Demonstrator Roadmap towards Zero Emission Aviation
The road to Zero Emission Aviation

Many challenges on the path to emission-free aviation by 2050 can only be solved through cooperation between industry and research. Technological fields of action include synthetic fuels, hydrogen in gas turbines and hydrogen fuel cells, revolutionary gas turbine cycles, electric propulsion systems and climate-optimised routing.

For the successful implementation of emission-free aviation, technologies must be demonstrated quickly in order to quantify their individual potential and point out the direction of development. To this end, the DLR proposes the following demonstrator roadmap, developed in collaboration with the German aviation industry.

H2HEP: Modular test bed for hydrogen and hybrid-electric architectures
- Powerplant integration
- Integration of fuel cells for commuter-class aircraft
- Electric maiden flight of the test carrier
- Test center for H2 and e-components in the 500-kW class
- Fuel cell system ready for approval
- Conversion into a modular test bed for hybrid-electric architectures
- Continuous test flights with different architectures
- Evaluation of different hybrid-electric architectures in the 500-kW class (e.g. fuel cells, H2-GenSys, co-optimised burner)

H2Atmo: Regulatory sandboxes for hydrogen combustion under real flight conditions
- Hydrogen combustion in general aviation
- Hydrogen combustion in the regional class
- Further measurement campaigns
- First quantified emission measurement of hydrogen combustion
- First flight with parallel hybrid architecture in the 1.5-MW class
- Verification of the climate effect water vapour at actual flight altitude
- Comprehensive data on the climate impact of water vapour emissions from an optimised parallel hybrid propulsion system

SAFinFlight: Alternative near-drop-in fuels in the conventional gas turbine
- Functionality test
- Co-optimised gas turbine and SAF
- Comprehensive comparative data for adjusting certification processes and sustainability criteria
- Climate-optimised conventional gas turbine as a comparison system for hydrogen and hybrid-electric architectures

H2Urban: Hydrogen hybrid architectures in the field of Urban Air Mobility
- Hybrid architectures for vertical take-off vehicles
- Integration of a hybrid-electric propulsion concept in a VTOL configuration for Urban Air Mobility

H2EnergyBird: Ground tests for hybrid wide-body aircraft
- Ground tests for hybrid wide-body aircraft
- Hybrid propulsion in the large aircraft class
- Optimisation of the components
- Validated large aircraft ground test bed in real scale

INDUSTRY
- Evaluation of hybrid-electric architectures in the 500-kW class
- Conversion into a modular test bed for hybrid-electric architectures
- Continuous test flights with different architectures
- Evaluation of different hybrid-electric architectures in the 500-kW class
- Comprehensive test flights for hybrid wide-body aircraft

Legend
- E-flight
- Hydrogen
- Fuel cells
- SAFs and routes

H2HEP: Modular test bed for hydrogen and hybrid-electric architectures

- Fuel cells can become a promising energy source, especially for smaller aircraft classes. A modular demonstrator makes it possible to test different propulsion concepts with the same aircraft. The aim is to initially make the fully electric maiden flight of a test carrier and thus provide the German industrial and research landscape with a unique testing opportunity for hybrid-electric architectures. The integration of fuel cells and hydrogen storage also poses major technological challenges for the realisation of hydrogen propulsion systems.

Result:
- Evaluation of hybrid-electric architectures in the 500-kW class.

H2Atmo: Regulatory sandboxes for hydrogen combustion under real flight conditions

- Flight physics studies identify the use of direct hydrogen combustion in combination with parallel hybrid-electric propulsion as a promising architecture for regional aircraft. At the same time, atmospheric hydrogen emissions and the associated climate impact urgently require research to ensure direct hydrogen combustion can achieve emission-free operation, in the net balance. Two research programmes related to the DLR aim to quantify the effect of water vapour in the atmosphere as quickly as possible and, in the long term, to develop a parallel hybrid architecture based on hydrogen combustion for regional aircraft.

Result:
- Comprehensive data on the climate impact of water vapour emissions from an optimised parallel hybrid propulsion system.

SAFinFlight: Alternative near-drop-in fuels in the conventional gas turbine

- Currently, mixes of synthetic and conventional fuels are permitted up to a maximum blending ratio of 50 percent. Alternative fuels requiring minor optimisations in aircraft and fuel design are seen as near-drop-in fuels. There is currently no approval for such fuels. In addition, co-optimisation of fuel and combustion technology can significantly reduce CO₂, soot and particle emissions as well as NOx emissions.

Result:
- Climate-optimised conventional gas turbine as a comparison system for hydrogen and hybrid-electric architectures.

H2Urban: Hydrogen hybrid architectures in the field of Urban Air Mobility

- Industry is working on a fully-electric VTOL flight demonstrator for Urban Air Mobility. In order not to make the potential market launch of such a vehicle directly dependent on the evolution of battery technology, industry wants to integrate hybrid-electric propulsion based on a fuel cell on a VTOL platform and to study it in flight. The VTOL-specific integration aspects are to be addressed.

Result:
- Verification of a hybrid-electric propulsion concept in a VTOL configuration for Urban Air Mobility.

H2EnergyBird: Ground tests for hybrid wide-body aircraft

- Setup of the prototype for the secondary energy system for a large commercial aircraft with a fuel cell in cooperation with several industries and research partners as a jointly used research infrastructure. This aims to investigate testing on the ground, the cabin power supply including electronics, emergency power generators and fans, highly integrated electric flight control drives. It also aims at performance and weight-optimised decentralised hydraulic power packs under real performance aspects. This is a necessary first step towards preparing a corresponding real-scale hybrid drive in the large aircraft class. In addition, cabin systems and air conditioning systems can be tested under simulated altitude conditions. This real-scaled prototype will also be used to clarify various certification issues and to develop propulsion systems for wide-body aircraft.

Result:
- Validated large aircraft ground test bed in real scale.
Overview of the DLR

The DLR is the Federal Republic of Germany's aerospace research centre. We conduct research and development in the fields of aeronautics, space, energy and transport, safety, security and digitalisation. On behalf of the Federal Government, the DLR Space Agency is responsible for planning and implementing German space activities. Two of the DLR project management agencies oversee funding programmes and support the transfer of knowledge.

Climate, mobility and technology are changing globally. The DLR uses the expertise of its 54 institutes and facilities to develop solutions to these challenges. Our more than 9,000 employees share a common mission: we explore the Earth and space and develop technologies for a sustainable future. In this way, we contribute to strengthening Germany as a knowledge and business location.

Legal Notice

Publisher:
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)
Aeronautics Research and Technology Division

Programme Strategy Aeronautics
Linder Hoehe, 51147 Cologne, Germany
Phone +49 2203 601 5236

DLR.de/en

Images: DLR (CC-BY 3.0), Grob, Airbus, Martin Kulcsar
Cover Image: DLR