InSight mission

SEIS seis­mome­ter

Cross-section of the complete seismometer apparatus
Cross-sec­tion of the com­plete seis­mome­ter ap­pa­ra­tus
Credit: IPGP/D. Ducros

Cross-section of the complete seismometer apparatus

Cross-sec­tion of the com­plete seis­mome­ter ap­pa­ra­tus, with the WTS on the out­side, fol­lowed by the re­mote warm en­clo­sure box (RWEB), and the in­side of the vac­u­um con­tain­er of the seis­mome­ter, stand­ing on the lev­el­ling sys­tem.

The Seismic Experiment for Interior Structure (SEIS) seismometer consists of a total of six seismic sensors that record the vibrations of the Martian soil in three directions in space and at two different frequency ranges (Very Broad Band [VBB], covering 0.01–10 Hertz and Short Period [SP] covering 0.1–50 Hertz). The overlap of the two frequency ranges allows them to be mathematically combined into a single extremely broadband seismometer.

The three sensors that are sensitive to low frequencies are housed in an evacuated container, as the air resistance of even the thin Martian atmosphere would dampen the movement of the sensors too much. This container rests on a levelling system (LVL) with three telescopic legs to ensure that the casing is precisely horizontally aligned, as the VBB sensors would not work otherwise. The three sensors for the higher frequency range are mounted on the outside of the LVL. In order to protect the seismometer against wind and strong temperature fluctuations, a protective dome (Wind and Thermal Shield, WTS) will be placed over it.

In the first two weeks after arrival, the lander’s immediate surroundings will be precisely mapped and surveyed to find the ideal location for the two instruments – SEIS and HP3. The robotic arm will then lift out and install the seismometer, with the location checked and recorded once more before the WTS is placed on top of it. Work on the assembly of the seismometer should be complete by 5 January 2019.

Institutions from several countries have provided the SEIS components. The low-frequency VBB sensors are from the Institute du Physique du Globe in France, the high-frequency SP sensors are from Imperial College in the United Kingdom, and the control electronics were made at the Swiss Federal Institute of Technology in Zurich (Eidgenössische Technische Hochschule; ETH). The vacuum container, the WTS and the connecting cable, with almost 300 wires for electrical supply and data transmission to the lander, come from the NASA Jet Propulsion Laboratory (JPL) in the USA. Finally, the levelling system was developed and built by the Max Planck Institute for Solar System Research in Göttingen, Germany.

An international team comprising members from these and other countries will evaluate the scientific data. DLR has participated in this project through its seismic models, which provide a statistical evaluation of the frequency and strength of marsquakes.

Contact
  • Elke Heinemann
    Ger­man Aerospace Cen­ter (DLR)
    Pub­lic Af­fairs and Com­mu­ni­ca­tions
    Telephone: +49 2203 601-2867
    Fax: +49 2203 601-3249

    Contact
  • Prof.Dr. Tilman Spohn
    HP³ Prin­ci­pal In­ves­ti­ga­tor
    Ger­man Aerospace Cen­ter (DLR)

    DLR In­sti­tute of Plan­e­tary Re­search
    Telephone: +49 30 67055-300
    Fax: +49 30 67055-303
    Linder Höhe
    51147 Köln
    Contact
  • Martin Knapmeyer
    Ger­man Aerospace Cen­ter (DLR)
    In­sti­tute of Plan­e­tary Re­search
    Telephone: +49 30 67055-394
    Rutherfordstraße 2
    12489 Berlin
    Contact
  • Ulrich Köhler
    Pub­lic re­la­tions co­or­di­na­tor
    Ger­man Aerospace Cen­ter (DLR)
    In­sti­tute of Plan­e­tary Re­search
    Telephone: +49 30 67055-215
    Fax: +49 30 67055-402
    Rutherfordstraße 2
    12489 Berlin
    Contact
Dossiers on this topic

Cookies help us to provide our services. By using our website you agree that we can use cookies. Read more about our Privacy Policy and visit the following link: Privacy Policy

Main menu