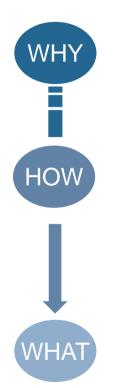
Multifunktionale Zelle

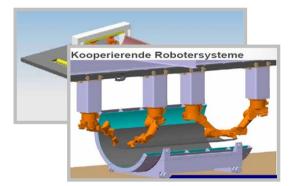

Vision, Realisierung, Leistungsdaten

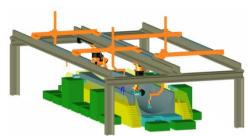
Stefan Bayer (KUKA Industries - Systems GmbH) Florian Krebs (DLR ZLP Augsburg) 19.5.2015

Stand der Technik in 2009 → Geburt MFZ bis 2013-14

- Airbus A30X Rumpf soll in CFK produziert werden
- 40 Einheiten/ Monat mit EIS 2018/-19
- Wissen unterschiedlicher Unternehmen muss zusammengeführt

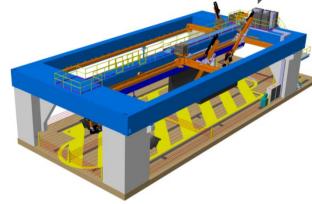
- Verschiedenste Anforderung müssen gemeinsam spezifiziert werden
- gemeinsame Entwicklung über Kooperation DLR ZLP & KUKA Systems
- Entscheidung: Eine Multi Funktionale Zelle muss gebaut werden
- Schrittweise Umsetzung dieser MFZ über Phasenplan


Aufgabe → erwarteter Trend → Vision der MFZ


- Forschungsplattform für Doppel Sektion Rumpfhalbschale
 Zur Industrialisierung zur Verfügung → TRL 6 Level
- Anforderung weitgehend automatisierte Produktion in 2018/-19
- Flexibilität für Prozesse, Technologien, Umstieg, parallele Forschung....
- Manueller Zugriff muss möglich bleiben
- Parallelisierung von Prozessen (Legeraten)
- Schrittweiser Umstieg von Manufaktur zu Produktion
- Arbeitsvolumen (Zielbauteil: 16m Ø 4,2 m) mit
 - → Tiefe Kavität mit starken Orientierungsänderungen
 - → Höchste Anforderungen an effektiven Arbeitsraum
- Hohe Genauigkeit trotz Raumvolumen
- Gemeinsame Spezifikation Anforderungen, bei schrittweiser Umsetzung
- MFZ ist als Gesamtsystem → mit Integration vielfältiger Mechatronik
- MFZ als R&D Plattform → zukunftsfähig bis nach 2020

MFZ - Vision → Konzeption 2009 → Stand 2014

Geburt der MFZ (ca. 3-4 Jahre)

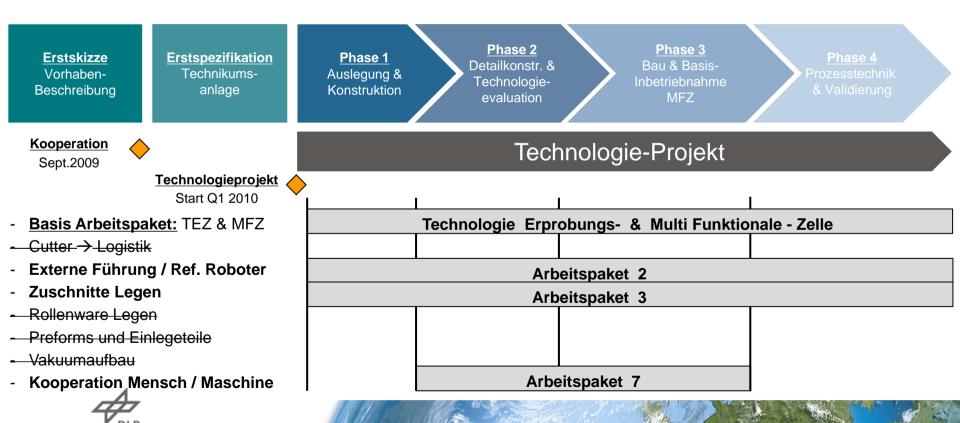


DLR 06/2009:

Versch. Ideen als Anregung

Erstkonzeption 2009:

Zelle mit **zwei** zentralen Schwerlast-IR (500 kg) mit 4x Portal & LBR (7 kg)



MFZ Status 2014:

Flex. Plattform mit zwei zentralen IR (270 kg) & 3x Portal (240 kg) Möglichkeit zur Aufteilung der Zelle

Phasenmodell in der Umsetzung

Über die TEZ zur Multi-Funktionalen Zelle

<u>Technologie Erprobung</u> → <u>Versuche erforderlich</u>

→ Entscheidung zur TEZ Technologie Erprobungs-Zelle in 2010

→ Schrittweises Umsetzen von Technologien von TEZ zur MFZ

<u>TEZ</u>

Technologie-

Erprobungs-Zelle

AP2 - Externe Führung

AP3 - Endeffektoren zum Legen Zuschnitte

AP7 - Kooperation Mensch / Maschine

MFZ

Multi-

Funktionale-

Zelle

Impressionen Bau – MFZ Struktur vor Hallenbau

11/2011:

Erstellung des unteren Ringfundamentes und der Maschinesäulen 12/2011

bis

01/2012:

Vormontage oberes Maschinengestell (ca 180 to Stahl)

Basismontage MFZ parallel zum Hallenbau

02/2012:

Beginn des Hallenbaus

03/2012:

Einbringen der Grundstruktur des Spannfelds

09/2012:

Fertigstellung Oberes Maschinengestell und Einbringung der zentralen Linearachse

Robotermontage bis Erstinbetriebnahme

10/2012:

Vormontage der Roboter und Portale

03/2013:

Finale Ertüchtigung des Spannfelds

08/2013:

Durchführung der Erst-Inbetriebnahme

Institutseröffnung & Inbetriebnahme

- 14./15. Mai 2013: Eröffnung des DLR ZLP in Augsburg & Produktionstechnikkolloquium 2013

- Januar 2014:

Abschließende Inbetriebnahme, Betriebsbereite Übergabe an DLR ZLP

- Anschließende Optimierungsphase gemeinsam mit KUKA Systems

Rückblick MFZ - 2015 aus Sicht KUKA Systems

- Die Multi-Funktionale Zelle steht abgenommen beim DLR ZLP Die Geburt hat etwas gedauert, aber das "Kind" ist gut gelungen
- Gemeinsame Entwicklung über Kooperationsmodell
- Transparenter Umgang mit Aufgaben/ Problemen und Kosten
- Risiken konnten meist erkannt → dann auch vermieden werden
- Schrittweises Vorgehen → zur Disziplinierung und Zielerreichung
- Weitere Technologieprojekte im Gange:
 - a) Projekt Koffer b) MAI ZPR c) neues Kundenprojekt (noch mit NDA)
- KUKA Resümee: Konstellation (Aufgaben & Leute) +++++
 Viel gelernt, uns weiter entwickelt & würden es mit dem DLR wieder tun
- KUKA -- Bitte ans DLR ZLP:

Darstellung der Leistungsdaten durch

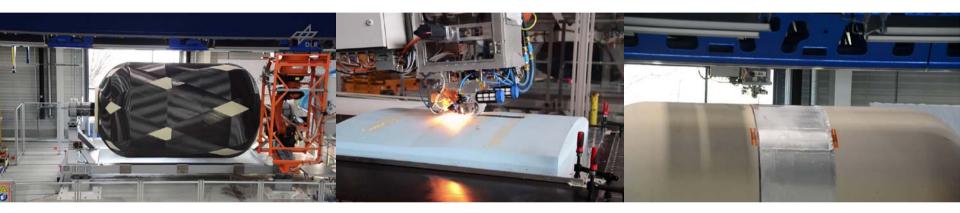
a) DLR als Kooperationspartner und b) DLR als Kunden

Bisherige Anwendungen: AZIMUT

Auf MFZ umgesetzt:

Untersuchung der Möglichkeiten zur automatisierten Herstellung von großen Schalenbauteilen im 1:1: Maßstab am Beispiel A350 Rear Pressure Bulkhead (Druckkalotte)

Bisherige Anwendungen: Demopanel



Auf MFZ umgesetzt:

Herstellung und Prüfung eines generischen Rumpfbauteils inklusive Setzen von Stringern und begleitende Qualitätsprüfung

Bisherige Anwendungen: KOFFER

Auf MFZ umgesetzt:

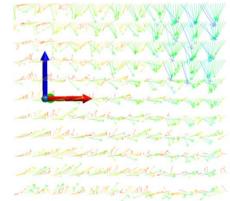
Automation des Wickelvorgangs und Einbringung von lokalen Verstärkungen durch Dry Fiber Placement für die Herstellung Boostergehäuses für die zukünftige Ariane 6 → Details im folgenden Vortrag von Hr. Ortmann

Leistungsbestimmung: Absolut-Genauigkeit

Automatisierte Vermessung eines Teils der Anlage und Bestimmung der Leistungsfähigkeit → Details jetzt

Versuchsaufbau und Ziel

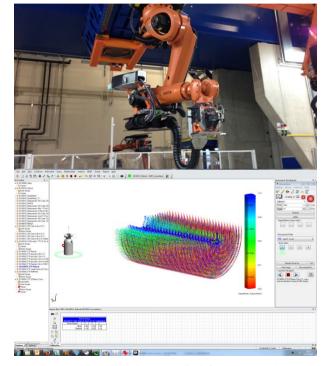
- Ziel:


Bestimmung der Absolut-Genauigkeit der Roboter sowie Portale (in Anlehnung an DIN EN ISO 9283 Industrieroboter - Leistungsgrößen und zugehörige Prüfmethoden)

Verwendete Roboter:
 KUKA KR 270-2700 und Portal mit KR 240 Hand

- Messsystem:

Lasertracker Leica AT 901 und T-MAC am Flansch NRK Spatial Analyzer zur Messdatenaufnahme

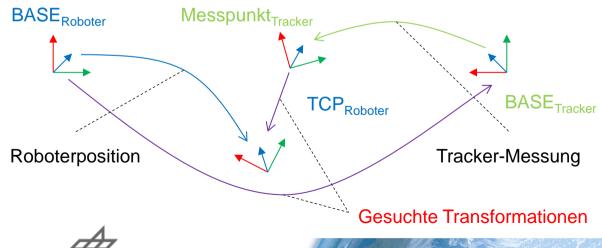


Visualisierung Abweichungen ISO Kubus

Versuchsdurchführung

- Bestimmung der Transformation(en) zwischen Roboter-Referenz-KOS und Lasertracker Referenz-KOS
- Messung im definierten Versuchsvolumen
 - Vorgestellte Fälle:
 1m³ "ISO"-Kubus (für Roboter & Portal)
 Anwendungsnaher Fall: Demopanel (für Roboter)
- (Nachgeschaltete) Auswertung der Messdaten in Spatial Analyzer und eigens entwickelten Analyse-Werkzeugen

Auswertungssoftware NRK Spatial Analyzer

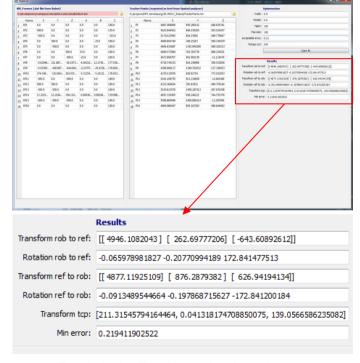


Transformationsbestimmung 1/2

- Grundproblem:

Roboter und Tracker "denken" in unterschiedlichen Bezugskoordinatensystemen

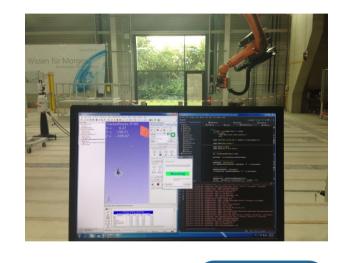
- → genauer: Roboter bezieht seine Koordinaten auf Base und TCP
- → und: Lasertracker bezieht seine Messung an Probe in Referenz-KOS



Transformationsbestimmung 2/2

- Algorithmus:
 Bestimmung der (invertierbaren)
 - Transformationen durch 2-stufiges Verfahren:
 - T:Messpunkt_{Tracker} → TCP_{Roboter} mittels genetischem Algorithmus
 - 2. T:BASE_{Tracker} → BASE_{Roboter} mittels Singular Value Decomposition
- Input:
 - mind. 3 (besser: > 10) korrespondierende (d.h. an gleichen Punkten u. in gleicher Reihenfolge) Messungen

Links: Roboterdaten (.dat File), Rechts: Messdaten Lasertracker



Automatische Messung

- Aufgrund sehr vieler Messpunkte (> 1000 pro Messung) automatische Messung notwendig
- Funktionalität:

Automatisches Auslösen einer Messung in Spatial Analyzer aus dem Roboterprogramm

KRL
Programm
(Ethernet
KRL)

Messanforderungen

und Übergabe aktueller Position

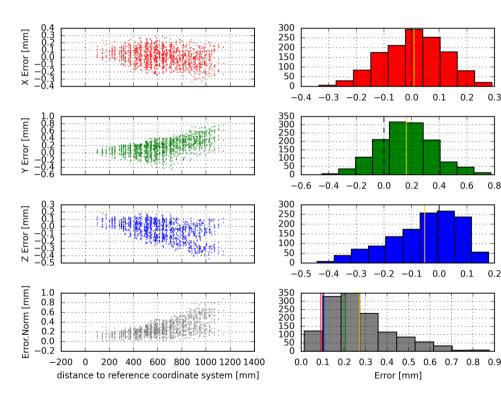
Freigabe der nächsten Bewegung

DLR Roboter-Tracker-Brücke (pySAKRL) Starten der Messung

und Eintrag aktueller Roboterpose

Bestätigung der Messung

NRK Spatial Analyzer (COM Server)

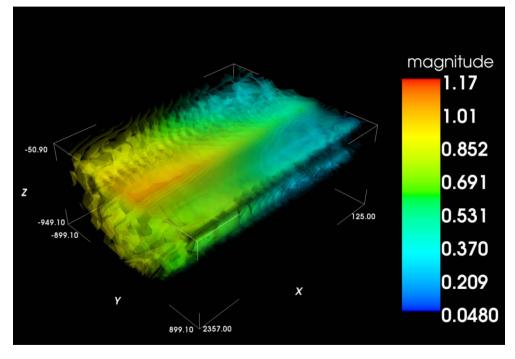

Ergebnisse: ISO Kubus Zentralroboter

- 1331 Messpunkte

- Anfahrt: LIN, 0.2 m/s

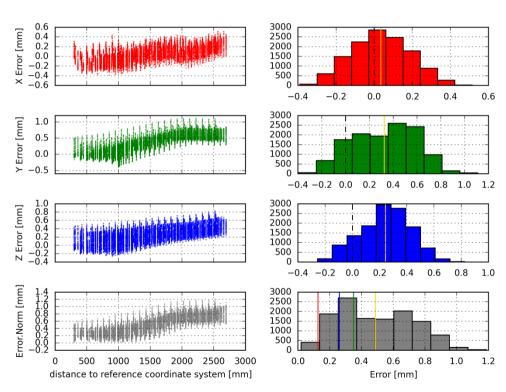
- Mittlere Genauigkeit: ±0.27 mm

	AbsErr_X	AbsErr_Y	AbsErr_Z	AbsErr_Norm
count	1331	1331	1331	1331,00
mean	0,01	0,16	-0,05	0,27
std	0,11	0,20	0,13	0,15
min	-0,34	-0,45	-0,44	0,01
25%	-0,07	0,03	-0,13	0,16
50%	0,01	0,16	-0,03	0,24
75%	0,09	0,29	0,05	0,35
max	0,29	0,77	0,18	0,88



Ergebnis: Demopanel Zentralroboter 1/2

Anwendungsnaher Fall: Arbeitsvolumen entspricht Kavität des Demopanels

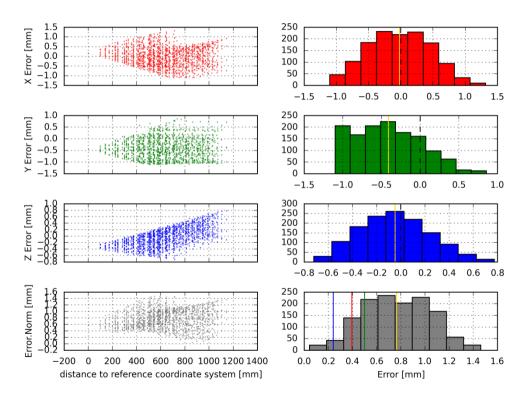

Ergebnis: Demopanel Zentralroboter 2/2

- 12687 Messpunkte

- Anfahrt: PTP, 30%

- Mittlere Genauigkeit: ±0.49 mm

	AbsErr_X	AbsErr_Y	AbsErr_Z	AbsErr_Norm
count	12687	12687	12687	12687
mean	0,04	0,32	0,24	0,49
std	0,15	0,26	0,18	0,23
min	-0,39	-0,40	-0,26	0,02
25%	-0,07	0,11	0,12	0,29
50%	0,03	0,35	0,25	0,47
75%	0,14	0,53	0,37	0,68
max	0,51	1,11	0,83	1,19

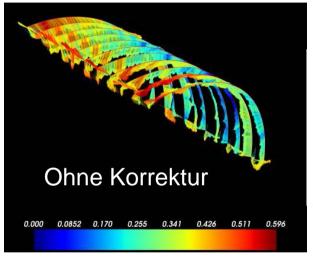

Ergebnis: ISO Kubus Portal

- 1331 Messpunkte

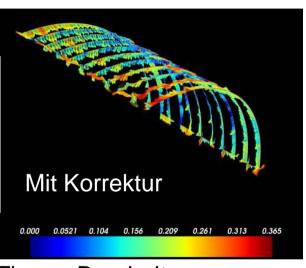
- Anfahrt: LIN, 0.3 m/s

- Mittlere Genauigkeit: ±0.77 mm

	AbsErr_X	AbsErr_Y	AbsErr_Z	AbsErr_Norm
count	1331	1331	1331	1331
mean	-0,02	-0,41	-0,05	0,77
std	0,48	0,43	0,29	0,27
min	-1,10	-1,10	-0,72	0,04
25%	-0,38	-0,75	-0,26	0,55
50%	-0,02	-0,44	-0,06	0,76
75%	0,33	-0,10	0,15	0,98
max	1,32	0,86	0,77	1,46


Auswertung & Diskussion

		AbsErr_X	AbsErr_Y	AbsErr_Z	AbsErr_Norm
ISO Kubus Zentralroboter	mean	0,01	0,16	-0,05	0,27
Demopanel	mean	0,04	0,32	0,24	0,49
ISO Kubus Portal	mean	-0,02	-0,41	-0,05	0,77


- Zentraler Roboter kann mittlere Genauigkeiten von ±0,27 mm darstellen
 Jedoch: Mit steigender Entfernung zur Base verschlechtert sich die Genauigkeit
 - Effekt nicht anlagenspezifisch und muss bei der Umsetzung von Prozessen berücksichtigt werden → Toleranzmanagement
- Portale zeigen starken Deformationseffekt in Anlagen-Y (quer zur MFZ)
 - → Modellbasierte Kompensation

Ausblick: MAI ZPR

- Seit Oktober 14 laufendes Projekt im MAI Cluster zum Thema Bearbeitung
- Zentraler Bestandteil: Online Bahnführung zur Bahnregelung
- Auszug vorläufige Ergebnisse:
 Genauigkeit auf Bahn: 0.29 mm mit Bahnführung 0.15 mm (bei 125 mm/s)

Danksagung

- Allen **Mitarbeitern und Kollegen**, die an den Projekten AZIMUT, Demopanel, KOFFER (und weiteren kleinen Versuchen) mitgewirkt haben

- Unseren Partnern:

beim Aufbau der MFZ und in MAI ZPR: **KUKA Systems GmbH** in den Projekten AZIMUT: **Premium Aerotec** und KOFFER: **MT Aerospace**

- Unseren Fördergebern:

Stadt Augsburg, Regierung von Schwaben, BMWi und BMBF

r AEROSPACE

