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Abstract

Usually, grasp planning can be split up into two
phases: In the first phase one tries to find a set
of contacts that allow for stable grasping of an ob-
ject. This phase has been of major research interest,
which is also reflected in the (reasonable) definition
of a grasp as a set of contact points. In the sec-
ond phase a feasible hand pose that realizes the grasp
with a given hand is calculated. While this point is
important for a practical grasp planning system, it
has either been considered trivial or been solved by
crude heuristics in most cases.

Here we present an approach for calculating the hand
and finger pose for a given grasp. The problem is for-
mulated as a constraint satisfaction problem and then
solved using optimization techniques. The method
is applied to two different grasp types: To the well
known precision grasp and to the pinch grasp which is
the grasp type preferred by men when grasping small
objects.

1 Introduction

In recent years a couple of new artificial hands have
been designed and developed by different research
groups [3], [4], [5], [8], [12], [17]. In teleoperation
settings the extended features of these hands can al-
ready be used and demonstrated well. Systems for
autonomous grasping and manipulation in contrast,
are still a topic of research.

For such systems the grasp analysis and planning
part has been of major interest. Most approaches
concentrated on precision grasps, where only the fin-
gertip is in contact with the object to grasp [7], [14],
[15], [16].

Assuming one point contact for each fingertip the
grasp analysis problem can be solved independently
of any manipulator. A grasp in this context can be
defined as the contact points on the object and their
surface normals. Therefore algorithms for generating
optimal grasps (eg. in terms of force or form closure)

Figure 1: The DLR Hand II executing a pinch grasp
on a solder pen

considering only the object boundary can be devel-
oped (see [1] and [13] for an overview). This makes
the grasp theory applicable to any dextrous hand,
but it obviously leaves the problem of finding a suit-
able hand configuration to execute a generated grasp
open. Only a few approaches consider this problem
and take hand configurations into account (eg. [11]).

Figure 2: How to find a hand configuration (wrist
frame, finger joints) for a given grasp contact set?

In this paper we assume a set of grasp contacts that



meet certain quality criteria to be given. Such con-
tact sets can be generated by the grasp planning sys-
tem presented in [2] or any other grasp quality based
precision grasp planner. We adress the problem of
finding a kinematic feasible wrist position and finger
joint configuration for a given contact set (see fig. 2).
Our target is to develop a practicable method for an
online grasp planning system. So contrary to [10] we
ignore possible hand-object-collisions. The integra-
tion of these constraints for real world objects with
far more than 1000 faces seemed computationally too
expensive for an online grasp planner. To ensure col-
lision constraints fast collision detection algorithms
are used instead [9]. This decision also allows us to
solve the kinematic problem with general methods
that are efficient and easy to implement.

We now first take a short look at the geometry of
each finger contact point. Then we give a problem
formulation for the whole manipulator and finally
show an efficient way to solve these problems.

2 Finger Contact Geometry and Pinch
Grasp

The easiest and most commonly used fingertip model
is a sphere. The fingertip’s position is then deter-
mined by the grasp contact point and the radius of
the sphere whereas the orientation of the fingertip’s
link is unrestricted (see fig. 3).
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Figure 3: Simple fingertip model: Same contact
reached with two different distal link orientations.

Robot hands are often built to meet this model (DLR
Hand I [3], DIST-Hand [5]) as it makes it possible to
calculate finger joint configurations by inverse kine-
matics - fixed wrist frames assumed. Let’s take the
DLR Hands finger as an example (fig. 4).

Each finger has four joints. As joint 3 and 4 are cou-
pled there remain three degrees of freedom (3 DOF).
The grasp contact for the finger tip restrains 3 DOF
(fig. 3) so there is a single solution for the joint an-
gles given a fixed hand wrist position or none if joint
limits or link lengths are exceeded.

In our earlier work [2] we used a simple heuris-
tic to determine a wrist position for a given set of
grasp contacts and then got the appropriate joint
angles with inverse kinematics. This method posed

Figure 4: DLR Hand II kinematic model of finger.

the problem that some grasps could theoretically be
reached by the hand but due to a bad hand pose de-
cision the grasp execution failed. Also this method
produces typical “robot shaped” grasps (fig. 5) that
are not very human like.

Figure 5: Typical robot (A) and human (B) preci-
sion grasp shape

This was also the feedback we got from discussions
with a neurologist. She mentioned that the normal
way humans pick up and manipulate small and light
objects is, they use the pad of their fingertips to
increase stability. Only people with neurologic de-
seases would grasp things like our robot hand does.
The grasp shape she proposed is is called pinch grasp
in the grasp taxonomy of Cutkosky and Howe [6] for
a two fingered grasp. In the following we want to
show the changes on the fingertip model to kinemat-
ically describe pinch grasps.

2.1 Pinch grasp fingertip model

Again we take a look how humans usually grasp small
objects: They use their finger pads for contacting
the object surface (fig. 5). The distal finger link is
applied almost parallel to the surface of the object
around the contact point.
Transferred to a robot hand that means: The distal
finger link (L3) of the hand is modeled as a cylinder



(fig. 6). For a pinch grasp the cylinder axis (zTipi)
of the distal finger link should be perpendicular to
the surface normal (zGPi) in the grasp contact point
(GPi). The intersection of the normal vector in the
grasp contact with the distal cylinder axis (Tipi) is
allowed to lie anywhere inside the cylinder. There-
fore the length of the distal link in kinematics (li)
is between 0 and the length of the real distal link
of the hand (L3). (Figure 7A shows the kinematic
description of the finger)
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Figure 6: Contact situation for a pinch grasp
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Figure 7: Finger kinematics with (A) and without
virtual prismatic joint (B)

It’s obvious that for this fingertip model a smarter
strategy to determine the wrist position and orien-
tation is needed to get feasible grasp configurations.

3 Calculation of pinch grasps

Now we want to calculate a hand pose and a fin-
ger joint configuration for a given set of stable grasp
contacts. The model of the hand kinematics and an
initial hand position is given. First we describe the

kinematics of the whole setting, then give a math-
ematical description of the problems constraints to
hold. As there is no direct way to find a solution for
the stated problem we last show a method to trans-
form the problem to an unconstrained optimization
problem which provides us one of the possible pinch
grasp configurations for the given grasp contacts.

3.1 Kinematic Description

With TA,B we denote the homogeneous matrix rep-
resentation of a transformation which moves the co-
ordinate system A to the coordinate system B and
TA,B(x) is the homogeneous matrix representing a
transformation, parameterized by a 6-dimensional
vector describing translation and rotation (e.g. Euler
or RPY representation).

TA,B =
(

xA,B yA,B zA,B tA,B
0 0 0 1

)
, (1)

TA,B(τ) with τ = (tx, ty, tz, rx, ry, rz)T . (2)

The finger kinematics of the DLR Hand II is de-
scribed in (fig. 7 B). There are four rotational joints
and three links in between. Joint 3 and 4 are cou-
pled 1 : 1 and described by θ3,i. In order to allow
any point on the cylinder of the distal finger link
for contact placement, a virtual prismatic joint, de-
scribed by li (for finger i), is introduced (fig. 7 A).
The transformation of the i-th fingers base frame to
the fingertip frame is then specified by the forward
kinematics fKin(θi, li), where θi is the joint vector of
finger i.

We model the fingertip as a cylinder of radius r (fig.
6). Assuming the grasp contact frames not to lie di-
rectly on the object surface, but in a distance r per-
pendicular to it, the grasp contact constraints can be
simplified. For a pinch grasp that means the grasp
contact point lies on the fingertip cylinder axis and
for traditional precision grasp the grasp contact co-
incide with the fingertip frame (sphere center fig. 3).

Now we can describe the setting of an object to
be grasped by a n-fingered hand and n given grasp
points (see fig. 8):

TWorld,Tipi = TWorld,Hand(τ) ·THand,fi · fKin(θi, li),
TWorld,GPi = TWorld,Obj ·TObj,GPi .

So far this is not describing a grasp as the constraints
to ensure contact are missing. But with our previ-
ous definitions we can easily give these constraints.
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Figure 8: Kinematic description of a hand grasping
an object

Contact is guaranteed if the position of the fingertip
frame tTipi is the same as the position of the grasp
point frame tGPi . For a pinch grasp we also want
to control the fingertips orientation. The z-axis of
the distal finger link should be perpendicular to the
z-axis of the grasp contact frame. This leads to the
following two constraints:

zTipi · zGPi = 0, (3)
tTipi = tGPi . (4)

3.2 Problem Formulation

With equation 3 and 4 we have set up the grasp
contact constraints for the problem. We also want to
guarantee that the grasp can be executed with the
real hand. So we have to set the joint angles and the
virtual prismatic joint within appropriate intervals.

This introduces a set of inequality constraints:

Θlow
j ≤ θj,i ≤ Θup

j , (5)
lrow ≤ li ≤ lup. (6)

Where i is the number of the finger and Θlow
j , Θup

j

the lower and upper limits of joint j. The virtual
joint length is restricted by llow and lup (usually 0 ..
length of the real link).

We want to point out that the parameters for the
hand wrist transform are totally free in our setting.

Assuming a robot that carries the hand, the wrist
position and orientation may also be a subject to
constraints.
The problem we have to solve is:

Find parameters {τ, θ1, l1, θ2, l2, .., θ4, l4}
that fulfill equations 3 to 6.

Let’s take a closer look at the contact constraints.
We have four equality constraints and four free pa-
rameters (θ1..3, l) for each fingertip and six free pa-
rameters for the hand wrist position and orientation.
So we expect a solution space rather than a single pa-
rameter vector for the problem. Although equations
3 and 4 may look very simple, they are nonlinear
and rather complex. Therefore symbolic calculation
of the solution space is not possible.
To get a numerical algorithm to solve the problem
we transferred it to a pseudo optimization problem.

The principal idea is to formulate an optimization
problem without constraints, where the objective
function is constructed in such a way that its min-
imization converges into the solution space of the
initial problem. The so found optimal parameter set
should then fulfill all the constraints if the solution
space was not empty. The value of the objective func-
tion for the optimized parameters allows a decision
whether a solution was found or not.

We explicitly want to state that for the original prob-
lem there is nothing to optimize although optimiza-
tion criteria (eg. maximal exertion of finger force)
can be added to our approach. We just convert the
problem to get an algorithm for finding any solution
for our “pinch grasp problem”.

The next section describes the construction of an ob-
jective function for the above problem.

3.3 The Optimization Algorithm

We decided to formulate the problem with penalty
terms in the objective function to ensure constraints.
First we shortly present the generic method and
the requirements the constraint terms have to meet.
Then we show our solution for this particular prob-
lem.

Generally one has an objective function f(x) which
is to be minimized and a set of equality h(x) and
unequality g(x) constraints:

argminx(f(x)) with hi(x) = 0, gj(x) ≤ 0, (7)

with i = 1, 2, .., n j = 1, 2, ..,m and x ∈ <n.

This can be transformed to a sequence
of unconstrained optimization problems



min(H(x, p1, .., pm+n)) with

H(x, p1, p2, .., pm+n) = f(x) +
m+n∑
k=1

Sk(x, pk) (8)

with pk > 0, pk →∞ k = 1, 2, ....

Let M be the solution space for the parameter set x
of the initial problem. Then S is chosen so that for
the additional terms Sk(x, pk) holds

lim
pk→∞

Sk(x, pk)
{
→ C if x ∈M,
→∞ if x 6∈M.

(9)

For the algorithm that means: The pk parameters
are increased in each step. So if the sequence of un-
constrained problems converges to a minimum, the
found parameter set is in the solution space of the
initial problem. Otherwise it would violate any of the
constraints and no minimum of the sequence could
be found (as pk increases). Note that the single op-
timization steps always converge to a local minimum
but the sequence of optimization does only if there
is a x that fulfills all constraints.

The only thing left to be done is to pick suitable
penalty functions and parameterize them for the con-
straints.

In our particular case there is no initial objective
function given. So f(x) := 0. On choosing appropri-
ate penalty function types we considered the follow-
ing:

We have two different types of terms, equality con-
straints for the contact terms and inequality con-
straints for the joint limits. Ideally we would like to
have a continuous objective function where all terms
derived from the constraints are active in the whole
domain. As an alternative one could construct a par-
tial objective function where terms are switched on
and off. Last but not least we wanted to use an off
the shelve nonlinear least squares minimizer so we
tried to get a quadratic form. We decided to form
a continuous objective function with different terms
for equality and inequality constraints.

For the equality constraints we use a simple
quadratic penalty term:
Let h(x) = 0 be an equality constraint, we add

Sk(x, pek) = pekh
2(x) (10)

to the objective function. Figure 9 shows the func-
tion type for different pk. If equality is fulfilled the
resulting penalty value is zero.

For the joint limit constraints we use an exponential
penalty term that is nearly zero if the joint is in its
limits and rises rapidly on the joints boundary:
Let Θlow ≤ θ ≤ Θup be a bound constraint, we add
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Figure 9: Quadratic functions for modeling equality
constraints (pek ∈ {0.25, 0.5, 1, 1.5, 2, 3, 4, 7, 20} )
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Figure 10: Plot of terms for modeling bound con-
straints (pbk ∈ {0.25, 0.5, .., 20} , Θlow = −2,Θup =
2)

S(x, pbk) = expp
b
k(−θ+Θlow) + expp

b
k(θ−Θup) (11)

to the objective function. Figure 10 shows the func-
tion type for bound constraints with different pbk.
One can easily see that these terms meet require-
ment (eq. 9).

With these types of functions we can reformulate the
initial problem (equations 3 to 6). In the following, x
is a shortcut for the variable parameters (hand wrist
frame, joint angles and length of prismatic joint):

x = (τ,θ1, l1,θ2, l2,θ3, l3,θ4, l4) (12)

The whole objective function for the stated problem
with four fingers, starting with the two equality con-
straints (eq. 3, 4) then adding the bound constraints
for the 3 joints (eq. 5) and the virtual prismatic joint
(eq. 6) is then:

H(x, pe1,1, .., p
e
4,2, p

b
1,1, .., p

b
4,4) = (13)∑4

i=1

[
pei,1‖tTipi(x)− tGPi(x)‖2 +

pei,2(zTipi(x) · zGPi(x))2 +



3∑
j=1

(
expp

b
i,j(−θj,i+Θlow

j ) + expp
b
i,j(θj,i−Θup

j
)
)

+

expp
b
i,4(−li+llow) + expp

b
i,4(li−lup)

]
.

With this objective function implemented in Math-
ematica and the builtin Levenberg-Marquardt mini-
mizer we received the results shown in Figure 11 to
12.

3.4 Calculating other grasp shapes

This method can easily be applied to other grasp
shapes. One has only to find proper constraints
or optimization criteria that describe the preferred
shape. We will show this for the traditional precision
grasp. What is different to the pinch grasp setting?

• The virtual prismatic joint in the distal finger
link needs to be removed. Instead, the contact
frame gets fixed to the finger tip.

• The orientation constraint for the finger tip may
be omitted or relaxed in such a way that the dis-
tal finger link does not collide with the contact
tangent plane. That means the angle between
finger tip z-axis and contact normal has more
than 90 degrees.

This leads to the following constraints for traditional
precision grasps:

zTipi · zGPi ≤ 0, (14)
tTipi = tGPi , (15)

Θlow
j ≤ θj,i ≤ Θup

j .

Again we can transform this to an optimization prob-
lem using the same kind of penalty functions.

H(x, pe1, .., p
e
4, p

b
1,1, .., p

b
4,4) = (16)∑4

i=1

[
expp

b
i,4(zTipi (x)·zGPi (x)) +

pei‖tTipi(x)− tGPi(x)‖2 +
3∑
j=1

(
expp

b
i,j(−θj,i+Θlow

j ) + expp
b
i,j(θj,i−Θup

j
)
)]
.

4 Results

We have implemented the optimization problem in
Mathematica and tested the proposed method with
some generated grasp contact sets on different ob-
jects. Some of the resulting hand configurations are
presented in figure 11 to 12. We noticed that the
minimization of the objective function as stated in
equation 13 converged into slightly different local

minima, dependent on the initial hand configuration.
The residual errors of the minima were almost equal.
This is what we expected, recalling that we have a so-
lution space with many equal solutions. We added a
simple optimization criterion, maximize the distance
to the limits for each finger joint, then the different
minima converged to a single solution vector. So it
should be possible to search for special configurations
that for example optimize the force the fingers can
exert on the object boundary or that allow better
manipulation of the object for certain tasks.

5 Future Work

One topic, as mentioned above, is the optimization in
the solution space. One can try to optimize the joint
angles of the fingers in such away that the force the
finger can exert at the contact is a maximum. For
given tasks one can try to optimize the forces that
can be exerted on the object best suits the task.
Another big subject is the stability analysis and mod-
els for contact geometry of the pinch grasp. Humans
prefer this grasp type as it gives more stability to the
grasp and the contact region on the objects grows.
It has to be studied how one can model this contact
type and also if a pinch grasp can be controlled more
robust than a fore fingertip grasp. At last we have
to integrate that method in our grasp planner in a
way that the flexibility of the method can be used to
plan individual grasp shapes for different tasks.

Figure 11: Planned pinch grasp on a pen

References

[1] Antonio Bicchi and Vijay Kumar. Robotic grasp-
ing and contact: A review. In Proc. IEEE Conf.
on Robotics and Automation, pages 348 – 353, San
Francisco, California, April 2000.

[2] Ch. Borst, M. Fischer, and G. Hirzinger. A fast and
robust grasp planner for arbitrary 3d objects. In



Figure 12: Planned pinch grasp on a cocktail glass

Figure 13: Planned pinch grasp on a cellular
phone

Proc. IEEE Conf. on Robotics and Automation, pages
1890–1896, Detroit, Michigan, May 1999. .

[3] J. Butterfass, G.Hirzinger, S. Knoch, and H. Liu.
DLR’s Multisensory Articulated Hand. part I: Hard-
and software architecture. In Proc. IEEE Conf. on
Robotics and Automation, pages 2081 – 2086, Leu-
ven, 1998. .

[4] J. Butterfass, M. Grebenstein, H. Liu, and
G. Hirzinger. DLR-Hand II: Next Generation of Dex-
trous Robot Hand. In Proc. IEEE Conf. on Robotics
and Automation, pages 109 – 114, Seoul, Korea, May
2001. .

[5] Andrea Caffaz and Giorgio Cannata. The Design and
Development of the DIST-Hand Dextrous Gripper. In
Proc. IEEE Int. Conf. on Robotics and Automation,
pages 2075 – 2080, Leuven, Belgium, May 1998.

[6] M. Cutkosky and R. D. Howe. Human grasp choice
and robotic grasp analysis. In Subramanian T.
Venkataraman and Thea Iberall, editors, Dextrous
Robot Hands, chapter 1. Springer Verlag, 1990.

[7] C. Ferrari and J. Canny. Planning Optimal Grasps.
In Proc. IEEE Conf. on Robotics and Automation,
pages 2290–2295, Nice, France, May 1992.

[8] Th. Fischer and H. Woern. Structure of a robot sys-
tem: Karlsruhe dextrous hand II. In Proc. of Medit-
eranean Conf. on Control and Systems, 1998. .

[9] Stefan Gottschalk, Ming C. Lin, and Dinesh
Manocha. OBB-Tree: A Hierarchical Structure for
Rapid Interference Detection. In Proc. of ACM Sig-
graph, New Orleans, Louisiana, USA, August 1996.
.

[10] Yisheng Guan and Hong Zhang. Kinematic Feasibil-
ity Analysis of 3D Grasps. In Proc. IEEE Conf. on
Robotics and Automation, pages 2197 – 2202, Seoul,
Korea, May 2001.

[11] R. D. Hester, M. Cetin, C. Kapoor, and D. Tesar. A
criteria-based approach to grasp synthesis. In Proc.
IEEE Conf. on Robotics and Automation, pages 1255
– 1260, Detroit, Michigan USA, May 1999.

[12] C. S. Lovchik and M. A. Diftler. The robonaut hand:
A dextrous robot hand for space. In Proc. IEEE Conf.
on Robotics and Automation, pages 907 – 912, De-
troit, Michigan, USA, May 1999.

[13] Xanthippi Markenscoff, Luqun Ni, and Christos H.
Papadimitriou. The geometry of grasping. The Intl.
Journal of Robotics Research, 9(1):61 – 74, February
1990.

[14] Brian Mirtich and John Canny. Easily Computable
Optimum Grasps in 2-D and 3-D. In Proc. IEEE
Conf. on Robotics and Automation, pages 739 – 747,
San Diego, CA USA, May 1994.

[15] B. Mishra, J.T. Schwartz, and M. Sharir. On the
existence and synthesis of multifinger positive grips.
Algorithmica, Special Issue: Robotics, 2(4):541 – 558,
November 1987.

[16] Van-Duc Nguyen. Constructing Force-Closure
Grasps in 3D. In Proc. IEEE Conf. on Robotics and
Automation, pages 240 – 245, Raleigh, North Car-
olina, USA, April 1987.

[17] S. Schulz, Ch. Pylatiuk, and G. Bretthauer. A new ul-
tralight anthropomorphic hand. In Proc. IEEE Conf.
on Robotics and Automation, pages 2437–2441, Seoul,
Corea, May 2001.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	header: 
	copyright: 0-7803-7398-7/02/$17.00 ©2002 IEEE
	01: 1553
	02: 1554
	03: 1555
	04: 1556
	05: 1557
	06: 1558
	07: 1559


