17. August 2020

All-rounder in the start­ing blocks

Hydrogen supply facility at the DLR site in Cologne
Hy­dro­gen sup­ply fa­cil­i­ty at the DLR site in Cologne
Image 1/5, Credit: DLR (CC BY-NC-ND 3.0)

Hydrogen supply facility at the DLR site in Cologne

The In­sti­tute of Propul­sion Tech­nol­o­gy us­es this fa­cil­i­ty to de­vel­op and test new, eco­nom­i­cal and high-per­for­mance gas tur­bines for aero­nau­tics and en­er­gy tech­nol­o­gy.
DLR's H2ORIZON plant in Lampoldshausen
DLR's H2ORI­ZON plant in Lam­pold­shausen
Image 2/5, Credit: DLR (CC BY-NC-ND 3.0)

DLR's H2ORIZON plant in Lampoldshausen

DLR's H2ORI­ZON plant in Lam­pold­shausen is to pro­duce ‘green’ hy­dro­gen by means of elec­trol­y­sis. The en­er­gy for this comes from the near­by wind farm, which is op­er­at­ed by the project part­ner ZEAG En­ergie. The hy­dro­gen pro­duced is then used in the site’s com­bined heat and pow­er plant, for fu­el cell ve­hi­cles, or for rock­et en­gine tests on the site’s test stands.
Concept for a hydrogen aircraft
Con­cept for a hy­dro­gen air­craft
Image 3/5, Credit: DLR (CC BY-NC-ND 3.0)

Concept for a hydrogen aircraft

How a fu­ture air­craft pow­ered by hy­dro­gen might look.
A car powered by a hydrogen fuel cell as service vehicle at DLR Oldenburg
A car pow­ered by a hy­dro­gen fu­el cell as ser­vice ve­hi­cle at DLR Old­en­burg
Image 4/5, Credit: DLR (CC BY-NC-ND 3.0)

A car powered by a hydrogen fuel cell as service vehicle at DLR Oldenburg

A car pow­ered by a hy­dro­gen fu­el cell has been used since 2017 for ser­vice runs and re­search pur­pos­es at DLR's In­sti­tute of Net­worked En­er­gy Sys­tems in Old­en­burg. The Hyundai ix35 Fu­el Cell is equipped with a 100 kW (136 hp) elec­tric mo­tor.
Synlight high-performance light source at DLR Jülich
Syn­light high-per­for­mance light source at DLR Jülich
Image 5/5, Credit: DLR (CC BY-NC-ND 3.0)

Synlight high-performance light source at DLR Jülich

Ther­mal hy­dro­gen pro­duc­tion ex­per­i­ment us­ing so­lar ra­di­a­tion from the Syn­light high-per­for­mance light source at DLR Jülich.

Hydrogen has enormous potential as an energy carrier. DLR is working on making it as widely usable as possible.

Article from DLRmagazine 165

Hydrogen already enjoys pole position in the periodic table. With the atomic number one, it is found right at the top. Will it soon become the hero of the energy and mobility transition, too? It certainly has what it takes. Hydrogen carries a lot of energy, burns cleanly, is easy to transport, and can be stored reliably over long periods of time. DLR is involved in all areas of hydrogen research and across the entire process chain. Its scientists are able to draw upon several decades of experience when it comes to harnessing the potential of this all-round talent of an energy carrier.

Hydrogen is an incredibly versatile energy source. It can address a wide range of applications for clean mobility, the efficient supply of electricity and heat, as storage to offset fluctuating renewable energy sources, as a basis for alternative fuels, or as a process gas in industry. Sustainable and cost-effective production of hydrogen is thus crucial for efforts to combat climate change through the massive reduction of harmful greenhouse gas emissions, particularly carbon dioxide, in the energy, industrial and transport sectors. At the same time, the establishment of a cross-sectoral and, if possible, global hydrogen economy will open up enormous opportunities for new technologies and business models.

Colour theory 101 – grey, blue and green hydrogen

On Earth, hydrogen occurs almost entirely in a chemically bound form, for example in water, methane or biomass. For it to be used as a source of energy, the hydrogen must first be extracted from these compounds. This is achieved using energy in the form of electricity or intense heat. 'Grey' hydrogen is mainly obtained from natural gas and currently accounts for around 95 percent of global production. However, this also results in considerable carbon dioxide emissions. 'Blue' hydrogen is obtained by separating it from these greenhouse gases and storing them, or produced using electrolysis, which relies on electricity from nuclear power. Only 'green' hydrogen is sustainable and climate neutral. Water and energy from solar, wind, hydropower or biomass are used in its production. Until now, producing it in significant quantities has been considered too expensive. Karsten Lemmer, DLR Executive Board Member for Energy and Transport, is confident that this is set to change in future. “First of all, the expansion of renewable energies must continue. In addition, large electrolysis systems should be installed in Germany as soon as possible. This is the first step towards making green hydrogen competitive."

Towards green hydrogen – electrolysis and solar processes

DLR is focusing on two methods for the production of hydrogen on an industrial scale – electrolysis and solar thermal processes. Electrolysis is the most advanced form of this technology, and it is already commercially available. The principle, whereby water is split into hydrogen and oxygen molecules using electricity, has been known for over 200 years. At present, scientists are particularly interested in three technological implementations of electrolysis – alkaline, proton-exchange membrane, and high temperature electrolysis. DLR is involved in the development of all three. Germany currently has a total electrolysis capacity of 30 megawatts in place, powered by electricity from renewable sources. This capacity would have to be massively expanded in order to make the transition to a hydrogen economy. A study by the German National Organisation for Hydrogen and Fuel Cell Technology (Nationale Organisation Wasserstoff- und Brennstoffzellentechnologie; NOW) envisages an increase in this capacity to 137–275 gigawatts by 2050. This will require both smaller, decentralised electrolysis systems – at filling stations, for example – and centralised, large-scale electrolysers with particularly high levels of efficiency.

Solar thermal processes for producing hydrogen promise higher efficiency, but they require lots of space. In this process, solar thermal power plants use solar energy to produce heat for thermochemical water splitting. DLR is continuing to develop components and systems that will allow these plants to be made as efficient, durable and suitable for industrial use as possible. The new DLR Institute of Future Fuels will play an important part in this endeavour. The first pilot plants are already in operation, but it will take several more years before the solar hydrogen production processes are ready for the market.

Major hydrogen demand requires national production and imports

In order to meet the rapidly increasing demand for green hydrogen, it will be essential to significantly increase the power supply capacity from renewable energy sources. Germany's potential and available land area for this are somewhat limited. There are also issues with acceptance, such as those currently being experienced with wind power. "We will not manage to produce the amount of green hydrogen needed for the energy economy, industry and mobility in Germany. International solutions are needed. Large-scale hydrogen production should be established in sunny countries. Solar thermal processes have the highest potential to drastically reduce production costs. Global hydrogen logistics must then be devised for distribution," says Lemmer.

Within Europe, such hydrogen production is mainly suited for regions of Spain, Greece, and southern Italy. The production and export of hydrogen could be factored into a European 'green deal' and help to stimulate national economies following the Coronavirus pandemic. Countries in North Africa and the Middle East are also attracting interest from Germany and Europe for their potential in this area.

Transport, storage, and distribution – building and modifying infrastructure

In addition to production, cost-effective and reliable hydrogen transportation is essential for a future hydrogen economy. This involves both the transport routes from global production sites to nodes within the customer countries and local distribution to the end consumer. There are a number of possible approaches for this. The hydrogen could be transported in liquid form, or converted into ammonia, methane, or other liquid organic carriers. For now, it remains unclear which of these approaches will prove the most economically attractive. If hydrogen needs to be transported to an end consumer, it will probably be transported by lorry as a liquid or compressed gas. Another means of transporting and distributing hydrogen is to gradually convert the existing natural gas network into a hydrogen network. The German gas network consists of a transport network that extends 40,000 kilometres, with a distribution network covering 470,000 kilometres. To a certain extent, it is already suitable for distributing hydrogen. However, the introduction of a larger proportion of hydrogen would require careful investigation and optimisation of the various materials, components, operating methods and user requirements.

Large storage facilities will be an essential part of the overall hydrogen infrastructure. They will be necessary to reliably cover seasonal peaks in demand, such as during colder and darker months. In Germany, underground salt caverns are considered to be particularly suitable for this purpose. DLR is examining the safety of such storage facilities, the durability of the materials used there, and how the quality of the stored hydrogen changes over time. It is also conducting research into possible business models for production and storage, and analysing the potential of different locations, particularly in northern Germany. For geological reasons, these areas are particularly suitable for the type of infrastructure required.

Sustainable hydrogen mobility for roads, rail, air and sea

Green hydrogen represents a sustainable alternative for many applications powered today by petrol, diesel, kerosene or heavy oil. At the same time, it preserves the conveniences to which we have become accustomed, allowing for long range travel and fast refuelling. Hydrogen fuel cells are characterised by high levels of efficiency and, unlike the direct combustion of hydrogen in engines and turbines, produce only water vapour as emissions. DLR is developing special fuel cells and new types of hydrogen tanks for mobile use and integrating them into the propulsion systems of cars, buses, lorries, trains, aircraft and ships. Hydrogen-based propulsion solutions have significant advantages over battery concepts when it comes to transporting heavy loads over long distances.

Private transport vehicles powered by hydrogen fuel cells are already available on the market. DLR experts are analysing their market share and adoption. The DLR Safe Light Regional Vehicle (SLRV), a concept vehicle, will have a highly efficient hydrogen drive and is scheduled to make its first trips in autumn 2020. Trains powered by fuel cells provide an emissions-free alternative to diesel locomotives or multiple unit trains on stretches of track without overhead lines. DLR conducted a study in which it examined the market for trains with hybrid drive concepts and, together with the rail vehicle manufacturer Alstom, developed and tested the world’s first fuel-cell-powered multiple unit train. Additional trains and test regions are set to follow. The first buses with fuel cells are already on the streets as part of pilot projects, while several manufacturers are developing lorries with this type of drive.

One focus of the new DLR Institute of Maritime Energy Systems is the use of hydrogen to power ships. The scientists are conducting research into aspects such as service life, suitability for everyday use, and the efficient integration of such systems. One example of such integration could be the simultaneous use of electricity produced using hydrogen to drive the ship's propulsion and refrigerate its cargo. DLR is also working with companies and research institutions to launch the world’s first sea-going ferry to be powered with hydrogen fuel cells.

In aviation, hydrogen can be used as a fuel in modified gas turbines. This is of particular interest for large classes of aircraft, but requires the development of hydrogen storage systems that are compatible with aircraft and new combustion chambers. Powering flight with hydrogen fuel cells and electric propulsion systems has so far posed a highly complex technical challenge, but promises to be remarkably quiet, efficient, and emissions-free if successful. The use of liquid synthetic fuels based on hydrogen could also improve the sustainability of flight. In future, they could be deployed not only in aviation, but also anywhere that conventional drive systems cannot easily be replaced with climatefriendly alternatives such as batteries or hydrogen fuel cells. These fuels would require only minor adjustments to drivetrain components and infrastructure. In the DLR cross-sectoral project 'Future Fuels', 11 institutes are investigating the chemical and physical properties of such climate-neutral fuels and their performance, composition and costeffective production methods.

Green hydrogen for power and heat

The energy sector is also set to benefit from this versatile source of energy. Hydrogen fuel cells and gas turbines can be used to generate a controllable supply of power and heat. The energy system of tomorrow will be based on renewable energy sources with fluctuating power outputs, and so a source such as hydrogen is needed to offset peaks in demand or reductions in supply. The aim is to achieve the highest possible levels of efficiency.

Only minor adjustments are required to convert current efficient gas-fuelled power plants to hydrogen usage. DLR is currently working with turbine and power plant manufacturers to investigate fuel cell versatility and devise concepts for making the combustion of natural gas and hydrogen mixtures as stable and low in emissions as possible.

Sector integration – networking as a key to success

Coupling of the mobility, energy, and industrial sectors will play a key role in this process. The more technologies and applications that are integrated into the system, the more flexible and stable it will become as a whole. Green hydrogen is crucial for sustainability here. At the same time, it is important not to limit considerations of the environmental impact of the necessary components to just their manufacturing phase. Given the limited nature of resources, it is important to find sustainable solutions for replacing or recycling them. Despite the myriad challenges, Karsten Lemmer is hopeful about the future: "The transition towards a sustainable hydrogen economy can only succeed if we think of networks, consider the power, heat, mobility and industry sectors together and find whole-system solutions."

Karsten Lemmer
Karsten Lemmer
DLR Executive Board Member for Energy and Transport.

Are we on the brink of the hydrogen economy?

How? Why now? And why us? Using hydrogen to tackle the climate crisis.

An interview with Karsten Lemmer, DLR Executive Board Member for Energy and Transport.

Hydrogen is not a new discovery, so why would it make its breakthrough right now?

: Sustainably produced hydrogen has the potential to be the central building block for an energy and transport system with massively reduced greenhouse gas emissions. In contrast to the past, we now have the technologies and global networks – and, due to climate change, the urgent need – to drive the use of green hydrogen forward. Hydrogen can be directly used and stored, and can form the basis for the production of sustainable liquid fuels. Although it has long been successfully researched, bold approaches to use hydrogen on a large scale are now required. The German Federal Government has provided a good impetus for this with its National Hydrogen Strategy. Germany can take on a pioneering role for a global hydrogen economy. This is an important step both for the climate and for Germany as an industrial and scientific location.

What do researchers and companies need to build a hydrogen economy?

: Massive investment is currently required in technology and demonstrations, as is further investment in basic research and the establishment of the conditions for widespread market introduction. It is also important to understand that this is an international issue. We will not be able to produce the amount of green hydrogen needed for the energy sector, industry, and mobility in Germany alone. International solutions are needed. In addition, to exploit our own generation potential and further research the technologies, the expansion of existing renewable energies must continue. In the short term, large electrolysis systems should be established in Germany. This will help to build up technological leadership and expand the distribution infrastructure. Large-scale hydrogen production should also be established in sun-rich countries. Solar thermal processes have the highest potential to drastically reduce production costs. Global hydrogen logistics must then be created for distribution. Establishing hydrogen-based propulsion systems in mobility is not only a consideration of cost, improvements to infrastructure and product range are necessary. And last but not least, legislators must also take action. Only effective measures for market introduction and incentive systems can ensure that green hydrogen makes its contribution to the energy and mobility transition.

How can DLR support the establishment of a hydrogen economy?

: In order to exploit the potential of hydrogen, the energy system must be considered in its entirety and with all its interactions. Here, DLR has built up unique expertise over many years through its synergistic activities across the fields of space, aeronautics, energy and transport. Nevertheless, there are still plenty of research questions surrounding hydrogen, These concern future synthetic fuels, new technologies for transport and storage, production technologies using wind and solar power, system integration at all levels of the energy system, hydrogen-based sector integration, hydrogen-based electricity regeneration processes, analytical technology assessment and transformation strategies, to name but a few. DLR therefore conducts research along the entire system chain, starting with the production of green hydrogen by electrolysis or solar generation, through to its use in the transport, industrial and energy sectors. Hydrogen offers solutions to the problems of our time – from a green electricity supply to carbon-dioxide-free transportation.

This interview was conducted by Denise Nüssle.

This article is taken from DLRmagazine 165. Subscribe to the DLRmagazine and receive it at your doorstep free of charge. Here you can find all the issues of the DLRmagazine.

The national hydrogen council

The council consists of 26 high-ranking experts from science, business and society. The members were appointed by the German Federal Cabinet in June 2020 and have expertise in the fields of hydrogen production, research and innovation, decarbonisation of industry, transport and buildings/heat, infrastructure, international partnerships, and climate and sustainability. The council advises and supports the German State Secretary Committee for Hydrogen by making proposals and recommending actions for the implementation of the National Hydrogen Strategy. Karsten Lemmer, DLR Executive Board member for Energy and Transport, is a member of the Hydrogen Council.

  • Denise Nüssle
    Ger­man Aerospace Cen­ter (DLR)

    Com­mu­ni­ca­tions and Me­dia Re­la­tions
    Telephone: +49 711 6862-8086
    Fax: +49 711 6862-636
    Pfaffenwaldring 38-40
    70569 Stuttgart

Main menu