ONERA

 J_{Ω}

THE FRENCH AEROSPACE LAB

www.onera.fr

Research on Wake Vortices at ONERA

V. Brion

Dept of Fundamental and Experimental Aerodynamics (DAFE) ONERA Meudon, France

Future Sky meeting, TU Braunschweig, 8 June 2016

Theme « Dynamics of Wake vortices » at ONERA

sources : E. Coustols, L. Jacquin

Since 2007

- DOCTOR internal project on radar/lidar measurements of WV & models (2010-2012)
- A couple of PhDs
- Wakenet meetings

VLTA 1

ONERA internal map of WV related activities

DEMR (Radar)

- Involved in Doctor project
- Investigated WV radar measurement in presence of rain

DOTA (Lidar)

- Lidar design & development
- WV, EDR monitoring

DMAE (Fluid Dynamics & Energetics)

- Project management
- Experiments (WT, water tunnel)
- Ground effect
- Parabolized Navier-Stokes

DEFA (Energetics)

- Contrails
- RANS, LES
- Thermodynamics, microphysics and chemistry

DCSD (Flight Mechanics & Systems)

- B10, B20 facilities
- Severity of encounter metrics

DAAP (Applied Aerodynamics)

- Panel methods
- Vorticity confinement

DCPS (Design & Performance of Systems)

IESTA air trafic simulator

DAFE (Fluid Dynamics)

- Vortex Dynamics
- Simulation, theory, experiment

Research at DAFE (Dpt Fundamental & Exp. Aerodynamics)

Research threads

- Single vortex, pair, 4-vortex systems
- merging, meandering
- Jet / wake interaction, contrails
- DNS, LES
- Theory (stability)
- Wind tunnel experiments

Motivations

- Physics
- WV mitigation
 - 4 vortex systems
 - Crow instability

meandering

4-vortex

On-going projects

PHYWAKE project

funded by DGAC (French Civil Aviation), 2015 → 2019

Several departements (DOTA, DAAP, DEFA and DAFE) involved

Dedicated to WV

- Flow physics
- Measurements (Lidar/Radar)
- Mitigation
- 1D modelling

Motivation

- Trafic security
- Contrails

On-going projects

SESAR H2020

ONERA is third party behind DGAC (French Civil Aviation)

Involved in

- PJ13
- PJ2.1 « runway throughput »
- PJ8.1
- PJCI -04

Period 2017-19

Motivations

- WV mitigation using the Crow instability
- WV measurements

Items presented

- Observing vortex pair instabilities in a wind tunnel
- Optimal perturbation in vortices (H. Johnson Phd)
- Radar Detection in clear air (Doctor project)

Vortex pair instabilities, a wind tunnel experiment using high speed stereo PIV

Short and long-wave instabilities in vortex pairs

long wavelength kb~1 : Crow

source : Leweke and Williamson 1998

short wavelength ka ~1: Widnall

$$k = \frac{2\pi}{\lambda}$$

Spatial requirements on wake development

Experimental setup

12 Literature : Pailhas 2000, Devenport JFM 1997, Heyes 2004

Flow field visualized by smoke

High speed PIV setup

Time resolved stereoscopic PIV f=3kHz

Posttreatment based on in-house code FolkiPIV*

High speed PIV setup

3 measurement planes : 1.5c ; 2c ; 2.5c

Mean flow

axial vorticity field

Longitudinal evolution of the vortex properties

	Position	z = 1.5c	z = 2c	z = 2.5c
circulation	$\Gamma (m^2/s)$	1.37	1.33	1.22
vortex radius	a (mm)	13.5	14.5	15.3
vortex separation	b (mm)	38.4	40.5	42.3
aspect ratio	a/b	0.35	0.36	0.36

INSTANTANEOUS FLOW FIELD

Unsteadiness : evolution of the kinetic energy

Unsteadiness : evolution of the kinetic energy

Wavelength

frequency to wavelength **→** Taylor hypothesis

$$k = \frac{2\pi f}{U_0}$$

(convective instability - see Fabre et al. 2000)

Crow & Widnall compatible !

Scatter plot of the vortex centers

- 1 / Preferred orientation ~20°
- 2 / Symmetric about center line
- 3 / Amplification

POD modes

Comparison to theory

A way to mitigate vortices

- Valid for stable or weakly unstable systems (such as Crow)
- Transient growth mechanisms may lead to by-pass and early turbulence

Objective : Find the maximum of kinetic energy E_T at time T where $E = \langle q', Bq' \rangle$ and $\langle ., . \rangle$ s.p.

 $q' = (\mathbf{u}', p')$ is the perturbation state vector and $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Constraints : Navier-Stokes equations + bound. cond.

→ Lagrangian approach $L(q_0, q, q^+) = \frac{E_T}{E_0} - (q^+, NS(q))$ where $(a, b) = \int_0^T \langle a, b \rangle dt$

OPTIMAL PERTURBATION

- → **Optimal : find** q'_0 such that $\frac{\partial L}{\partial q'_0} = 0$ by an iterative approach
- → Impose $|q'_0| = E_0$ in the process

ONERA

THE FRENCH APPOSPACE IA

APPLICATION TO VORTICES

Background

- Linear optimal perturbation to a single vortex (Antkowiak 2004, Pradeep 2006, Heaton 2007)
- Linear opt. pert. to a vortex pair (Brion 2007, Donnadieu 2009)

Crow optimal (adjoint)

LINEAR OPTIMAL WITH FINITE AMPLITUDE

A first step toward non linear optimization (Wakenet 2015)

Effect of initial amplitude ϵ ?

 \rightarrow DNS simulations with increasing ϵ

THE FRENCH APPOSPACE LAP

INFLUENCE OF ϵ ON THE DYNAMICS AFTER LINKING

$$\epsilon = 10^{-3}$$

$$\frac{t/t_b = 13}{2}$$

$$\epsilon = 10^{-2}$$

$$\frac{t/t_b = 7}{2}$$

$$\epsilon = 3.10^{-2}$$

$$\frac{t/t_b = 7}{2}$$

$$t/t_b = 7$$

$$t/t_b = 7$$

$$t/t_b = 7$$

$$t/t_b = 7$$

- \rightarrow Strong sensitivity to initial amplitude
- \rightarrow Persistence of the ring state for small ϵ
- \rightarrow Largest ϵ produces a pre-turbulent state rapidly (t=12 vs. t>26)

PERIODIC RING STATE DYNAMICS

ref. Arms & Hama (1965).

- > Vorticity exchange Γ_x vs. Γ_z
- Low decrease of kinetic energy

EFFECT OF $\epsilon = 3.10^{-2}$

EFFECT OF $\epsilon = 3.10^{-2}$

- Linking accelerated
- Ring state dynamics prevented
- Higher dissipation due to turbulent small scales
- Accelerated decay

PHYSICAL MECHANISM

 $\epsilon = 3.10^{-2}$ is the threshold for the persistance of the perturbation around the vortex cores

This external perturbation likely promotes transient in the cores (Antkowiak 2004)

THE FRENCH AEROSPACE LAB

Previous analysis shows that non-linear effects clearly have potential in 3-D

The method has first been developped for 2-D perturbations to a single vortex following Bisanti 2014

 \rightarrow Case of the Lamb-Oseen vortex, at Re=1000

NON-LINEAR OPT. OF THE LAMB-OSEEN VORTEX IN 2-D

THE FRENCH AEROSPACE LAB

CASE OF 3-D PERTURBATION TO A SINGLE VORTEX

Linear

 $E_0 = 10^{-4}$ G(T) = 57

ka = 1.4T = 12.6 (rotation times) Re = 500

Non-linear $E_0 = 10^{-2}$

G(T) = 48

