

Status of the Earth Surface Mineral Dust Source Investigation Imaging Spectroscopy Mission

Robert O. Green¹, Natalie Mahowald², David R. Thompson¹, Roger Clark³, Bethany Ehlmann⁴, Paul Ginoux⁵, Olga Kalashnikova¹, Ron Miller⁶, Greg Okin⁷, Thomas H. Painter⁷, Carlos Perez Garcia-Pando, Vincent Realmuto¹, Gregg Swayze⁹, Eyal Ben Dor¹⁰, Philip G. Brodrick¹, Longlei Li², Nimrod Camron¹, Benjamin Phillips¹¹, and Kevin Reath¹¹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, ²Cornell University, Ithaca, NY, USA, ³Planetary Science Institute, Tucson, AZ, USA, ⁴California Institute of Technology, Pasadena, CA, USA, ⁵Princeton University, Princeton, NJ, USA, ⁶NASA Goddard Institute for Space Studies, New York, NY, USA, ⁷University of California Los Angeles, Los Angeles, CA, USA, ⁸Barcelona Supercomputing Center, Barcelona, Spain, ⁹US Geological Survey, Golden, CO, USA, ¹⁰University of Tel Aviv, Tel Aviv, Israel, ¹¹NASA Headquarter, Washington, DC, USA

Copyright 2021 All Rights Reserved. U.S. Government sponsorship acknowledged.

Earth's Mineral Dust Cycle

EMIT Science Objectives

23 Jun 2020 12:00Z NOAA/NESDIS/STAR GOES-East GEOCOL

- 1) Constrain the sign and magnitude of dust-related RF at regional and global scales. EMIT achieves this objective by acquiring, validating and delivering updates of surface mineralogy used to initialize Earth System Models.
- 2) Predict the increase or decrease of available dust sources under future climate scenarios.

EMIT achieves this objective by initializing Earth System Model forecast models with the mineralogy of soils exposed within at-risk lands bordering arid dust source regions.

of Dust

Earth System Models

Earth System Model

Dust in Earth System Models

UN Food and Agriculture Organization (FAO) Soil Map Interpolated/Extrapolated

Current Soil Sample Locations

Challenge: Using FAO soil data sets and "Average" soil properties from ≤5000 soils samples (mostly not in deserts) doesn't fully capture actual distribution and diversity of the mineral dust source regions.

EMIT Will Use Imaging Spectroscopy Dust Minerals have Distinct Spectral Signatures

Visible to Short Wavelength Infrared Spectral Range (VSWIR) [400 to 2500 nm]

FAO Soil Map Compared to Airborne VSWIR Imaging Spectroscopy at Cuprite, Nevada

EMIT Data Products and Testing Builds on Decades of Airborne Imaging Spectrometer Measurements

Level 2b Mineralogy

Field Spectroscopy with Laboratory/Analyses

Level 3 Gridded Level 3 Gridded

Level 4 Model Runs

The EMIT Instrument is Well Along in Development

<image>

Live EMIT Spectra with Christine Bradley 20210817

Laboratory California Institute California Institute of Technology

Planned SpaceX Launch

EMIT Planned Arid Land Coverage Area

EMIT Dust Source Surface Mineralogy

EMIT on the ISS delivers >10⁹ direct spectroscopic observations of arid land surface

Data Product	Description	Initial Availability to NASA DAAC	Median Latency in Product Availability to NASA DAAC after Initial Delivery	NASA DAAC Location
Level 0	Raw collected telemetry	4 months after IOC	2 months	LP DAAC
Level 1a	Reconstructed, depacketized, uncompressed data, time referenced, annotated with ancillary information reassembled into scenes.	4 months after IOC	2 months	LP DAAC
Level 1b	Level 1a data processed to sensor units including geolocation and observation geometry information	4 months after IOC	2 months	LP DAAC
Level 2a	Surface reflectance derived by screening clouds and correction for atmospheric effects.	8 months after IOC	2 months	LP DAAC
Level 2b	Mineralogy derived from fitting reflectance spectra, screening for non-mineralogical components.	8 months after IOC	2 months	LP DAAC
Level 3	Gridded map of mineral composition aggregated from level 2b with uncertainties and quality flags	11 months after IOC	2 months	LPDAAC
Level 4	Earth System Model runs to address science objectives	16 months after IOC	2 months	LP DAAC

16 Jet Propulsion Laboratory California Institute of Technology

L1B Outputs (Radiance)

Jet Propulsion Laboratory California Institute of Technology

L2A Outputs (Reflectance)

L2A Outputs (RGB, orthorectified)

RGB

L2B Outputs (orthorectified)

ACOUNT NO.

Mosaiced L2b Output Spectral Abundance Estimate

Summary: EMIT Science Flow to Objectives

Mineral composition for models

Update mineralogy in ESMs

Model Runs

RF Predictions

(%) 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 Hematite Fraction in Soil (wt %)

Objectives

1) Constrain the sign and magnitude of dust-related RF at regional and global scales.

2) Predict the increase or decrease of available dust sources under future climate scenarios.