auch international einzigartig. Eine umfangreiche und qualitativ hochwertige Datenbasis aus Jahrzehnte langem Prüfstandsbetrieb und das daraus abgeleitete Systemverständnis stellen die Grundlage für weitere Forschungsarbeiten dar.

KI als Helfer für das Kontrollraum-Team

Wegweisende Anwendungsmöglichkeiten von KI-Methoden liegen auch in der Echtzeit-Zustandsüberwachung (Health-Monitoring) und der optimalen Regelung von Raketenmotoren und Triebwerksprüfständen. „Mit dem Maschinellen Lernen haben wir die Möglichkeit einen zusätzlichen „Mitarbeiter“ zu schaffen, der das Team im Kontrollraum vor und während des Testbetriebs unterstützt“, ergänzt Waxenegger-Wilfing. Weiterhin untersuchen DLR-Wissenschaftlicher derzeit den Einsatz von KI zur Identifikation von Warnsignalen für das Auftreten von Verbrennungsinstabilitäten und im Kontext der Wiederverwendbarkeit von Raketenantrieben die Verbesserung der Lebensdauervorhersage stark belasteter Strukturen.

Kontakt
  • Anja Kaboth
    Kom­mu­ni­ka­ti­on Lam­polds­hau­sen
    Deut­sches Zen­trum für Luft- und Raum­fahrt (DLR)

    Po­li­tik­be­zie­hun­gen und Kom­mu­ni­ka­ti­on
    Telefon: +49 6298 28-201
    Fax: +49 6298 28-190
    Im Langen Grund
    74239 Hardthausen
    Kontaktieren
  • Manuela Braun
    Stra­te­gi­sche Kom­mu­ni­ka­ti­on Raum­fahrt
    Deut­sches Zen­trum für Luft- und Raum­fahrt (DLR)
    Pro­gramm­stra­te­gie Raum­fahrt­for­schung und -tech­no­lo­gie
    Telefon: +49 2203 601-3882
    Hansestraße 115
    51149 Köln
    Kontaktieren
Neueste Nachrichten

Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen zum Datenschutz erhalten Sie über den folgenden Link: Datenschutz

Hauptmenü