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Abstract

In this paper we present a system for catching a flying
ball with a robot arm using off-the-shelf components
(PC based system) for visual tracking. The ball is ob-
served by a large baseline stereo camera, comparing
each image to a slowly adapting reference image. We
track and predict the target position using an Extended
Kalman Filter (EKF), also taking into account the air
drag. The calibration is achieved by simply perform-
ing a few throws and observing their trajectories, as
well as moving the robot to some predefined positions.
The robustness of the system was demonstrated at the
Hannover Fair 2000.

1 Introduction

The goal of this paper is to show that 3D visual track-
ing of a flying object is possible without making strong
assumptions on the environment and using only off-the-
shelf components. As a reference application we use the
new DLR light weight robot arm (figure 1) [3] to catch
a ball that is thrown by someone towards the robot.
The problem has been addressed by several researchers
and successful approaches have been documented which
mostly differ from ours in that they utilize specialized
hardware [1].

The most important problem that had to be ad-
dressed is that of selecting the feature to use for seg-
menting the ball. Using color would have been unstable
or at least would have required a large contrast to the
background. This is, because different sides of the ball
are exposed to different lighting conditions, that may
also change during the flight, so even a single-colored
object would appear in different colors or shades. An-
other approach is to detect the ball by its shape, but
this means performing some general object recognition,
that is difficult even without real time constraints. In-
stead, we made use of the motion of the object, comput-

Figure 1: New DLR
lightweight robot arm
with the net (16cm di-
ameter) used for catch-
ing the ball (7cm dia-
meter). Technical data:
7-DOF, 18kg weight,
7kg payload, 1m ra-
dial workspace, 800/s
max. joint speed due
to power supply restric-
tions with the proto-
type used.

ing the difference between the actual image and some
reference image and detecting its shape in the thresh-
olded result. This approach proved to be very robust,
as it only required the background to be static and the
object to appear different from the background without
assuming any specific appearance.

In our general setting, the object is in the air for
about 0.8s to 1s, covering a distance of about 5m. This
is just long enough for the robot to reach an arbitrary
point of its workspace. Therefore it is essential to pro-
vide an early prediction of the trajectory to quickly
command the catch position to the robot. As the ball
is tracked for a longer time, the prediction becomes
increasingly precise and the robots destination is mod-
ified.

2 General Setup

Predicting the ball with only a single camera is an ex-
tremely ill-conditioned problem. We therefore use a
stereo camera system with a large baseline of 1m (fig-
ure 2) with the cameras mounted on a vertical pole.
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Figure 2: General Setup:
The cameras are mounted
on a vertical pole beside
the thrower to increase the
precision in the early phase
of the trajectory, utilizing
a long baseline (1m) for
more precise triangulation.
The cameras are rotated by
900 yielding a larger vertical
field of view.

This configuration allows triangulation of the 3D posi-
tion of the ball with a precision of ≈ 3cm. Naturally
the position error, especially in the radial direction, is
much smaller when the ball is near the cameras.

The ball is observed at time t0 yielding position ~p0

and at time t1 yielding position ~p1. We now want to
predict the position of the ball ~p2 at time t2. This can
be done by the following equation, that also yields the
standard deviation of the prediction σ2, if both posi-
tions have a standard deviation σ01:

~γ01 =
1
2
~g (t1 − t0)

2
, ~γ12 =

1
2
~g (t2 − t1)

2
,

~p2 = ~p1 + (~p1 − ~p0 − ~γ01)
t2 − t1
t1 − t0

+ ~γ12,

σ2 ≈
√

2
t2 − t0
t1 − t0

σ01.

From the above equation it is clear that an early pre-
diction is difficult due to the small denominator t1− t0.
To compensate therefore we place the stereo camera
system slightly behind the thrower (instead of, for in-
stance, at the robot), getting much more precise mea-
surements of the position of the ball in the first phase.

We use standard PAL video cameras and therefore
have to handle interlaced images (the same holds for
NTSC cameras): Instead of 25 complete images per
second one gets 50 so called fields, that consist alter-
nating of all odd and even lines. In the whole system
each field is treated as an independent image, effec-
tively cutting the y-resolution by 2 and ignoring the
effect that odd and even fields are shifted by 0.5 pixel
with respect to each other. To avoid, that the reduced
y-resolution further increases the position error in the
radial direction, the cameras are rotated by 90◦, so that
the x direction, now pointing downwards, is used for
triangulation. Moreover this configuration leads to a
larger vertical field of view due to the cameras’ aspect
ratio of 4:3.

The cameras are synchronized to each other and are
connected to an off-the-shelf PC (PII/300Mhz) via two
frame-grabber cards (BT848 based TV card). The PC
runs the computer vision algorithm to extract the ball
in both images, an Extended Kalman Filter (EKF) to
track its state, an predictor for the trajectory and an al-
gorithm to select an appropriate position for catching.
The catch point is transmitted to the robot control soft-
ware (inverse kinematics, interpolation, joint control)
via Ethernet (see figure 3). This procedure is executed
for each video field (50Hz) supplying the robot with a
stream of increasingly precise catch positions. The la-
tency of the whole system is about 75 ms (details in
table 1).

exposure time 5ms
image transfer 20ms
frame-grabber driver 20ms
vision algorithm <14ms
prediction 2ms
robot control 10ms

Table 1: Latencies in the system. The delay in the
frame-grabber driver is due to its inability to capture
fields but only complete images.

3 Object Segmentation based on
Difference Images

The main idea of our approach is to compare the actual
image with some reference image. The resulting differ-
ence image is binarized using a threshold and decom-
posed into connected regions (blobs). Then the object
shape is fit to each region taking the best fit as the ob-
ject. To process the high data rate of 50 fields/s from
two cameras one must carefully choose the algorithm
to be fast and to allow implementation using the MMX
instruction set [2].
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Figure 3: Data-flow dia-
gram. The visual tracker
passes image positions to
the EKF, that estimates
the state of the ball (~x,~v)
and provides a ROI for the
tracker. The predictor es-
timates the trajectory used
by the catch point selec-
tor. The inverse kinematics
generates joint angle pro-
files that are executed by
the motion controller.
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3.1 Difference Image

Comparing consecutive images will yield two maybe
overlapping copies of the object in the difference. To
avoid this problem we compare each image to a refer-
ence image instead. Simply fixing one image as refer-
ence however will not work, since there proves to be
slow changes even in an otherwise static image. These
often occur due to changes of lighting condition, auto-
matic gain control in the camera or frame-grabber or
due to flickering neon lamps.

Other problems arise through fast changes that occur
at image edges due to pixel jitter, small camera vibra-
tions or interlacing. Therefore we compare the pixel
not to a fixed reference intensity but to a reference in-
terval [low..high] of intensities “normally” occurring
at this pixel. Pixels having a value that is within some
tolerance between low and high are classified as ”back-
ground” (’0’), whereas lower respectively higher values
are classified as ”object” (’1’) in the binary difference
image output. To cope with slow image changes the
reference intervals adapt to the presented image. The
following pseudocode shows the adaption as well as the
difference image computation applied to each pixel:

difference(pix, low, high, diff, delta) {
low++; high−−; diff = 0;
if (pixel < low-delta) {

diff = 1; low -= delta;
} else if (pixel < low) low = pixel;
if (pixel > high+delta) {

diff = 1; high += delta;
} else if (pixel > high) high = pixel;

}
pix is the value of the actual pixel, [low..high] is

the reference interval, the binary result is returned in
diff and delta is a parameter specifying the thresh-
old for binarization and the maximal adaption rate
(delta=8 with values scaled to [0..255] for our exper-
iments). Figure 4 shows the algorithms behaviour on
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Figure 4: Adaptive difference image computation on
two exemplary pixels (see pixels A and B in figure 8).
The plot shows the pixels intensity and reference inter-
vals ([low-delta..high+delta], including tolerance)
as they adapt over time. A is a typical pixel that is af-
fected by some noise. It is passed by the ball at t ≈ 0.6s.
(the peak). B lies on a high contrast edge of a reflec-
tion and undergoes systematic changes due to interlac-
ing and illumination effects. It can be observed, that
the reference interval adapts to the high variation of
the pixel in the first 0.2s.

two typical pixels of the image sequence shown in fig-
ure 8.

The reason for choosing an adaption scheme based on
if(...) tests rather than for instance a lowpass filter
is, that it can be much more efficiently implemented
on the MMX instruction set. Another advantage for
MMX implementation is, that the algorithm acts inde-
pendently on all pixels.

The execution time is dominated by the CPUs mem-
ory bandwidth, so we store the result in packed binary
format. To save further computation time, we apply
the difference image computation only to a region of
interest (ROI) (2% to 40% of the image) and process
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the reference images in an interleaved pattern updating
only every fifth line of each image.

3.2 Segmentation

The next step is converting the binarized difference im-
age into a set of horizontal stripes being tolerant to
some incorrect pixels. We use a simple heuristic algo-
rithm applying a counting scheme on each line.

The intention is to get stripes of a minimal length
containing gaps (pixels classified ’0’) of at most a
certain maximal length (in our algorithm both are
length=5). This is done by sweeping through the line
with a counter (ctr) that is incremented for each ’1’
pixel and decremented for each ’0’ pixel. The counter
is clipped to [0..length]. If the counter exceeds length
a new stripe is found that starts at the last pixel where
the counter changed from 0 to 1, ranging beyond the
actual pixel. Every time the counter exceeds length
again the stripe gets longer. If the counter falls below
0, the stripe (ranging up to the pixel, where the counter
has fallen below length) is finished and stored. The
following pseudocode implements this algorithm. The
actual stripe is represented as [bs..es] and after being
finished it is stored with storeStripe(bs, es).

for (es=bs=ctr=x=0; x<width; x++) {
if (diff[x]==0) {

if (ctr > 0) ctr--;
else {

if (es>bs) storeStripe(bs, es);
bs = es = x+1;

} } else {
if (ctr < length) ctr++;
else es = x;

} }
Now we take a closer look at the loop. Our intention

is to build a look up table, that can process 8 pixels
(one byte) at once. This is possible since the behav-
ior of the loop body depends only on the value of ctr
and the value of the difference image pixel diff[x].
The variables bs and es determine, whether a stripe
is stored and contain the coordinates of the stripe but
do not influence the algorithm otherwise. Exploiting
this independence allows to generate a look-up-table
LUT taking ctr and 8 consecutive binary pixels as in-
put and producing the values of ctr, bs and es after
execution of the inner loop on those 8 pixels as output.
Here follows an optimized version of the algorithm uti-
lizing LUT:

for (es=bs=ctr=x=0; x<width; x+=8) {
(nes,nbs,ctr)=LUT[ctr,diff[x..x+7]];
if (nbs!=unchanged) {

if (nes+x>bs) storeStripe(bs,nes+x);
else if (es>bs) storeStripe(bs,es);
bs=nbs+x;

} if (nes!=unchanged) es=nes+x;
}

Changes to es and bs are separated by length pixels.
This implies, that length must be at least 5 to assert,
that there is only one call to storeStripe in the 8 pixel
block processed by a single LUT access. Whether there
had been a call, and with which parameter can be seen
from bs, es, nbs and nes.

3.3 Identification

The stripes computed by the segmentation algorithm
are grouped into connected regions. We reject some re-
gions that have implausible area or aspect ratio. Then
we fit the remaining regions with the shape of the ob-
ject to be tracked. In the special case of tracking a ball
this reduces to fitting a 2:1 ellipse (due to interlacing).
The best fitting region is decided to be the object and
it’s center of gravity is passed to the EKF.

4 Prediction and Interception

4.1 Dynamic Model

Modeling the trajectory of a ballistic throw is simple
Newtonian mechanics. The only difficulty is the need
for a rather precise model that takes into account the
air drag, because the catch point has to be predicted
from the first camera images for a point of time 1s in
the future. The Reynolds number for an object with
size of a tennis or soft ball moving in air is about 2 · 104

(at normal conditions), so the air drag generates a force
proportional to the square of the velocity [4]. The equa-
tions of motion read then

~̇v = ~g − α |~v|~v (1)

~̇x = ~v,

with α = cwAρ
2m , cw = 0.45 for spheres, density of air

ρ = 1.293 kg
m3 and ~g = −9.81m

s2 êz. For a typical throw
with initial velocity v0 = 7m

s and a release angle of 45◦

table 2 shows that especially for the soft ball the effect
of the air drag can not be neglected.

m [g] A[cm2] α[cm] xend[m]
no drag – – 0 5.0
tennis 50 20 1.14 4.8
soft 12 36 8.75 4.0

Table 2: Effect of air drag.
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The dynamical state of the ball is completely deter-
mined by its actual position and velocity (~xact, ~vact).
Given an estimate of (~xact, ~vact) the trajectory can be
predicted by integrating (1). The integration has to be
done numerically (we used simple Euler integration),
because (1) has no closed form solution.

4.2 State Tracking

An EKF is used for tracking the state of the ball. The
system equations of the filter are given by (1). Measure-
ments consist of the 2D image positions ~bc, which the
vision subsystem delivers at each time step and for each
camera c. We use a pin hole model without distortion
for the cameras yielding the following meassurement
equations, that connect the image position ~bc of a ball
with its real position ~x:

~bc =
f c

~x′ · êz
(~x′ · êx, ~x′ · êy) , with (2)

~x′ = T(ϕc,ϑc,ψc) (~x− ~rc) ,

and with the camera parameters focus f c, position ~rc

and orientation described by the matrix T(ϕc,ϑc,ψc),
where (ϕ, ϑ, ψ) are Euler angles.

For the measurement noise an rms value of 4 pixel is
used and no system noise is assumed.

During implementation of the EKF it was very con-
venient to first prototype it in Mathematica 4.0 [7] (es-
pecially the symbolical calculation of the Jacobian of
(3) ) and then produce a fast C version automatically
by using the MathCode [8] package.

4.3 Catch Point Generation

Once the EKF reports the prediction to have a suffi-
ciently small covariance, a suitable point for catching
the ball must be chosen along the trajectory. Because
the time the robot needs to reach a position grows
rapidly, when it gets more and more stretched, the
catch point should not lie too close to the boundary
of the workspace. On the other hand a catch point too
close to the base of the robot may cause it to fold up
and to reach its joint limits.

To determine the catch point we use a heuristic (fig-
ure 5). The allowed workspace is defined as the inter-
section W of a sphere with a convex, possibly infinite
polyhedron. Moreover some ”forbidden region” con-
taining the base of the robot is defined by an additional
convex polyhedron P . The trajectory is linearized at
the point it intersects the sphere. On this linearized
trajectory the point, which is closest to the initial posi-
tion and lies in the allowed region, is chosen. This point
in space corresponds to a point in time tc. Calculating
position and velocity of the ball at tc, now using the

Figure 5: Catch point determination.

non linearized trajectory, yields the catch point c and
the orientation for the catching net.

4.4 Motion Control

The motion algorithm (inverse kinematics and inter-
polation) optimizes the movement of the robot within
its joint speed and acceleration limits. To reach the
desired catch point fast, translational speed is given
priority over orientation in trajectory generation [6],
because the latter is less critical for catching the ball.

5 Calibration

For the calibration of the cameras we use a ”Calibrat-
ing by Doing” procedure. Two requirements are impor-
tant: First, high precision (≈ 2cm) relative to the robot
coordinate system is needed and second, throughout
the whole space covered by the trajectories, the cam-
era model has to be quite exact, so that already after
≈ 100ms a good prediction for the catch point can be
made with an error of ≈ 10− 20cm.

For the calibration one needs samples consisting of
a 3D position and the corresponding image positions.
To get samples for fulfilling the first requirement the
robot is moved to ≈ 10 positions covering the whole
workspace and the image positions of the net are man-
ually determined.

To fulfill requirement two, ≈ 2 − 3 throws are made
and the image positions of the ball while flying are
recorded. To get the corresponding 3D positions the
dynamical model (1) is used, which allows to calculate
the trajectory in space, depending on the initial con-
ditions (~x0, ~v0). The unknown parameters (~x0, ~v0) are
treated as additional free parameters, that also have to
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Figure 6: Example of a successful catch. The image shown is an overlay of a video sequence.

be ”calibrated”. This procedure is well defined since
every throw gives about 100 image positions and intro-
duces only 6 new parameters (~x0, ~v0).

The actual calibration procedure is performed using
a nonlinear least square model fit. The target function
Q, which has to be minimized, is defined as a sum of
the quadratic deviations between the measured image
positions and the image positions, which are calculated
from the known corresponding 3D positions by using
the measurement equations:

Q =
∑

c

(
1

σ2
rob

∑

i

(
~bc(~xrob,i)−~bc

rob,i

)2

+
1

σ2
tra

∑
n

∑

i

(
~bc(~xtra,n(ti))−~bc

tra,n(ti)
)2

)
.

The first term sums over the samples, that were gen-
erated by moving the robot. In the second term, n
counts the recorded throws and ti specifies the time,
when an image is taken. The prediction ~xtra,n(t) of the
trajectory is calculated by numerical integration of (1)
and depends on the parameters (~x0,n, ~v0,n). The rela-
tive weighting of both terms is controlled by σrob and
σtra, which are measures for the error of the samples.

Typically about 30 parameters have to be fit: 7 for
each camera (position, orientation and focus) and 6 for
each ball throw. Because Q is a sum of quadratic terms
the Levenberg-Marquardt method [5] for minimization
can be used.
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Figure 7: Predicted trajectory as a function of time.
The intersection of the trajectory with a plane going
through the final catch point and being orthogonal to
the last trajectory is shown. This way each trajectory
is represented by one point. (axis in meters; 20ms time
step between the points; first point 60ms after detecting
the ball)

6 Experiments

The catching system was presented at the Hannover
Fair 2000 (figure 6). About 100 throws with soft balls
were made by different people, including visitors. In
about 2/3 of the tries the robot was successful in catch-
ing the ball. The majority of faults was due to the
camera’s limited horizontal field of view resulting in
the system seeing the ball too late.

Figure 7 visualizes the quality of the trajectory pre-
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Figure 8: Overlay of all
images of the top and bot-
tom camera (rotated by 900).
The tracker state and the
predicted trajectory after ob-
serving 3 images (60ms) is
shown: ROI (rectangle), ex-
tracted ball (ellipse), pre-
dicted trajectory with time-
steps of one image (crosses),
catch point (”catch”). Ob-
serve the difficult nonuni-
form background and chang-
ing lighting conditions along
the trajectory. The pixels A
and B are referenced in fig-
ure 4.

dictions as a function of time. One can observe the high
accuracy (< 10cm) achieved even for the early predic-
tions, with the major error occurring in the direction
of the throw (x-axis in the figure). Figure 8 shows the
throw as seen by the cameras. Overlayed is a early
prediction of the trajectory.

7 Summary

We have shown that it is possible to catch a thrown ball
with a robot arm using computer vision, Kalman filter-
ing and prediction on a PC, when one carefully designs
algorithms suitable for high speed implementation. We
generated reasonable predictions very early by choos-
ing a good camera position and achieved the necessary
calibration mainly by fitting a model to some observed
trajectories of the ball (”Calibrating by Doing”).

What comes next ? The natural idea could be to
use the DLR artificial hand instead. One may even be
tempted to take a racket and try to play tennis. This
means being confronted with the challenge of how to
generate constrained optimized motion as, for exam-
ple, a forehand stroke, requiring synergy between per-
ception, control and mechanics. In this way the old
proverb: ”Mens sana in corpore sano” could be an in-
terpretation of mechatronics.
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