A Python HPC framework:
PyTrilinos, ODIN, and Seamless

K.W. Smith W.F. Spotz S. Ross-Ross
Enthought, Inc. Sandia National Laboratories Enthought, Inc.
515 Congress Ave. P.O. Box 5800 515 Congress Ave.

Austin, TX 78701
ksmith@enthought.com

Abstract—We present three Python software projects: PyTrili-
nos, for calling Trilinos distributed memory HPC solvers from
Python; Optimized Distributed NumPy (ODIN), for distributed
array computing; and Seamless, for automatic, Just-in-time com-
pilation of Python source code. We argue that these three projects
in combination provide a framework for high-performance com-
puting in Python. They provide this framework by supplying
necessary features (in the case of ODIN and Seamless) and
algorithms (in the case of ODIN and PyTrilinos) for a user to
develop HPC applications. Together they address the principal
limitations (real or imagined) ascribed to Python when applied
to high-performance computing. A high-level overview of each
project is given, including brief explanations as to how these
projects work in conjunction to the benefit of end users.

I. INTRODUCTION

For many classes of parallel programming problems that
would benefit from parallel libraries, years of experience are
required to effectively use those libraries, and frequently they
are difficult to use, requiring complicated programming inter-
faces. The large time investment and limited usability prohibit
typical domain specialists, who have limited programming
expertise, from creating parallel codes and benefiting from
parallel resources. Compounding the difficulty is the need to
master the subtleties of a powerful but complex programming
language such as C++, along with the mental shift required to
program using MPI, OpenCL, or another parallel programming
library or paradigm. Programs that can make these time invest-
ments typically have huge resources at their disposal, such
as the Advanced Simulation & Computing (ASC) campaign,
or the Scientific Discovery through Advanced Computing
(SciDAC) program. The motivation for industry users to access
all the parallel resources at their disposal will only grow
with time, as multi-core systems are becoming more widely
available on commodity desktop and laptop systems, and it
is not far off before hundred-core desktops and laptops are
common.

A large fraction of this time investment is spent navigating
the complexities of the programming interface, whether it be
the Message Passing Interface [1], OpenMP [2], multithread-
ing, or another performance-oriented parallel software tech-
nology. The remaining challenge is to sufficiently understand
the numerical library routines to solve the problem at hand. A
simplified interface to parallel programming libraries allows an

Albuquerque, NM 87185
wfspotz@sandia.gov

Austin, TX 78701
srossross@enthought.com

end user to leverage the library’s performance and drastically
decrease the total time from development to solution.

We present three software packages that, in combination,
will simplify writing parallel programs and will provide a full
HPC framework for scientific computing. End users interact
with all three components from the expressive and user-
friendly Python [3] language.

o PyTrilinos For parallel scientific computing, we provide
a high-level interface to the Trilinos [4], [S] Tpetra
parallel linear algebra library. This makes parallel linear
algebra (1) easier to use via a simplified user interface,
(2) more intuitive through features such as advanced
indexing, and (3) more useful by enabling access to
it from the already extensive Python scientific software
stack.

o Optimized Distributed NumPy (ODIN) ODIN builds
on top of the NumPy [6] project, providing a distributed
array data structure that makes parallel array-based com-
putations as straightforward as the same computations
in serial. It provides built-in functions that work with
distributed arrays, and a framework for creating new
functions that work with distributed arrays.

o Seamless Seamless aims to make node-level Python code
as fast as compiled languages via dynamic compilation.
It also allows effortless access to compiled libraries in
Python, allowing easy integration of existing code bases
written in statically typed languages.

These three components in combination will result in better
utilization of existing HPC resources and will facilitate a
decrease in the total time to solution, from concept to im-
plementation.

Diverse application domains will benefit: product design
and manufacturing, pharmaceuticals, thermal management,
network and data transmission design, medical imaging, oper-
ational logistics, environmental project planning, and risk and
performance assessment, to name some examples.

In the remainder of this paper, we give some background
context of the Trilinos project, the advantages of using Python
for scientific computing, and then continue with an overview
of each of the three projects mentioned above, including code
examples.

II. TRILINOS AND PYTRILINOS

Trilinos underlies the PyTrilinos [7], [8] wrappers, and is a
set of massively parallel C++ packages that stress performance
and capability, sometimes (but not always) at the expense of
usability. SciPy is a set of serial Python packages that stress
easy-to-learn, powerful, high-level interfaces, sometimes (but
not always) at the expense of performance. SciPy is Trilinos’
nearest neighbor in the Scientific Python space, in that it is
a loosely coupled collection of useful scientific computing
packages.

The fundamental enabling technologies of both Trilinos
and SciPy are packages that provide object-oriented access
to homogeneous, contiguous numeric data. In Trilinos, these
packages are Epetra and Tpetra, which are first- and second-
generation distributed linear algebra packages. In SciPy, this
package is NumPy, a Python module that consolidates and
expands upon the early attempts at providing efficient numeric
classes for Python.

High-performance computing tools such as Trilinos have
been underutilized in the advanced manufacturing and en-
gineering market sectors, in large part because of the steep
learning curve associated with using them. NumPy and SciPy,
on the other hand, enjoy increasing popularity in these sectors
because of their power and ease of use.

The gap between Trilinos and NumPy/SciPy represents an
important opportunity. The aim of the expanded PyTrilinos
wrappers is to develop a parallel Python module with the dis-
tributed capabilities of the second-generation Trilinos Tpetra
package that retains, to the extent possible, the ease of use of
the NumPy interface.

This effort will build upon the PyTrilinos package, a
Python interface of select first generation Trilinos packages.
PyTrilinos has, until now, utilized a Python design philosophy
of mimicking the C++ interface. This often results in non-
Pythonic interfaces that are less intuitive than those found
in NumPy and SciPy. With the advent of templated classes
in second-generation Trilinos packages, this non-Pythonic na-
ture of the generated interfaces would only be exacerbated.
Therefore, a new design philosophy is in order for second-
generation PyTrilinos packages. For array-based classes such
as Tpetra: :Vector, the design philosophy that would lead
to greatest acceptance in the scientific Python community is
clear: make it as much like NumPy as possible.

A. Trilinos

The Trilinos project was developed at Sandia National
Laboratories for the National Nuclear Security Administra-
tion to facilitate simulation of the national nuclear weapons
stockpile. It began over a decade ago as a set of three
interoperable packages: Epetra for linear algebra, AztecOO for
Krylov space iterative linear solvers, and Ifpack for algebraic
preconditioners. It has since grown to a collection of nearly
fifty software packages that include additional preconditioners,
nonlinear solvers, eigensolvers, general tools, testing utilities,
optimization, and a variety of other packages that form the
building blocks of important classes of scientific simulation.

Epetra is the first generation linear algebra package. It
provides communicators, maps to describe the distribution of
data, vectors and multivectors, data importers and exporters,
and operators and matrices. It was designed before C++
namespaces and templates were reliably portable, and so these
features were not utilized. As a result, vectors and matrices
are restricted to double precision scalar data accessible with
integer ordinals.

Other first generation Trilinos packages were designed to
operate solely on Epetra objects. These include Krylov space
iterative linear solvers, a standard interface to a collection of
third party direct solvers, algebraic and multi-level precon-
ditioning, nonlinear solvers, testing utilities, and a standard
examples package.

Tpetra is the second-generation linear algebra package.
Templates allow it to store and operate on arbitrarily typed
scalar data, such as floats or complex; and arbitrarily typed
ordinals, to allow indexing for larger problems.

Subsequent second-generation packages provide templated
interfaces to linear algebra and concrete interfaces to Epetra
and Tpetra. These packages include updated versions of the
packages described above, plus eigensolvers, partitioning and
dynamic load balancing, meshing and mesh quality, discretiza-
tion techniques, and optimization. Most of these packages are
still in early development. As a whole, Trilinos forms a broad
foundation for building a wide variety of important scientific
simulation applications.

B. PyTrilinos

PyTrilinos is a Trilinos package that provides a Python
interface to select first generation Trilinos packages. These
interfaces are described briefly in Table I and include Epe-
tra, EpetraExt, Teuchos, TriUtils, Isorropia, AztecOO, Galeri,
Amesos, Ifpack, Komplex, Anasazi, ML and NOX. PyTrilinos
uses the Simple Wrapper Interface Generator (SWIG) [9]
to automatically generate wrapper code. The default SWIG
behavior is to generate Python interfaces that shadow the
source C++ classes. In many cases, this produces Python code
such that the C++ documentation applies to Python as well. In
other cases, it results in an interface that is inconsistent with
the Python language and non-intuitive to Python programmers.

C. Current Status of PyTrilinos

PyTrilinos provides a fairly complete interface to first gener-
ation Trilinos packages. In terms of licensing, over three-fifths
of Trilinos packages are BSD-compatible, and the PyTrilinos
wrappers are distributed with the same license as the package
that they wrap. The first necessary step to supporting second
generation packages is to wrap Tpetra. This presents certain
interface design issues. As an example, the Tpetra Vector class
has the following signature:

template<class Scalar,

class Vector {...};

class LocalOrdinal,
class GlobalOrdinal>

Package [Description |

Epetra Linear algebra vector and operator classes

EpetraExt | Extensions to Epetra (I/O, sparse transposes,
coloring, etc.)

Teuchos General tools (parameter lists, reference
counted pointers, XML I/O, etc.)

TriUtils Testing utilities

Isorropia Partitioning algorithms

AztecOO | Iterative Krylov-space linear solvers

Galeri Examples of common maps and matrices

Amesos Uniform interface to third party direct linear
solvers

Ifpack Algebraic preconditioners

Komplex Complex vectors and matrices via real Epe-
tra objects

Anasazi Eigensolver package

ML Multi-level (algebraic multigrid) precondi-
tioners

NOX Nonlinear solvers

TABLE I
TRILINOS PACKAGES INCLUDED IN PYTRILINOS

The LocalOrdinal and GlobalOrdinal types support
indexing using 1ong integers (or any integer type) in addition
to the traditional integer indexing. Since the Python integer
type corresponds to the C long integer, it would be logical
to always set LocalOrdinal and GlobalOrdinal to be
long within the Python interface. However, the Scalar
template type presents an opportunity to support a variety of
data types, whether real, complex, integer, or potentially more
exotic data types as well, just as NumPy does.

This type of interface is under current research and develop-
ment under a Department of Energy Small Business Innovation
Research Phase I grant awarded to Enthought, Inc. Preliminary
results, achieved using Cython instead of SWIG, have been
encouraging so far, and have led to a Phase II proposal,
currently in preparation.

As mentioned in the introduction, the expanded PyTrilinos
wrappers are standalone, and will allow an end user to perform
massively parallel computations via a user-friendly interface to
several Trilinos packages. PyTrilinos will become even more
powerful when combined with a general distributed array data
structure, allowing an end user to easily initialize a problem
with NumPy-like ODIN distributed arrays and then pass those
arrays to a PyTrilinos solution algorithm, leveraging Trilinos’
optimizations and scalability.

III. ODIN

Scientists approach large array-structured data in two pri-
mary ways: from a global perspective (or mode), in which
the details of the array distribution over a collection of nodes
are abstracted and computations are applied on an entire-array
basis, and from a local perspective, in which computations
are performed on a local segment of a distributed array. MPI,
for example, requires users to program in the second model,
although there are several MPI routines to allow users to
accomplish entire array computations. A frequent challenge
in MPI-based programs is to compute entire-array quantities

and to perform non-trivial entire-array computations while
restricted to node-level operations.

The overall goal of ODIN is to provide a distributed
array data structure and associated functions that operate on
distributed arrays. Users can interact with these distributed
arrays in two primary modes, as described above. The first—
and most straightforward—mode of interaction is on the global
level, in which case ODIN arrays feel very much like regular
NumPy arrays, even though computations are carried out in a
distributed fashion. The second mode of interaction is on the
local level, in which case functions and operations are applied
on the local segment of a distributed array, much like MPIL.
These two modes of interaction are designed to work with
each other: the global mode of interaction builds on top of the
local computations, and the local computations receive their
instructions and data segment specifications from the global
mode.

ODIN’s approach has several advantages:

o Users have access to arrays in the same way that they
think about them: either globally or locally. This flexi-
bility allows one to pick the appropriate level to design
and implement an algorithm, and the expression of that
algorithm does not have to work around limitations of
the language or library.

e As ODIN arrays are easier to use and reason about than
the MPI-equivalent, this leads to faster iterative cycles,
more flexibility when exploring parallel algorithms, and
an overall reduction in total time-to-solution.

¢ ODIN is designed to work with existing MPI programs—
regardless of implementation language—allowing users to
leverage tested and optimized MPI routines.

o By using Python, ODIN can leverage the ecosystem
of speed-related third party packages, either to wrap
external code (f2py for Fortran, Cython, ctypes, SWIG,
and several others for C/C++) or to accelerate existing
Python code. The Seamless project, described in a later
section, is particularly well-suited for this role.

e With the power and expressiveness of NumPy array
slicing, ODIN can optimize distributed array expressions.
These optimizations include: loop fusion, array expres-
sion analysis to select the appropriate communication
strategy between worker nodes,

To illustrate how ODIN will be useful for performing
distributed array computations in a number of domains, a
survey of use cases follow, after which we briefly discuss the
current implementation of ODIN.

A. Distributed array creation

All NumPy array creation routines are supported by ODIN,
and the resulting arrays are distributed. Routines that create a
new array take optional arguments to control the distribution.
Some aspects of the distribution that can be controlled are:
which nodes to distribute over for a given array, which
dimension or dimensions to distribute over, apportion non-
uniform sections of an array to each node, and either block,

* *

wWiziwj2(wj2(w)2|

\\//
..
7INN

Wiziwj2wi2(w|
Fig. 1. A schematic depiction of ODIN. The end user interacts with the
“ODIN Process”, which determines what allocations and calculations to run on

the worker nodes, indicated with a “W”. The user can specify local functions
to run on each worker node, which the ODIN process will send to the worker
nodes and make available to the end user via a global function call. The
worker nodes can communicate directly with each other bypassing the ODIN
process. For performance critical routines, users are encouraged to create local
functions that communicate directly with other worker nodes so as to ensure
that the ODIN process does not become a performance bottleneck.

cyclic, block-cyclic, or another arbitrary global-to-local index
mapping can be specified.

B. Global array operations

The global mode of interaction with ODIN arrays provides
a straightforward, NumPy-like interface to distributed array
computations. The array creation and manipulation routines
are issued by the end user either at an interactive prompt
or from a Python script, and these global-level routines treat
distributed arrays as globally-addressable entities. Each oper-
ation sends one or more messages to the appropriate worker
nodes, and these messages control what local array sections
are allocated, what index range they cover, or what local
operation to perform. These messages are designed to be
small operations; very little to no array data is associated with
them. For instance, when calling the odin.rand (shape)
routine, a message is sent to all participating nodes to create
a local section of an ODIN array with specified shape and
with a specified random seed, different for each node. Other
necessary information is stored with the local array data
structure to indicate the global context in which this local array
section is embedded. All array data is allocated and initialized
on each node; the only communication from the top-level
node is a short message, at most tens of bytes. For efficiency,
several messages can be buffered and sent at once for the
frequent case when communication latency is significant and
when throughput is large.

C. Local array operations

The local mode of interaction with distributed arrays
complements the global mode. Users specify, via the
odin.local decorator, that a function will be run in a single
process on a worker node, and arguments to local functions
can be the local segment of a distributed array. ODIN’s
infrastructure will ensure that the global array is distributed
appropriately, and that the array segment will be passed to the
local function. Here is an example:

@odin.local
def hypot(x, vy):
return odin.sqrt (xx*2 + y*x*2)

x = odin.random((10x%6, 10%x%6))
y = odin.random((10x%6, 10x%6))
h = hypot (x, y)

In the above, we define a simple function hypot to compute
the element-by-element hypotenuse of two ND arrays x and
y. A local function could perform any arbitrary operation,
including communication with another node, calling a wrapped
serial or MPI routine, or loading a section of an array from a
file. In this case, the computation could be performed at the
global level with the arrays x and y; the current example is
simply for illustration. The hypot function is made local via
the odin. local decorator. Its purpose is twofold: after the
function is defined, it broadcasts the resulting function object
to all worker nodes and injects it into their namespace, so it is
able to be called from the global level. The decorator’s second
task is to create a global version of the hypot function so
that, when called from the global level, a message is broadcast
to all worker nodes to call their local hypot function. If
a distributed array is passed as an argument to the global
function, then the ODIN infrastructure ensures that the local
function call sees the local segment of the distributed array,
as one would expect.

D. Automatically parallelize large NumPy array calculations

NumPy array calculations are often easily parallelized,
although NumPsy itself does not implement parallelism, leaving
it to third party packages [10] and libraries [11], [12]. Being
a distributed data structure with support for NumPy array
expressions, ODIN does support parallelization of NumPy
computations, frequently with little to no modification of the
original serial NumPy code. All of NumPy’s unary ufuncs
are able to be trivially parallelized. Binary ufuncs are trivially
parallelizable for the case when the argument arrays are con-
formable, i.e., when they have the same distribution pattern.
For the case when array arguments do not share the same
distribution, the ufunc requires node-level communication
to perform the computation. A number of different options
present themselves in this case, and ODIN will choose a
strategy that will minimize communication, while allowing the
knowledgeable user to modify its behavior via Python context
managers and function decorators.

E. Access Trilinos HPC solvers and other external libraries
of parallel algorithms

ODIN arrays are designed to be optionally compatible
with Trilinos distributed Vectors and MultiVectors and their
associated global-to-local mapping class, allowing ODIN users
to use Trilinos packages via the expanded PyTrilinos wrappers
described elsewhere in this paper. Just as several libraries are
able to be used with NumPy’s array data structure, so too
can ODIN arrays be used with the massively parallel Trilinos
libraries. This will further remove barriers to entry for users
who would benefit from Trilinos solvers.

FE. Finite element calculations with unstructured meshes

Trilinos has packages for finite element calculations, and
ODIN will allow the easy creation, initialization, and manip-
ulation of sparse arrays to be passed to the wrapped Trilinos
solvers.

G. Finite difference calculations on structured grid

Another domain, largely orthogonal to finite element cal-
culations, are finite difference calculations on N-dimensional
structured grids. This case is nearer to the layout of NumPy’s
existing N-dimensional array objects, and one can succinctly
perform finite difference calculations with NumPy array ex-
pressions using slicing syntax. ODIN will support distributed
array slicing, which will allow users to do distributed finite
difference calculations globally, with a single NumPy-like
expression. For example, if x and y are distributed ODIN
arrays, defined thusly:

x = odin.linspace (1, 10%%8)

y = odin.sin (x)

2*pi,

Here, x and y are distributed ODIN arrays, and each
uses a default block distribution, as no other distribution was
specified, and y has the same distribution as x, as it is a simple
application of sin to each element of x.

With these distributed arrays defined, it is trivial to compute
the first-order finite-difference derivative of sin (x):

dx = x[1] - x[0]
dy = y[1:] - y[:-1]
dydx = dy / dx

In the above, we take advantage of the fact that the step
size in the x array is the same throughout, therefore dx
is a Python scalar. Handling the more general case of non-
uniform step sizes requires a trivial modification of the above.
The dy array above is another distributed ODIN array, and
its computation requires some small amount of inter-node
communication, since it is the subtraction of shifted array
slices. The equivalent MPI code would require several calls
to communication routines, whereas here, ODIN performs this
communication automatically.

In this example, we see how the expressive NumPy slicing
syntax allows us to perform several operations in a single line
of code. Combined with ODIN’s distributed arrays, we can
perform distributed computations with ease.

H. File 10 of distributed data sets

ODIN, being compatible with MPI, can make use of MPI’s
distributed IO routines. For custom formats, access to node-
level computations allows full control to read or write any
arbitrary distributed file format.

1. Distributed tabular data

ODIN supports distributed structured or tabular data sets,
building on the powerful dtype features of NumPy. In combi-
nation with ODIN’s distributed function interface, distributed
structured arrays provide the fundamental components for
parallel Map-Reduce style computations.

J. ODIN current status

We emphasize that this paper gives an overall vision of
what ODIN will be—the descriptions thus far do not reference
ODIN’s current implementation status, for which we give more
detail here.

ODIN’s basic features—distributed array creation, unary
and binary ufunc application, global and local modes of
interaction—are prototyped and are currently being tested
on systems and clusters with small to mid-range number of
nodes. The use cases currently covered by this prototype are
simple, and do not yet address array slicing or advanced
array communication patterns. The emphasis for this prototype
implementation is settling on a distributed array protocol,
determining the global and local node APIs, and instrumenta-
tion to help identify performance bottlenecks associated with
different communication patterns.

Expression analysis, loop fusion, and PyTrilinos support are
features that are currently in the design phase. In terms of
licensing, ODIN will be released under a BSD-style open-
source license.

IV. SEAMLESS

The goals of the Seamless project are fourfold: to provide
a Just-In-Time compiler for Python, and specifically, NumPy-
centric Python, code; to allow Python to be statically compiled
to a useful library for use with other projects; to allow external
language constructs (C structs, C functions, C++ classes, etc.)
to be easily accessible to Python code; and to make Python into
an Algorithm specification language. Seamless accomplishes
each of these by building on top of LLVM [13], making its
features and flexibility available to Python.

A. Python and NumPy JIT

Just-in-time compilation for Python is not new [14], [15],
however, widespread adoption of this technology in the Python
world has yet to occur, for reasons beyond the scope of
this overview. Seamless’ implementation of JIT compilation
is different from the cited attempts in that Seamless’ approach
works from within the existing CPython interpreter, and is not
a reimplementation of the Python runtime. This allows a staged
and incremental approach, focusing on the parts of Python
and NumPy that yield the greatest performance benefits. End

users can access Seamless’ JIT by adding simple function
decorators, and, optionally, type hints.

from seamless import Jjit
@jit
def sum(it) :
res = 0.0
for 1 in range(len(it)):
res += it [i]
return res

Seamless, via LLVM, compiles Python code to be run on
the native CPU instruction set; Seamless’ design is such that
it will be possible to JIT compile code to run on GPGPU
hardware.

B. Statically compile Python

Rather than dynamically compiling Python source to ma-
chine code via a JIT compiler, Seamless also allows the static
compilation of Python code to a library that can be used in
conjunction with other languages. This feature is intentionally
similar to the functionality of the Cython [16] project, which
takes type-annotated Python code and generates a source file
that can be compiled into an extension module. One primary
difference between Seamless’ static compilation and Cython
is that Cython adds to the Python language to add cdef
type annotations, while Seamless maintains Python language
compatibility!. The syntax to accomplish this requires no
modification of the JIT example above. The above will work
and use type discovery to type res as a floating point
variable and to type i as an integer type. If desired, it is
possible to give explicit type information as arguments to a
jit.compile decorator, and specify that the it argument
should be restricted to a list of integers, for example. One
would use the seamless command line utility to generate
the extension module.

C. Trivially import external functions into Python

Several existing projects, to varying degrees of automation,
help wrap existing code bases written in C, C++, or Fortran
and expose them to Python. All require either the explicit
specification of the foreign function’s interfaces or an explicit
compilation step external to Python. Seamless allows users to
access foreign functions without an explicit compilation step
and without the manual specification of the function’s interface
in Python. To make use of the math C library, one has only
to do:

class cmath (CModule) :
Header = ’'math.h’

libm = cmath('m’)

libm.atan2 (1.0, 2.0)

After instantiating the cmath class with a specific library,
all of the math library is available to use. The call to the

1Tt should be noted that Cython also has a “Pure Python” mode that supports
annotations from within valid Python syntax.

cmath constructor will find the system’s built-in math library,
similarly to how the built-in ctypes module finds built in
system libraries. This feature of Seamless is intentionally
similar to the interface of the Ctypes module. An enhancement
over Ctypes is that the argument types and return types of
the exposed functions are automatically discovered. One has
only to specify the header file location in the class body and
instantiate the class with a library, and all functions defined
in the header file are immediately available for use.

D. Python as an Algorithm specification language

The last high-level feature of Seamless is its ability to allow
Python to become a general algorithm specification language
whose algorithms can be used from another language, such as
C++. This is the inverse of the previous feature, in that one is
now accessing Python-defined functions from a statically typed
language. This feature allows one to define a general algorithm
in the expressive Python language and use it from another
language as if it were defined in that language originally.

While this feature may, at first, seem similar to the static
compilation feature described previously, it is in actuality
something novel. For instance, one can run the following from
a C++ source file:

#include <seamless>

int arr[100];
// initialize arr’s contents...
seamless: :numpy: :sum(arr) ;

std: :vector<double> darr (100);
// initialize darr’s contents...
seamless: :numpy: :sum(darr) ;

We emphasize that, in the above example, Seamless allows
existing Python code to be accessed from within a different
language and to be used to perform some computation within
that source file. The Python code being used, in this case
NumPy’s sum () function, can be completely unaware of the
fact that it is being compiled to C++ code and used from
another language. This feature extends Python’s reach into a
much wider domain.

V. DISCUSSION AND CONCLUSION

We have presented a very high level overview of three stan-
dalone projects, each designed to address one core component
relevant to High-Performance computing. PyTrilinos provides
wrappers to the Trilinos suite of HPC solvers; ODIN provides
a flexible and optimized distributed array data structure; and
Seamless provides a way to speed up Python code and access
pre-compiled libraries written in statically-typed languages.
Our vision is that, by using these three projects in concert,
users will have a flexible and easy to use framework in which
to solve any problem in the high-performance computing
domain.

An example use case may go as follows: a user/developer
has a large scientific problem to solve. The user allocates,

(Call Pythun\
from C++

. A

(Wrap I
C/IC++

|,T petra)
) ~[Map|

.

| \i’ectur\|

()

Python = C/C++ |

SEAMLESS

¢q

ODIN

Fig. 2. Schematic relation between PyTrilinos, ODIN, and Seamless. Each
of the three packages is standalone. ODIN can use Seamless and PyTrilinos
and the functionality that these two packages provide. Seamless provides four
principal features, while PyTrilinos wraps several Trilinos solver packages.
See the text descriptions for more details.

initializes and manipulates a large simulation data set using
ODIN. Depending on the size of the data set and the scaling
requirements of the problem, the user may prototype on
an 8-core desktop machine, and move to a full 100-node
cluster deployment. He then devises a solution approach using
PyTrilinos solvers that accept ODIN arrays and chooses an
approach where the solver calls back to Python to evaluate a
model. This model is prototyped and debugged in pure Python,
but when the time comes to solve one or more large problems,
Seamless is used convert this callback into a highly efficient
numerical kernel.

A user can create a function designed to work on array data,
compile it with Seamless’ JIT compiler or static compiler, and
use that function as the node-level function for a distributed
array computation with ODIN. ODIN will allow this function
to be accessible as any other globally defined function, and will
allow the function to be applied to arrays that are distributed
across a large number of nodes. By providing a built-in
library of optimized distributed functions, ODIN gives access
to a built-in suite of useful routines. For the cases when an
end user needs access to distributed HPC solvers found in
Trilinos, ODIN arrays are optionally compatible with Trilinos
distributed data structures, and will allow easy interaction with
these solvers via the PyTrilinos wrappers.

While the PyTrilinos project is more advanced in terms of
development, the ODIN and Seamless projects, when feature
complete, will fill in the remaining components of the entire
framework. This framework removes several commonly-cited
limitations of Python when applied to HPC computing:

« Python is too slow. Seamless allows compilation to fast
machine code, either dynamically or statically.

o Python is yet another language to integrate with
existing software. Seamless allows easy interaction be-
tween Python and other languages, and removes nearly
all barriers to inter-language programming.

e The Python HPC ecosystem is too small. PyTrilinos
provides access to a comprehensive suite of HPC solvers.
Further, ODIN will provide a library of functions and
methods designed to work with distributed arrays, and
its design allows access to any existing MPI routines.

o Integrating all components is too difficult. ODIN
provides a common framework to integrate disparate
components for distributed computing.

We believe the functionality provided by these three projects
will provide a compelling reason to consider Python as the
go-to language for HPC in coming years.

ACKNOWLEDGMENT

The PyTrilinos expansion was funded under a grant from
the Department of Energy’s Small Business Innovation and
Research program for FY2012.

REFERENCES

[11 W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, 2 ed.,
November 1999.

[2] “OpenMP.” http://openmp.org/wp/.

[3] G. van Rossum and F. Drake, Python Reference Manual. PythonLabs,
2001.

[4] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley, “An overview of the Trilinos project,”
ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397-423, 2005.

[5] “Trilinos.” http://trilinos.org.

[6] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
A structure for efficient numerical computation,” Computing in Science
and Engineering, vol. 13, no. 2, pp. 22-30, 2011.

[71 W. F. Spotz, “PyTrilinos: Recent advances in the Python interface to
Trilinos,” Scientific Programming, vol. 20, no. 3, pp. 311-325, 2012.

[8] “Pytrilinos.” http://trilinos.sandia.gov/packages/pytrilinos.

[9] “SWIG.” http://www.swig.org.

[10] “numexpr: Fast numerical array expression evaluator for Python and
NumPy.” http://code.google.com/p/numexpr/.

(11]

[12] “Automatically Tuned Linear Algebra Software

http://math-atlas.sourceforge.net/.

C. A. Lattner, “Llvm: An infrastructure for multi-stage optimization,”

tech. rep., 2002.

C. F. Bolz, A. Cuni, and M. Fijalkowski, “Tracing the meta-level: PyPy’s

Tracing JIT Compiler,” in Proceedings of ICOOOLPS, ACM Press,

2009.

“Unladen-Swallow: A faster implementation of

http://code.google.com/p/unladen-swallow/.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and

K. Smith, “Cython: The best of both worlds,” Computing in Science

and Engineering, vol. 13, no. 2, pp. 31-39, 2011.

(ATLAS).”
[13]

[14]

[15] Python.”

[16]

“Intel Math Kernel Library.” http://software.intel.com/en-us/intel-mk

