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State interpolation for on-board navigation systems
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Abstract Common concepts for autonomous on-board navigation systems rely on the numerical integration of a
spacecraft trajectory between subsequent measurements of a navigation sensor such as GPS. In combination
with a Kalman filter, a predicted state vector becomes available at discrete, but not necessarily equidistant
time steps. When used for real-time attitude control or geo-coding of image data, the on-board navigation
system has to provide continuous dense output at equidistant time steps, which usually conflicts with the
natural stepsize of the relevant integration methods and the non-equidistant measurement times. To cope
with this problem, the integrator has to be supplemented by an interpolation scheme of compatible order
and accuracy.

After presenting a representative formulation of an on-board navigation system and deriving related timing
and accuracy requirements, suitable Runge–Kutta methods and associated interpolants are selected and
evaluated. Promising results are obtained for the classical RK4 method in combination with Richardson
extrapolation and 5th-order Hermite interpolation. The 5th-order Fehlberg method with interpolation due
to Enright and, for drag-free scenarios, the 5th-order Runge–Kutta–Nystrom method with 5th-order Hermite
interpolation provide a good performance in terms of position interpolation. However, as both methods exhibit
significant errors for the velocity interpolation, they are not recommended for use with the outlined navigation
filter.  2001 Éditions scientifiques et médicales Elsevier SAS
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Zusammenfassung Zustandsinterpolation für bordgestütze Navigationssysteme.Autonome bordgestützte Navigationssy-
steme verwenden in der Regel numerische Integrationsverfahren, um die Satellitenbahn zwischen aufeinan-
derfolgenden Messungen eines Navigationssensors, wie z.B. GPS, zu berechnen. Werden diese Verfahren
mit einem Kalman-Filter kombiniert, können Zustandsvektoren, bestehend aus Position und Geschwindigkeit
des Satelliten, vorhergesagt werden, die an diskreten, aber nicht notwendig äquidistanten, Zeitpunkten
vorliegen. Wird das Navigationssystem jedoch für die Echtzeit-Lageregelung oder die Geokodierung von
Bilddaten eingesetzt, muss eine kontinuierliche und äquidistante Ausgabe der Zustandsvektoren erfolgen.
Diese Anforderung widerspricht in der Regel der natürlichen Schrittweite des Integrators und den nicht-
äquidistanten Messzeitpunkten. Zur Lösung dieses Problems kann der Integrator durch ein geeignetes In-
terpolationsverfahren ergänzt werden, welches eine dem Integrator entsprechende Ordnung und Genauigkeit
aufweist.

Zunächst wird ein typisches Konzept eines bordgestützten Navigationssystems vorgestellt, aus dem sich
die Anforderungen hinsichtlich des zeitlichen Ablaufs und der erforderlichen Genauigkeit ableiten lassen. Im
Anschluss werden geeignete Runge–Kutta-Methoden mit den jeweiligen Interpolanten ausgewählt, dargestellt
und ausgewertet. Dabei ergeben sich gute Ergebnisse für das klassische RK4-Verfahren mit Richardson-
Extrapolation und einer Hermit-Interpolation 5. Ordnung. Das Fehlberg-Verfahren 5. Ordnung mit einer
Interpolation von Enright sowie, für Szenarien ohne atmosphärische Reibung, das Runge–Kutta Nystrom-
Verfahren 5. Ordnung mit einer Hermit-Interpolation 5. Ordnung ergeben gute Ergebnisse für die Interpolation
der Position. Aufgrund der beträchtlichen Interpolationsfehler für die Geschwindigkeit sind jedoch beide
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Verfahren für das hier zugrundegelegte Filterkonzept nicht geeignet. 2001 Éditions scientifiques et
médicales Elsevier SAS
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1. Introduction

The basic purpose of an on-board navigation system
consists in the real-time provision of orbit related infor-
mation. Its typical output comprises position and veloc-
ity vectors at discrete time steps which may be used for a
variety of purposes. Representative applications include
the autonomous computation of the nadir and flight di-
rection for attitude control [8], the prediction of contact
times, the pointing of cameras [15] and antennas, the geo-
coding of image data [8] as well as autonomous orbital
control [27]. Each on-board navigation system is neces-
sarily based on some space-borne sensor that is sensitive
to the position or velocity of the spacecraft. Among the
available systems, GPS receivers have gained wide ac-
ceptance, but other tracking devices like DORIS [22],
PRARE [20] or TDRSS [9] may likewise be applied.
Aside from moderate hardware requirements, GPS is par-
ticularly attractive for the design of simple navigation
systems through the provision of pre-computed position
and velocity data in addition to the raw pseudo-range and
phase measurements.

To derive the desired position and velocity informa-
tion, the measurements are processed in a Kalman filter,
which serves a three-fold purpose: it allows the process-
ing of measurements that contain only partial information
on the spacecraft state vector (such as range or pseudo-
range measurements), it reduces the inherent measure-
ment noise by averaging over multiple measurements,
and it constrains the estimated trajectory to a dynami-
cal model. Representative algorithms are described in the
published literature (see [19] and references therein) and
will not be repeated here. Ignoring the special case of
epoch state filters, all common Kalman filter implemen-
tations comprise a state update, in which the latest state
estimate (as well as its covariance) is propagated to the
time of the new measurement and a measurement update,
in which a new measurement is merged with the existing
information to create an improved estimate of the state
vector. Traditionally, numerical integration methods and
dynamical models with varying levels of sophistication
are used to propagate the state vector between subsequent
measurement times.

The above formulation of the Kalman filter process im-
plies that new information is only available after discrete
time steps that coincide with the times of new measure-
ments. Evidently, some form of interpolation is desirable
to fully decouple the navigation system input and output,
which may be required at completely independent times.

In particular, interpolation is required if the overall com-
putation time of a single Kalman filter step exceeds the
envisaged time between subsequent state vector outputs.
Furthermore, the execution and synchronization of multi-
ple real-time tasks inside an on-board processor requires
a careful allocation of process start times and durations. It
is, therefore, apparent that a Kalman filter process driven
by non-equidistant measurements may be in conflict with
the overall scheduling of processing resources unless an
interpolant is applied.

In order to establish requirements and constraints for
the selection of suitable integrators and interpolants, a
representative real-time navigation process is considered
in figure 1. It is assumed that the process is invoked at
discrete timesti and requires a maximum computation
time ∆tcomp. Upon initiating theith step, a continuous
representation of the trajectoryTi−1 betweenti−1 and
ti is available from the previous step, if we neglect the
startup phase during which this information has to be
generated from an a priori state vector. UsingTi−1, a
predicted state vector (and covariance) at the timetupd,i
of the latest measurement prior toti is obtained. Here,
a filter update is performed that yields a best estimate
of the instantaneous state vector based on the predicted
state and the tracking data. The updated state is then
integrated to the timeti+1 + ∆tcomp, i.e. the guaranteed
end time of the following navigation step. Furthermore,
an interpolant is constructed along with the numerical
integration, which provides a continuous description of
the trajectory throughout the time interval[tupd,i , ti+1 +
∆tcomp].

Assuming that the navigation process is activated at
equidistant times, separated by an interval∆t , it is
evident that the size of each integration step as well as
the time covered by the interpolant can vary between a
minimum of ∆t + ∆tcomp and a maximum of 2∆t +
∆tcomp. Clearly, the order and accuracy of the applied
numerical methods must be suitably adjusted to the
applied duty cycle. Since at most one measurement
is processed in each step (depending on the actual
availability of data betweenti−1 andti ), the interval∆t
also determines the total amount of data used for the
trajectory adjustment. Subject to an adequate dynamical
model, a moderate number of 50–200 measurements per
orbit is fully sufficient for a reliable state estimation,
yielding representative stepsizes of 30–120 seconds for
a low Earth orbit with a hundred minutes orbital period.
For high altitude missions like geostationary satellites
or navigation satellites like GPS, these values may be



O. Montenbruck, E. Gill / Aerosp. Sci. Technol. 5 (2001) 209–220 211

Figure 1. Timeline of real-time navigation system. Shaded bars indicate computational activity.

scaled accordingly. It is emphasized that any increase
in the number of processed measurements over the
‘optimal’ value will result in a corresponding increase of
the total workload of the navigation process, since each
measurement update necessitates an integrator restart.

Each measurement processed by the Kalman filter im-
plies the use of new initial conditions in the trajectory in-
tegration. Therefore, classical high-order and multi-step
methods that are otherwise preferred in astrodynamic ap-
plications [18] are hardly useful for real-time navigation
systems. Instead, low-order single-step methods should
be selected for which the ‘natural’ stepsize is in the or-
der of the selected filter duty cycle. Considering again
a near-circular low-Earth orbit, a one minute stepsizeh
corresponds to 0.01 revolutions or 0.063 radians. Assum-
ing that the leading error term of apth-order method is
approximatelyh(p+1)/(p +1)!, one finds that a 4th-order
method yields a relative error of 10−8 per step, which cor-
responds to 7 cm at the given orbital altitude. Based on
these preliminary considerations, we focus on single-step
methods with orders 3 to 5 in the subsequent discussion.
While lower order methods have difficulties to meet the
required accuracy, the performance of higher order meth-
ods cannot be utilized in view of stepsize restrictions im-
plied by the measurement updates.

2. Integration methods

In the sequel a selection of appropriate single-step
methods is presented, all of which belong to the fam-
ily of Runge–Kutta methods. Aside from the methods
themselves, the concept of Richardson extrapolation is
addressed, which is useful both to increase the order of
a method and to provide solutions suitable for higher or-
der interpolation.

The spacecraft motion is represented by a first-order
differential equation

ẏ = f
(
t,y(t)

)
(1)

for the position-velocity vector or state vector

y(t) =
(

r(t)
v(t)

)
(2)

as a function of timet or the equivalent second-order
formulation

r̈(t) = a
(
t, r(t),v(t)

)
(3)

in case of RK–Nystrom methods.

2.1. Low-order Runge–Kutta methods

The well-known four stage Runge–Kutta method
(RK4) provides a 4th-order approximation

η(t + h) = y(t) + h

4∑
i=1

biki (4)

of y(t + h) with derivatives

ki = f

(
t + cih, y(t) + h

i−1∑
j=1

aijkj

)
(5)

and coefficients as given intable I. The method is
primarily considered here because of its widespread
use and the simple coefficient set. Alternative 4th-order
methods (see [10]) include the method of Gill (RKG4),
which requires less storage registers but uses a non-
rational coefficient set and the ‘3/8-rule’ method. Both
four-stage methods revealed a slightly lower performance
when applied to the test problem described in section 3
and can therefore be ruled out as alternatives to the
classical RK4 method. Finally, we mention the 4th-order
method of Kutta–Merson (KM4) which requires a total of
5 stages and offers an embedded method for error control.
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Table I. RK4 coefficient set.

ci aij

0 0

1
2

1
2

1
2 0 1

2

1 0 0 1

bi
1
6

2
6

2
6

1
6

It achieves a higher accuracy per step and a slightly better
efficiency (i.e. accuracy per stage) than RK4.

Among the various fifth-order Runge–Kutta meth-
ods, we have considered an embedded six-stage method
(RKF5), which is due to Fehlberg [7] and employs the
coefficients fromtable II. The method provides both a
fourth-order solution (described bybi ) and a fifth-order
solution (described bŷbi). The difference of both values
is useful to assess the accuracy of the lower order method
and to control the stepsize of the integration in accord
with given accuracy requirements. For on-board applica-
tions, stepsize control is generally out of scope and the

Table II. RKF5 coefficient set.

ci aij

0 0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

7296
2197

1 439
216 −8 3680

513
−845
4104

1
2

−8
27 2 −3544

2565
1859
4104

−11
40

bi
25
216 0 1408

2565
2197
4104

−1
5 (4th-order)

b̂i
16
135 0 6656

12825
28561
56430

−9
50

2
55 (5th-order)

Table III. DP5 coefficient set.

ci aij

0 0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25630
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

1 35
384 0 500

1113
125
192

−2187
6784

11
84

b̂i
35
384 0 500

1113
125
192

−2187
6784

11
84 (5th-order)

bi
5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40 (4th-order)
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higher order solution itself can be used for integrating
the equation of motion. In the present study, the Fehlberg
method is of prime interest due to the availability of var-
ious interpolants.

In addition, we consider the embedded 5th/4th-order
method of Dormand and Prince [3,10], which requires a
total of seven stages and likewise allows the construction
of smooth interpolants. It is described by the coefficients
from table III. If stepsize control is not required, six
stages are sufficient to compute the fifth-order solution
(DP5), which then makes the method slightly superior to
the RKF5 code.

2.2. Runge–Kutta–Nystrom methods

Runge–Kutta–Nystrom methods provide an efficient
means for solving second-order differential equations

r̈(t) = f
(
t, r(t)

)
(6)

that do not depend on first-order derivatives. This is, for
example, the case, if the equation of motion comprises
gravitational and radiation forces only, but no drag per-
turbations. A method developed by Nystrom (see [10])
will be considered in the sequel, which employs the coef-
ficients fromtable IV to compute the fifth-order solution

η(t + h) = y(t) +
(

hv(t)
0

)
+

4∑
i=1

(
h2biki

hb̂iki

)
(7)

with

ki = f

(
t + cih, r(t) + hciv(t) + h2

i−1∑
j=1

aijkj

)
. (8)

Table IV. RKN5 coefficient set.

ci aij

0 0

1
5

1
50

2
3 − 1

27
7
27

1 3
10

−2
35

9
35

bi
14
336

100
336

54
336

b̂i
14
336

125
336

162
336

35
336

2.3. Richardson extrapolation

The local truncation error

e = η(t + h) − y(t + h) ≈ C · hp+1 (9)

of a pth-order method is governed by a leading error
term that is proportional tohp+1. By performing two
consecutive integration steps of sizeh (yielding η1 and
η2) by comparing the resultηH with a single macro-step
of sizeH = 2h, the constantC can be determined and
used to obtain improved solutions

η̂1 = η1 + η2 − ηH

2(2p − 1)
, η̂2 = η2 + η2 − ηH

2p − 1
(10)

(see e.g. [10]). The derivativek0 = f (t,y(t)) is jointly
used in both the first micro-steph and the macro-stepH .
Richardson extrapolation thus increases the order of the
underlying method by one at the expense of an additional
(s − 1)/2 stages per micro-step. It is particularly useful
with 4th-order Runge–Kutta methods, since the resulting
5th-order method requires only 5½ stages as compared to
the Butcher barrier of six stages for a 5th-order Runge–
Kutta method.

3. Interpolants

3.1. Hermite interpolation

Independent of a particular integration method, a cubic
Hermite approximation polynomial

y(t + θh) = d0(θ)y0 + d1(θ)hf0 + d2(θ)y1

+ d3(θ)hf1 (11)

with 0 < θ < 1 and coefficients

d0 = (θ − 1)2(2θ + 1), d1 = θ(θ − 1)2,

d2 = θ2(3− 2θ), d3 = θ2(θ − 1),
(12)

can always be established that matches the state vectors
y0 = y(t)and y1 = y(t + h) as well as the associated
derivativesfi at the begin and end of the integration
step [16]. It requires knowledge off1 = f (t + h,y1) in
addition to quantities already available from the integra-
tor. While it is commonly emphasized thatf1 can be re-
used in a subsequent integration step fromt +h to t +2h,
care must be taken, since the navigation scheme does not,
necessarily, provide this possibility in case of a measure-
ment update.

Using the same information as above, a higher-order
interpolant can be constructed by taking into account the
particular nature of the equation of motion. Considering
the fact that the six-dimensional state vector and its
derivative comprise information on the position, velocity,
and acceleration one may establish a fifth-order Hermite
polynomial
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r(t + θh) = d0(θ)r0 + d1(θ)hv0 + d2(θ)h2a0

+ d3(θ)r1 + d4(θ)hv1 + d5(θ)h2a1 (13)

with coefficients

d0 = 1− 10θ3 + 15θ4 − 6θ5,

d1 = θ − 6θ3 + 8θ4 − 3θ5,

d2 = 1

2

(
θ2 − 3θ3 + 3θ4 − θ5),

d3 = 10θ3 − 15θ4 + 6θ5 = 1− d0,

d4 = −4θ3 + 7θ4 − 3θ5,

d5 = 1

2

(
θ3 − 2θ4 + θ5),

(14)

for the spacecraft position that matches these values
at the begin and end of the integration interval. Upon
differentiation a corresponding fourth-order interpolant

v(t + θh) = d0(θ)r0/h + d1(θ)v0 + d2(θ)ha0

+ d3(θ)r1/h + d4(θ)v1 + d5(θ)ha1 (15)

for the velocity vector is obtained which employs the
coefficients

d0 = −30θ2 + 60θ3 − 30θ4,

d1 = 1− 18θ2 + 32θ3 − 15θ4,

d2 = 1

2

(
2θ − 9θ2 + 12θ3 − 5θ4),

d3 = +30θ2 − 60θ3 + 30θ4 = −d0,

d4 = −12θ2 + 28θ3 − 15θ4,

d5 = 1

2

(
3θ2 − 8θ3 + 5θ4).

(16)

Finally, when combining data from two consecutive
integration steps, a quintic Hermite polynomial

y(t + θh) = d0(θ)y0 + d1(θ)hf0 + d2(θ)y1

+ d3(θ)hf1 + d4(θ)y2 + d5(θ)hf 2 (17)

with coefficients

d0 = 1

4
(θ − 1)2(θ − 2)2(1+ 3θ),

d1 = 1

4
θ(θ − 1)2(θ − 2)2,

d2 = θ2(θ − 2)2,

d3 = (θ − 1)θ2(θ − 2)2,

d4 = 1

4
θ2(θ − 1)2(7− 3θ),

d5 = 1

4
(θ − 2)θ2(θ − 1)2,

(18)

(cf. [23]) becomes available that provides a 5th-order ap-
proximation over the interval[t, t + 2h]. This is particu-
larly attractive for use with Richardson extrapolation and
the RK4 method, since it results in a consistent 5th-order
integrator and interpolant.

3.2. Scaled Runge–Kutta methods

Following Horn [13,14] various Runge–Kutta methods
can be supplemented by an embedded interpolant

η(t + θh) = y(t) + θh

s∗∑
i=1

b∗
jki (19)

that utilizes the derivativesk1, . . . ,ks of the basic method
together with a limited set of additional derivatives
ks+1, . . . ,ks∗ . Building up on the RKF5 method de-
scribed above, the introduction of

k7 = f

(
t + h,y(t) + h

(
1

6
k1 + 1

6
k5 + 2

3
k6

))
(20)

allows the construction of a continuous 4th-order method
with coefficients

b∗
1 = 1− θ

(
301

120
+ θ

(
−269

108
+ θ

311

360

))
,

b∗
2 = 0,

b∗
3 = θ

(
7168

1425
+ θ

(
−4096

513
+ θ

14848

4275

))
,

b∗
4 = θ

(
−28561

8360
+ θ

(
+199927

22572
− θ

371293

75240

))
,

b∗
5 = θ

(
57

50
+ θ

(
−3+ θ

42

25

))
,

b∗
6 = θ

(
−96

55
+ θ

(
40

11
− θ

102

55

))
,

b∗
7 = θ

(
3

2
+ θ

(
−4+ θ

5

2

))
. (21)

The order of the interpolant is thus one order less than
that of the integrator, but still one order higher than that
of a cubic Hermite polynomial.

For various 5th-order method of Dormand and Prince,
embedded 4th-order interpolants are given in [4,10,21].

3.3. Bootstrap methods

A generic method for constructing higher order inter-
polants for Runge–Kutta methods is given by Enright
et al. [5]. It extends the concept of Hermite interpolation
by using additional function values within the integration
steps to obtain approximations of higher order. In case of
the RKF5 method, a 5th-order approximation



O. Montenbruck, E. Gill / Aerosp. Sci. Technol. 5 (2001) 209–220 215

y0.6 = y(t) + h

(
1559

12500
k1 + 153856

296875
k3

+ 68107

2612500
k4 − 243

31250
k5 − 2106

34375
k6

)
(22)

of the state vector att + 0.6h is first computed, which is
then used to establish a quartic Hermite polynomial

y(t + θh) = d0(θ)y0 + d1(θ)hf0 + d2(θ)y1

+ d3(θ)hf1 + d4(θ)y0.6 (23)

with

d0 = (θ − 1)2
(

1− 5

3
θ

)(
11

3
θ + 1

)
,

d1 = θ(θ − 1)2
(

1− 5

3
θ

)
,

d2 = θ2
(

3

4
− 5

4
θ

)
(9θ − 11),

d3 = θ2(θ − 1)

(
5

2
θ − 3

2

)
,

d4 = 625

36
θ2(θ − 1)2.

(24)

The resulting interpolant has the highest order attainable
without an additional function evaluation and is continu-
ous at the end points of the integration interval. In case
of higher-order Runge–Kutta methods, a consistent inter-
polant can be constructed in a bootstrap fashion, by suc-
cessively adding additional intermediate points and de-
riving associated higher-order Hermite polynomials [5].

The same approach has been applied by [24] to derive
a 4th-order interpolant for the 5th-order Runge–Kutta
method of Dormand and Prince. It makes use of a fifth-
order result

y0.5 = y(t) + 0.5h

(
7157

37888
k1 + 70925

82362
k3 + 10825

56832
k4

− 220887

2008064
k5 + 80069

1765344
k6

− 107

2627
k7 − 5

37
k8

)
(25)

with

k8 = f

(
t + h

2
,y(t) + h

(
− 33728713

104693760
k1 + 2k2

− 30167461

21674880
k3 + 7739027

17448960
k4

− 19162737

123305984
k5 − 26949

363520
k7

))
(26)

at the midpointt + h/2, which is then used together with
the end-points to construct a quartic polynomial across
the interval.

3.4. Keplerian interpolation

Given the special nature of the equation of motion, an
entirely different interpolant is given by the osculating
Keplerian orbit that matches the state vector at the
beginning of the integration step. Relevant equations for
the mutual conversion between state vectors and orbital
elements are given in the literature (see [6,19]) and will
not be reproduced here. Compared to the polynomial
approximations discussed before, the Keplerian orbit
approximation requires a notably higher computational
effort, but is not restricted to a single integration step.

4. Analysis and results

The various integration methods and associated in-
terpolants presented above were applied to a repre-
sentative low-Earth orbit prediction problem to assess
their accuracy over time scales of up to one orbital re-
volution. Initial conditions, as given intable V, were
employed to integrate a reference trajectory with the
variable-order predictor-corrector method of Shampine
and Gordon [25]. A fidelity force model comprising a
20× 20 Earth gravity field as well as luni-solar gravity,
atmospheric drag (except for use with Nystrom methods),
and solar radiation pressure was employed to obtain a
realistic scenario. The selected model provides meter
level accuracy in orbit predictions over at least one revo-
lution at the given altitude of 750 km orbit (see e.g. [19])
and is representative of advanced on-board navigation
systems. In view of the fundamental time scales involved,
it may safely be assumed, however, that the relative mer-
its of individual integrators and interpolants are indepen-
dent of the particular choice of the force model.

The same equation of motion as used for the refer-
ence trajectory was subsequently integrated with each
of the aforementioned low-order methods using differ-
ent stepsizes and approximated by the applicable inter-
polants. Representative examples showing the increase
of the global integration error over time are collated in
figure 2, where all computations have been performed in
IEEE 8-byte floating point arithmetic. Using a stepsize of
10 seconds per stage, the global integration error can be
controlled within 0.1–10 m over one orbit revolution.

Table V. Reference orbit used for the comparison of low-order
integration methods and interpolants.

Epoch 1996/10/01 00:00 UTC

x [m] −2616512.77

y [m] +5992529.01

z [m] −2846280.49

vx [m/s] −1449.266428

vy [m/s] −3648.375664

vz [m/s] −6356.361255
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Figure 2. Global integration error for the integration of a low-Earth satellite orbit overt = 100 min using various integration methods.
The stepsizes for each method have been selected such as to require an average of one stage per 10 s. The considered set of
methods comprises the 4th-order methods of Runge–Kutta (RK4) and Kutta–Merson (KM4), the 4th-order Runge–Kutta method with
Richardson extrapolation (RK4R), the 5th-order methods of Fehlberg (RKF5) and Dormand–Prince (DP5) as well as the 5th-order
Runge–Kutta–Nystrom method, which are further described in the text.

To further assess the relative performance of the var-
ious methods during short prediction intervals, the total
number of derivative computations required for an inte-
gration overt = 720 s is displayed infigure 3 as a func-
tion of the achieved global accuracy. Evidently, all fifth-
order methods considered are more efficient than any of
the fourth-order Runge–Kutta schemes. Furthermore, the
use of Nystrom methods provides a clear advantage over
general purpose methods for first-order differential equa-
tions and is therefore recommended as long as drag forces
need not to be accounted for. Extrapolation of the RK4
method yields a performance slightly inferior to that of
the 5th-order Runge–Kutta–Fehlberg method, while the
Dormand–Prince method is slightly more efficient, as-
suming that only the 5th-order solution is computed. The
Kutta–Merson method turns out to be slightly more ef-
ficient than the classical RK4 method despite an equal
order and a higher number of stages.

It is emphasized that all methods are able to meet a
given accuracy requirement within the range of interest
by proper adaptation of the stepsize. The associated com-
putational workload, however, differs by up to a factor of
three among the various integrators compared infigure 3.
Even though all methods are generally applicable for on-
board orbit predictions, the choice of a proper method can
thus provide notable savings in on-board resources. Since
the higher order integration methods achieve a given ac-

curacy with larger stepsizes than their lower order coun-
terparts, their use may, however, be constrained by inde-
pendent requirements on the permissible filter update or
output data rate.

Based on the above results, only fifth-order integration
methods are considered in the subsequent comparison
of available interpolants. In order to obtain a consistent
combination and to preserve the efficiency of the under-
lying integration method, the interpolation error should
preferably be smaller than the local integration error. As
will be shown, compatible pairs may be obtained by com-
bining a 5th-order integrator with either a 4th- or a 5th-
order interpolant.

For the RK4 method with Richardson extrapolation,
a 5th-order Hermite interpolation across the macro-step
of size 2h provides a smooth and continuous interpola-
tion of the trajectory (seefigure 4, method RK4/Herm5).
It makes use of the state vector and its derivative at the
start, mid-point and end of the macro-step. In accord
with [10] the state vector at the mid-point is corrected
by the Richardson extrapolation, but no update of the
derivative obtained after the first RK4 step is performed.
Compared to the secular growth of the integration error
itself, the resulting errors of the interpolated position ex-
hibit an oscillation of roughly 2 mm for a macro stepsize
of 2h = 120 s. This amplitude may further be reduced
to about half its value, by recomputing the derivative
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Figure 3. Work diagram of different integration methods. The total number of derivative computations is shown as a function of the
achieved global integration error for the integration of a low-Earth satellite orbit over 720 s. Seefigure 2 for a description of applied
abbreviations.

f1(t + h,y1) at the mid-point of the integration interval
with the refined value ofy1 obtained from the extrapola-
tion. Depending on the treatment of the mid-point deri-
vative, a total of 12 or 13 stages per integration step are
required for the generation of dense output.

For the fifth-order Runge–Kutta–Fehlberg method,
the 4th-order interpolant suggested by Enright [5] is
illustrated infigure 4 (label RKF5/Enr4). At a stepsize
of 60 s, it adds an error of about 1.5−2.5 mm to the
global integration error. Thus it is clearly superior to the
scaled 4th-order method of [13,14], which was found to
exhibit a 2 times higher variation across an integration
step. The interpolant requires the derivative at the end of
the integration interval in addition to the six stages of the
basic RKF5 method.

Among the various interpolants proposed for the 5th-
order Dormand–Prince method preference is given to a
quartic Hermite interpolation making use of Shampine’s
5th-order solution at the mid-point of the integration
interval [24] (seefigure 4, label DP5/Sh4). Compared to
any of the other 4th-order interpolants [4,10,24], this is
the only method yielding an interpolation competetive
to those of the RK4R and RKF5 integrators mentioned
above. The construction of the interpolant is rather costly,
however, adding three more stages to the basic six stage
DP5 method.

Finally, an excellent interpolation of the spacecraft tra-
jectory is provided by the 5th-order Hermite polynomial
that matches position, velocity and acceleration at the be-
gin and end of a 5th-order Runge–Kutta-Nystrom step

(cf. figure 4, method RKN5/Herm5). It is particularly at-
tractive, since it requires only one derivative computation
at the end of the integration step in excess of the four
stage RKN5 method itself.

Taking into account the total number of stages required
for dense output in each of the aforementioned methods,
the RKN5/Herm5 scheme clearly outperforms all integra-
tors for first-order differential equations. Among the lat-
ter, a near equal performance is obtained with a slight
preference for RKF5/Enr4, followed by RK4R/Herm5.
A notably different picture is obtained, however, if veloc-
ity interpolation is considered in addition to dense out-
put of position data (figure 5). Here, the quartic Hermite
polynomial for the RKF5 method as well as the deri-
vative of the quintic Hermite polynomial for the RKN5
method (which is of fourth order, only) yield interpola-
tion errors of up to 0.04 mm/s in excess of the global
integration error at a 60 s stepsize. While this appears to
be a small quantity at first sight, it may result in unac-
ceptably large errors when restarting the integration from
an interpolated state vector. Therefore, neither of these
two methods can be recommended for use with the on-
board navigation filter outlined infigure 1. Among the
remaining methods, the RK4R/Herm5 integrator yields a
slightly higher efficiency and uses a more simple coeffi-
cient set than the DP5/Sh4 scheme.

Supplementary to the polynomial approximation of the
Cartesian state vector, an interpolation based on Kep-
lerian elements has been examined. To this end, the os-
culating Keplerian elements were computed at the begin-
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Figure 4. Position error of the interpolated trajectories for various integrators and interpolants. Diamonds connected by thin lines
indicate the solution at the grid points. For comparison, all integrations have been performed with the same (micro-)step size ofh = 60 s.
The examined pairs of integrators/interpolants comprise the 4th-order Runge–Kutta method with Richardson extrapolation and 5th-
order Hermite interpolation (RK4R/Herm5), the 5th-order Fehlberg method with a 4th-order interpolant of Enright (RKF5/Enr4), the
5th-order Runge–Kutta–Nystrom method with 5th-order Hermite interpolation (RKN5/Herm5) as well as the 5th-order Dormand–
Prince method with 4th-order interpolant by Shampine (DP5/Sh4). The grey line refers to a modification of the 4th-order RK
method with Richardson extrapolation and 5th-order Hermite interpolation, in which the mid-point derivative is recomputed after
the extrapolation.

Figure 5. Velocity error of interpolated trajectories for various integrators and interpolants. Seefigure 4 for a description of applied
abbreviations.
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Table VI. Integration methods applied in present on-board navigation systems.

System Method Step size Authors/references

TONS 4th-order Runge–Kutta; dense
output generation using RK4
and simplified force model

Filter update 16.384 s
(Terra), 10 s (EUVE);
output step 1 s

Lockheed Martin 1997 [17]
Gramling et al. 2000 [9]

DIODE 4th-order Runge–Kutta–Gill
with 3rd-order Hermite inter-
polation

Filter update 10 s Pradines et al. 1994 [22]
Tournier et al. 1999 [26]

DIOGENE 6th-order Runge–Kutta (varia-
tion of parameters formulation)
with 3rd-order Hermite interpo-
lation

Filter update 60 s (LEO),
5 min (GEO)

Berthias et al. 1997 [1]

GEODE 4th-order Runge–Kutta; dense
output generation using RK4
and simplified force model

Filter update 30 s, output
step 1 s

Hart et al. 1996 [11]
Hart et al. 1996 [12]

CHAMP 4th-order Runge–Kutta 10 s step and filter update CHAMP 1998 [2]

PROBA 4th-order Kutta–Merson Lafontaine et al. 1999 [15]

BIRD 4th-order Runge–Kutta with
Richardson extrapolation and
5th-order Hermite interpolation

35–65 s step size, average
filter update 30 s

Gill et al. 2000 [8]

ning of the integration step and propagated, assuming an
unperturbed motion. The propagated elements were con-
verted to state vectors and compared with the reference
trajectory, yielding position differences of 4 m, 16 m, and
65 m for intervals of 30 s, 60 s, and 120 s. Even worse
results are obtained by a simple linear interpolation of
the osculating elements at the begin and end of an inte-
gration step, yielding position errors of 10 m, 40 m, and
150 m for stepsizes of 30 s, 60 s, and 120 s. Consequently,
Keplerian approximation is ruled out for the envisaged
application, both in terms of accuracy and the imposed
computational burden.

When comparing our finding to existing implementa-
tions of on-board navigation systems (cf.table VI ), we
note that considerable savings in processor load might
be achieved in most cases by choosing a 5th-order in-
tegrator and combining it with a compatible interpolant.
Aside from increasing the efficiency of the basic integra-
tion method, this approach circumvents the need for step-
size reduction due to dense output requirements. Even
when using an interpolant, the measurement and filter up-
date rate should not, however, exceed a value of typically
50−100 per orbit to achieve an optimum working point
for the employed integration method.

Summary and conclusions

A selection of low-order Runge–Kutta type integration
methods and associated interpolants has been assessed
with regard to use in on-board navigation systems. It is
concluded that fifth-order integration methods provide an
optimum choice both in terms of efficiency and imple-

mentation effort. While lower order methods require a
larger amount of derivative computations to meet a given
accuracy, the potential of higher order methods cannot be
exploited due to the required restart of the trajectory inte-
gration after each measurement update. Where applicable
(i.e. in the absence of velocity dependent forces), the use
of Runge–Kutta–Nystrom methods for the direct integra-
tion of the second-order equation of motion provides a
30% efficiency gain over general RK methods for first-
order differential equations.

Among the candidate methods considered for interpo-
lation, both fourth- and fifth-order interpolants provide
adequate performance as concerns the dense output of
position data. It may, however, be observed that only a
quintic Hermite polynomial matching both the state vec-
tor and its derivative at two consecutive mesh points is
able to provide an accurate interpolation of the spacecraft
velocity. The latter capability is mandatory if the times
of measurements and Kalman filter updates do not coin-
cide with the end-point of the integration interval. Since
a double integration step must be used to establish the
aforementioned Hermite interpolant, it is particularly at-
tractive for use with Richardson extrapolation and a sim-
ple fourth-order Runge–Kutta integration method.

Compared to present implementations of on-board
navigation systems, a notable saving in processing time
is possible by adding an adequate interpolant to the tradi-
tional integration schemes and adjusting the Kalman filter
update interval to a natural value of about 1/50th of the or-
bital period. This allows the use of less powerful proces-
sors or, vice versa, the implementation of improved force
and measurement models inside the navigation system.
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