

Die Fakten

DLR-Studie zu Wechselwirkungen von Fluginsekten und Windparks

Originaltitel: Interference of Flying Insects and Wind Parks (FliWip) Autor: Dr. Franz Trieb, DLR-Institut für Technische Thermodynamik Abrufbar unter: <u>www.dlr.de/tt/fluginsekten</u>

Was war die Ausgangslage?

- Migrierende Fluginsekten suchen in großen Schwärmen hohe, schnelle Luftströmungen auf und lassen sich so zu entfernten Brutplätzen tragen. Dazu existiert umfassende Fachliteratur¹.
- Beobachtungen und Messungen konnten weltweit hohe Insektenkonzentrationen im Höhenbereich feststellen, den auch Rotoren von Windkraftanlagen nutzen.
- Insektenschlag an Rotorblättern kann die Leistung von Windkraftanlagen um bis zu 50 Prozent verringern. Dieses Phänomen ist in Theorie und Praxis intensiv untersucht². Es gibt eine entsprechende Reinigungsindustrie.
- Es wurde bisher nicht untersucht oder quantifiziert, welche Folgen der Insektenschlag an Windrotoren für die Insektenpopulation und das Ökosystem haben könnte.

Modellrechnung des DLR:

- Modellrechnung basiert auf Daten aus der Literatur:
 - Durchschnittliche Insektendichte von rund 3 Tieren pro 1.000 Kubikmeter in 20 bis 220 Meter Höhe BASIS: regelmäßige Fangflüge
 - Volumenstrom: saisonaler Luftdurchsatz von etwa 8 Millionen Kubikkilometern (~ mehr als das Zehnfache des gesamten deutschen Luftraums bis 2.000 Meter Höhe)
 BASIS: 30.000 deutsche Windräder mit Rotorfläche von insgesamt rund 160 Quadratkilometern, einer nominalen Windgeschwindigkeit von 50 Stundenkilometern bei 1.000 nominalen Volllaststunden von April bis Oktober
- Rund 24.000 Milliarden Insekten durchfliegen pro Jahr Rotoren in Deutschland.
- Durchschnittlich werden 5 Prozent der Fluginsekten beim Durchfliegen von Rotoren getroffen: rund 1.200 Milliarden pro Jahr BASIS: Studien zur Verschmutzung von Rotorblättern durch Fluginsekten

Was können wir daraus schließen?

- Modellrechnung gibt Hinweis auf einen Aspekt, der noch nicht umfassend erforscht ist.
- Modellrechnung gibt Hinweis darauf, dass die Größenordnung der betroffenen Fluginsekten relevant für die Stabilität der Fluginsektenpopulation sein und damit den Artenschutz und die Nahrungskette beeinflussen könnte.

Was können wir nicht daraus schließen?

- Es ist bisher nicht möglich, die Auswirkungen der in der Studie berechneten Verluste auf die Gesamtpopulation an migrierenden Fluginsekten zu bestimmen. Grund: Die Größe der Gesamtpopulation ist unbekannt.
- Es ist kein Vergleich mit anderen negativen Einflüssen zum Beispiel durch Einsatz von Pestiziden, Urbanisierung, Klimawandel möglich, weil für diese anderen Einflüsse keine vergleichbaren Zahlen vorliegen.
- Man kann deshalb aus der Studie weder schließen, dass die Windenergie Hauptverursacher des Insektenschwunds ist, noch dass sie daran unbeteiligt ist

Was sind die Empfehlungen des DLR für das weitere Vorgehen?

- Empirische Überprüfung der in der Studie theoretisch berechneten Verluste.
- Ziel: Zusammenhänge von Insektenmigration und Windparkbetrieb besser verstehen und zeitnah Maßnahmen zur Überwachung und Vermeidung von Insektenschlag entwickeln und umsetzen. Zum Beispiel: automatisches Schwarmerkennungssystem mit entsprechender Rotorensteuerung.

Corten and Veldkamp (2001): Corten, G.P. & Veldkamp, H.F., Aerodynamics: Insects can halve wind-turbine power, Nature 412, 41–42 (05 July 2001), doi:10.1038/35083698 http://www.nature.com/articles/35083698

¹ Hu et al. (2016): Hu,G., Lim, K.S., Horvitz,N., Clark, S.J., Reynolds, D.R., Sapir, N., Chapman, J.W., Mass seasonal bioflows of high-flying insect migrants, Science – Research Reports, VOL 354 ISSUE 6319 (2016) http://science.sciencemag.org/

² Wilcox & White (2016): Wilcox, B., White, E., Computational analysis of insect impingement patterns on wind turbine blades, Wind Energy 19 (2016), 483–495, DOI: 10.1002/we.1846 https://onlinelibrary.wiley.com/doi/epdf/10.1002/we.1846