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Abstract — Autonomously grasping a predefined
object is a topic of recent research in the field of ser-
vice robotics. On the one hand, there are numerous
approaches in the area of image processing concerned
with recognition and localization of this object. On the
other hand, a lot of work has been done in the devel-
opment of planning, approaching and grasping of the
object with a dextrous manipulator mounted on top of
a robot arm. However, in-between locating and grasp-
ing, there are significant sources of uncertainty, e.g.
estimation errors in image processing, errors in cali-
bration of cameras and robot alone and with respect to
each other, and positioning errors in the robot control.
During the critical closing phase of grasping however,
visual servoing and position correction is almost im-
possible to achieve due to obstruction of the object by
the gripper. This paper presents an algorithm to locally
estimate the position and orientation of the object to
be grasped from contact information and a geometric
description of the object. In this scenario, an object
description is usually available to a sufficiently accu-
rate extent from grasp planning.

1 Introduction

Figure 1: DLR Hand II grasping an object

In recent years, in the field of robotic grippers and
dextrous manipulators, a lot of developments have
been brought forward. A general overview can be
obtained from [2]. On the side of the gripper hard-
ware, highly sophisticated devices are available with
a large amount of sensory information [6, 12] (cf. fig
1). Based upon these, numerous algorithms have been
presented to optimally plan [5], optimize and control
[16] the grasp of a known or unknown object. Now,

in the field of service robotics, a system consisting of
a mobile platform, an arm and an adequate gripper,
is to work in a more complex environment. A typi-
cal task would be to detect an object of interest and
localize it. Then a path for the approach of the arm
has to be developed and the gripper positions for a
stable grasp have to be computed. Finally the ob-
ject can be grasped [15, 4]. However, the quality and
robustness of the approach path and the grasp itself
heavily relies on the accurateness of the localization of
the object. The localization of the object however is in
most cases done using global optical sensors. Although
good for large scale path and grasp planing, these sen-
sors wont render reliable values in the final phase of
attaching the fingers to the object, because object or
fingers may be obstructed from vision. To solve this
problem, researchers propose object recognition and
pose estimation using local sensors. Both steps are
treated separately as recognizing before locating or in
one step by recognizing while locating (cf. [9]). An
early approach in the first group is given in [8], where
contact features from a LSHGC description of objects
are used to estimated pose of an object using tactile
sensors. In [7] objects are examined using EPM mod-
els built up during tactile exploration. In the latter
group, [9] uses a Kalman filter to determine the pose
of a geometrically modeled object from an ultrasonic
or infrared sensor. In [13] an unknown object is implic-
itly located and guided along a desired trajectory using
tactile feedback. The approach taken in [11] observes
an object in motion for pose estimation. [1] describes
a system to combine visual and tactile sensing. These
approaches all use either tactile information or visual
sensing. Algorithms to exploit other sensory informa-
tion rendering exteroceptive contact information, e.g.
the position of contact and the direction of the sur-
face normal of the finger and object surface in their
common contact point are given in [3, 10].

This paper presents a blind man’s approach to
grasping. After blindly approaching an object, finger
measurements are compared with a previously gener-
ated model. From this, by examining characteristics of
the grasp and the object, hypotheses are generated for
possible contact points of the fingers with the object.
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The hypotheses are tested by finding a position and
orientation of the grasped item relative to the gripper,
that best complies with given measurements. Thus,
this algorithm primarily implements the second step
in recognizing before locating. Although theoretically
working totally blindly, its main intention is to en-
hance the capabilities of other localization systems by
giving more local information. This is helpful when
these other systems are obstructed by scene objects as
other items or a robotic arm or when a sufficient, ab-
solute calibration between the location of the gripper
and the localization system can not be obtained for ex-
ample due to elasticity of the arm holding the gripper.
In contrast to other algorithms for object localization
known for example in the graphics and image process-
ing community, the work presented here relies on the
extremely sparse measurement of n fingers touching an
object only once. On the side of the gripper, the mea-
surements used to examine contact are either tactile
readings from the finger tip or other information al-
lowing determination of the contact point between the
gripper and the grasped item. On the side of the ob-
ject, no complete object description is required, since
this approach is intended for local pose estimation.
The model has to contain only those parts possibly
encountered during grasping. In order to increase the
performance of the algorithm, it is split into two parts,
an offline refinement of the model and a online process
setting up and testing contact hypotheses and estimat-
ing the object’s orientation. This paper is structured
as follows: The modeling is described in section 2. The
refinement of the model and the determination of hy-
potheses is presented in sections 3.1 and 3.2 respec-
tively. The test of hypotheses is described in section
4. Finally results of simulations and experiments are
shown in section 5. In terms of notation, in this pa-
per, superscripts 3(x) refer to the coordinate system
S(x), subscripts 3o and 3c refer to object and contact
quantities respectively, i and j refer to fingers, k and
l to facets.

2 Modeling an Object

Most grippers available are capable of delivering
contact information in one way or another. With a
finger i contacting an object, detection of the point

of contact x̃
(w)
c,i in the world reference frame S(w) and

the direction of the normal vector ñ
(w)
c,i of the finger

surface at this point can be achieved in one of two
ways. Either tactile sensor information [14] can be
used or appropriate algorithms [3, 10] may be applied
to obtain this data from other sources of exteroceptive
contact information as for example joint torques or fin-
ger velocities while moving over an object’s surface. In
graphics, this measurement is termed oriented point.
It describes the tangential plane at the point of con-

Figure 2: Measurement of facet plane at finger i

tact. With the contact information of each finger the
object can be approximated locally around the contact
points as seen from the fingers by a set Fc of tangent

contact planes with distance d̃
(w)
c,i from the origin S(w)

as given in

0 =
(

ñ
(w)
c,i

)T

r(w) + d̃
(w)
c,i

d̃
(w)
c,i = −

(

ñ
(w)
c,i

)T

x̃
(w)
c,i . (1)

Figure 2 gives an overview over this description. Al-
though there are many ways of modeling an ob-
ject in 3 D (e.g. implicit description, B-splines),
for the approach presented here a model that allows
easy description of free form items and is only con-
cerned about the surface and its normal direction is
most suited to the measurement capabilities assumed
for the gripper. Thus, the surface is represented
by m triangular facets characterized by its vertices
(

x
(o)
1,k,x

(o)
2,k,x

(o)
3,k

)

. This description can be obtained

from usual CAD systems, scanning systems or easily
be computed for simple objects. The accuracy of the
description and hence the complexity of the task of
detecting the effective finger contact positions on the
object thus can easily be adapted by altering m. In
the graphics society, there are numerous approaches
available to simplify given models. It is conventional
to arrange the vertices in a right hand sense with re-
spect to the surface normal and to have the surface
normal pointing out of the object. From the model-
ing, the vertices are given in an object related frame
S(o). With this, a set Fo of object planes, each con-
taining one triangular surface patch k ∈ [1,m] can be
formed by

0 =
(

n
(o)
o,k

)T

r(o) + d
(o)
o,k

n
(o)
o,k =

(

x
(o)
2,k − x

(o)
1,k

)

×
(

x
(o)
3,k − x

(o)
1,k

)

d
(o)
o,k = −

(

n
(o)
o,k

)T

x
(o)
o,k. (2)

Hereby the plane belonging to facet k is characterized

by its surface normal n
(o)
o,k and the distance do,k of the

plane to the origin S(o). A schematic of the descrip-
tion is given in figure 3. It is to be noted that the
normal vectors of two surfaces in contact are always
anti-parallel. Thus a perfect measurement of a finger
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Figure 3: Description of a facet k

i contacting plane k would have a position value x̃
(w)
c,i

in-between the vertices of k and its normal would be
the negative of the facet. Thus, with the object in
general and the contacts locally both being modeled
as planes it is possible to search the object description
Fo for an n-tuple of planes that best match the given
measured set Fc of planes.

3 Examination of an Object

With n fingers grasping an object, there are mn

n-tuples of facets from Fo. In order to perform a
complete search on all tuples of planes from Fo, the
complexity of the algorithm would thus be in the or-
der O(mn) of the number m of facets to the power
of the number of fingers n. For usual objects with
a sufficiently accurate model description and thus a
sufficiently large number of facets m, this is neither
feasible nor necessary. When grasping an object, con-
ditions between individual fingers are set. Between

two fingers the distance ∆̃ij =‖ x̃
(w)
c,j − x̃

(w)
c,i ‖ between

the contact points of two fingers i and j as well as the

angle αij = arccos(ñ
(w)
c,i · ñ

(w)
c,j ) between the respective

surface normals can be obtained. They are relative,
scalar measures between two facets and thus indepen-
dent of coordinate systems, here the measurement sys-
tem S(w) and the model system S(o). This restricts the
number of admissible tuples from the whole set Fo of
planes to only those that match the grasp conditions
between the two fingers. On the other hand, for a given
pairing of modeled facets k and l a range of possible
distances [∆min,kl,∆max,kl] and the angle αkl between
their surface normals can be given. These two values
are characteristic for a given object. They can be com-
puted offline when modeling an object and then held
in a refined object description. Although also charac-
teristic values of groupings of three or more finger can
be used to characterize a grasp this increases the num-
ber of possible groupings as a power of m. Thus, the
object description would be refined this way, allowing
to sort out more facets that do not comply with these
extended grasp conditions. However the model size
would increase drastically. Hence the search in this
larger object model would be prohibitively more time
consuming. By using the proposed grasp conditions,

the number of facets tuples to further be examined
can be reduced to a reasonable number. This offline
process is described in section 3.1. The earlier pro-
posed selection of facets after receiving measurements
from the hand during an online detection phase is de-
scribed in section 3.2. It is only this step, that is to
be performed in real time. This method is compara-
ble to a human, studying an object for example a cup,
when first being confronted with it and on a later re-
encounter using this information to easily pick it up at
good positions, a problem of grasp planing [5], and ver-
ifying for this position, for example a flat spot on the
surface or a handle, during grasp, as presented here.

3.1 Modeling Phase

Figure 4: Characteristics of a facet pairing

This section is devoted to present the construction
of a refined object description in order to accelerate
the choice of admissible facet tuples. In order to study
the geometrical dependencies of the facets in a given
object model, the facets are numbered and a list of
possible facet pairings P2 is formed. It is to be noted,
that fingers may contact two on the same facet and
also the ordering of fingers and respective facets is of
importance. Thus, this list has dimension m2. Its
elements contain the numbers k and l of the respec-
tive facets, the maximum and the minimum Euclidean
distance ∆min,kl and ∆max,kl between them and the
angle αkl between their surface normals no,k and no,l.
In order to compute the relative distances, it is suf-
ficient to compare the 32 = 9 possible distances be-
tween the vertices of the facets: Facets are part of
planes that either are parallel or intersect. In the first
case, all points in the facet have the same distance
∆min,kl = ∆max,kl, in the latter case the two vertices
closest to the intersection line have minimum ∆min,kl

and those furthest of the line have maximum ∆max,kl

distance. These characteristic values are depicted in
figure 4. For a faster and more robust selection of
admissible facets in the online phase facet pairings are
not treated individually but the characterized pairings
from P2 are sorted into a three dimensional hash table
K3. Each dimension represents one condition of the
contact constraints. The p3 bins of the hash table are
equidistantly spread over each axis and have width q3

with 3 ∈ {∆min,∆max, α} and

Max3 = max
kl
(3kl)
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Min3 = min
kl
(3kl)

q3 =
Max3 −Min3

p3

. (3)

The hash table is depicted in figure 5. The hash func-

Figure 5: 3D Container K3 for sorted pairings

tions, used to access each coordinate of K3 are

t1(∆max,kl) = floor(
∆max,kl −Min∆max

q∆max

)

t2(∆min,kl) = floor(
∆min,kl −Min∆min

q∆min

)

t3(αkl) = floor(
αkl −Minα

qα

)

with t1, t2, t3 ∈ IN. (4)

Thus, a pairing of facets k/l is inserted to bin
K3 [t1(∆max,kl), t2(∆min,kl), t3(αkl)]. With the facets
sorted this way, a fast access during online computa-
tion is guaranteed. The choice of number of classes
p3 and hence class width q3 determines the number
of facets to be searched during an online phase.

3.2 Detection Phase

With measurements from n fingers available, admis-
sible combinations of n respective facets have to be
extracted from the container K3. With

(

n
2

)

possible

finger pairings also
(

n
2

)

relative distances ∆̃ij between

the contact points x̃
(w)
c,i and angles α̃ij between the

surface normals ñ
(w)
c,i of fingers i and j (cf. figure 6)

can be determined as grasp conditions. A list Sij of

Figure 6: Characteristics of contact pair at fingers i,j

admissible facet pairs for each finger pairing i/j can be
obtained from K3. Hereby the union of all facets whose
maximum distance is at least ∆̃ij and whose minimum

distance is at most ∆̃ij can be obtained according to

Sij = ∩a,b,cK3[a, b, c]

a ∈ [t1(∆̃ij − σ∆), p∆max]

b ∈ [0, t2(∆̃ij + σ∆)] (5)

c ∈ [t3(α̃ij − σα), t3(α̃ij + σα)].

Measurement noise and approximation errors when tri-
angulating are accounted for by σ∆ and σα. For a
faster access these lists are best sorted and indexed.
From these sorted lists of facet pairs, tuples of n facets

Figure 7: Search tree T for valid tuples

have to be formed. For this, a tree T is built with each
level representing one finger and each node on a level
representing admissible facets for the respective finger
(cf. figure 7). The branches in the tree represent pos-
sible connections between facets for each finger and
hence the admissible facet tuples. The tree can be
build by first inserting list S12 in the tree. Then, pars-
ing all nodes on the second level of T , with finger two
being on γ2 and finger one being on the respective par-
ent node γ1, facet pairs of lists S13 and S23 are com-
pared for entries with matching γ3 in the third finger.
On success a new node γ3 is added on level three. Sim-
ilarly lists S14, S24 and S34 are compared with finger
three now on facet γ3. This is repeated for all n fingers.
After having constructed the tree, all paths ending at
level n present appropriate hypotheses h = γ1, ..., γn

for contact positions of the respective fingers. In figure
7, a valid hypothesis is shaded bright (green) and ends
at facet c, invalid hypotheses are shaded dark (red)
and end at d and e.

4 Detection of Object Pose

Usually, grasp constraints do not limit the number
of admissible facets to exactly one. Thus, multiple
given hypotheses of finger contact locations have to be
compared. This can be done by matching the facets
of the hypotheses to the measurements, and thus de-

termining the transform T
(o)
(w)(θ, t) =

[

R
(o)
(w)(θ)t

(o)
(w)

]

between S(o) and S(w) and hence localizing the ob-
ject. As admissible facets have only be constrained by
pairs, not by measures for all n fingers, there will be
hypotheses that allow better fit than others. The qual-
ity of a hypothesis can thus be determined. With the
rotation angle being θ and the displacement being t,
the measured plane description of (1) can be mapped
from S(w) to S(o) using

r(w) = R
(o)
(w)(θ)r

(o) + t
(o)
(w)

0 =
(

R
(o)
(w)(θ)

T ñ
(w)
c,i

)T

r(o) +
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(

(

ñ
(w)
c,i

)T

· t
(o)
(w) + d̃

(w)
c,i

)

. (6)

With this, an error function L can be developed which

compares ñ
(o)
c,i and d̃

(o)
c,i of the measured contact plane

to n
(o)
o,k and d

(o)
o,k of the respective object facet:

L(θ, t) =
n
∑

i=1

{

‖R
(o)
(w)(θ)

T ñ
(w)
c,i −

(

−n
(o)
o,k

)

‖2 +

(

ñ
(w)T
c,i · t

(o)
(w) + d̃

(w)
c,i −

(

−n
(o)
o,k

))2
}

.(7)

The negative sign in front of model values originates
in the opposing directions of the normal vectors on
the object and the contacting finger tip. This func-
tion L, computes the secant in the unit circle between
the two normal vectors and the difference between the
distances to the origin along the respective surface nor-
mal. A lateral displacement within the tangent plane
cannot be measured and is hence not penalized. Min-
imizing Lmin,h = minθ,t L(θ, t) renders an estimate of
the position topt and orientation θopt of the object with

respect to S(w). Thus by testing for all h it is possible
to choose the best fitting tuple of facets provided the
measurements are accurate. Any previous measure-
ment from vision or similar is taken into account as
starting value. The optimization can be done using a
standard Levenberg-Marquard algorithm.

5 Simulations and Experiments

The feasibility and computational behavior of the
algorithms presented here have been tested in simu-
lations and experiments. First, a model has to be
obtained from an object to be grasped. Then, this
object is examined in computer simulations. In order
to be able to grasp real world objects, a method has
to be found to model these objects without having to
rely on CAD data from specially designed objects or
simple geometries. At our institute, a rotating laser
scanner has been developed, that renders information
on the distance of objects in its scan [17]. Using joint
readings of a hand guidable arm of Faro Inc. the po-
sition of the scanner and the obtained distance infor-
mation can be combined to form a three-dimensional
cloud of points representing the surface of the object.
This cloud is processed by an algorithm, developed
at our institute to render image files in Open Inven-
tor format. Usually, this data contains a fairly high
amount of triangular facets. For a examination of an
object based on tactile sensor data, the resolution is
far to fine. Thus the program Jade2 by Scopigno and
Cignoni is used to reduce the amount of triangles. On
the other hand, since only local data is needed for de-
termining object pose, the number of triangles can be
reduced further if not all surface parts are feasible for

contact. The examples have been designed for DLR
Hand II, thus the number n of fingers is 4. The num-
ber m of facets varies in the examples. The following
computer simulations have been performed on a Sun
Ultra II machine using only one processor with 750
MHz. First, a synthetic model of a banana is exam-
ined as depicted in figure 8. It has been reduced from
512 facets to m = 53 facets (cf. fig. 9) . One can
clearly see the increased coarseness. However the ob-
ject is still pretty well represented. The refinement

Figure 8: Banana Figure 9: Red. Banana

of the model and the computation of characteristics
P2 took 21ms. The sorting into the database K3 re-
quired 19ms. Thus the total preparation time was
40ms. Now a random generator selects four facets for
all four fingers. The object is rotated around its roll
axis for 5.7o and shifted in x- y- and z-direction for
10mm. The algorithm is provided with the center of
gravity of the selected facets of the rotated object. It
returned the appropriate pose and orientation of the
banana according to the given measurement for a wide
range of initial values. The computational load for se-
lection of facet sets Sij was 24ms. The computational
load for building up the tree T and testing all possible
hypotheses was in average over 25 runs with different
facets 92ms, with a minimum of 16ms and a maximum
of 324ms. This sums to an average time of 116ms dur-
ing the online phase. Since localization does not have
to be performed within a closed control loop, this time
is feasible. Obviously, the computational load however
varies heavily with the tuple of facets being randomly
selected as measurement. This is a result of the pos-
sibility to sort out a different number of facets during
the construction of the lists Sij . Thus the load for
computing the tree and hence for testing the hypothe-
ses varies. As a second example, a real world espresso

Figure 10: Espr. machine Figure 11: Red. Model

coffe maker is to be grasped with DLR Hand II (cf.fig.
1).The object has been scanned and modeled in its
original version by 83846 facets (s. figure 10). The ob-
ject has been re-sampled and regions of little interest
have been cut off. The number of facets could thus
be reduced to 6767 (s. figure 11). These facets have
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Figure 12: Estimated Grasp

been provided to the algorithm with some restrictions
for each finger in order to reduce the search time. The
algorithm was able to locate the object regardeless of
errors in measurement and model to a satisfying extent
(cf. fig 12)

6 Conclusion

In order to allow robotic grippers to grasp real world
objects with uncertainty in their location, we here pre-
sented an approach to determine the most likely set of
contact positions of fingers on the object together with
an estimate of the objects pose as seen from the fin-
gers. The object has been modeled by a triangulated
surface. This way general surfaces can be treated. An
approach has been presented to first refine the object
description offline by characteristic relations between
its facets and store those values in an object descrip-
tion. This allows faster access during an online phase.
After receiving tactile measurements from the robotic
hand, this database is searched for possible matching
facet combinations. These facet combinations are used
to determine the position of the object relative to the
hand. The validity and computational behavior has
been examined in simulations and experiments. In on-
going research this algorithm is enhanced to increase
robustness and computational performance.
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