
PeachPy: A Python Framework for
Developing High-Performance Assembly

Kernels
Marat Dukhan

School of Computational Science & Engineering
Georgia Institute of Technology, Atlanta, GA, USA

Abstract—We introduce PeachPy, a Python frame-
work which aids the development of assembly kernels
for high-performance computing. PeachPy automates
several routine tasks in assembly programming such as
allocating registers and adapting functions to different
calling conventions. By representing assembly instruc-
tions and registers as Python objects, PeachPy enables
developers to use Python for assembly metaprogram-
ming, and thus provides a modern alternative to tradi-
tional macro processors in assembly programming. The
current version of PeachPy supports x86-64 and ARM
architectures.

I. INTRODUCTION

We consider the problem of how to enable produc-
tive assembly language programming. The use of
assembly still plays an important role in develop-
ing performance-critical computational kernels in
high-performance computing. For instance, recent
studies have shown how the performance of many
computations in dense linear algebra depend criti-
cally on a relatively small number of highly tuned
implementations of microkernel code [1], for which
high-level compilers produce only suboptimal im-
plementations [2]. In cases like these, manual low-
level programming may be the only option. Unfor-
tunately, existing mainstream tools for assembly-
level programming are still very primitive, being
tedious and time-consuming to use, compared to
higher-level programming models and languages.

Our goal is to ease assembly programming. In
particular, we wish to enable an assembly pro-
grammer to build high-performing code for a va-
riety of operations (i.e., not just for linear algebra),
data types, and processors, and to do so using a
relatively small amount of assembly code, com-
bined with easy-to-use metaprogramming facilities
and nominal automation for routine tasks provided
they do not hurt performance. Toward this end,
we are developing PeachPy, a new Python-based
framework that aids the development of high-
performance assembly kernels.

PeachPy joins a vast pool of tools that blend
Python and code generation. Code-generation is
used by Python programs for varying reasons and
use-cases. Some projects, such as PyPy [3] and
Cython [4], use code-generation to improve the
performance of Python code itself. Cython achieves
this goal by statically compiling Python sources to
machine codes (via C compiler) and providing a
syntax to specify types of Python variables. PyPy
instead relies on JIT-compilation and type inference.
Another group of code generation tools is com-
prised of Python bindings to widely used general-
purpose code-generation targets. This groups in-
cludes LLVM-Py [5], PyCUDA and PyOpenCL [6]
projects. In essence, these examples focus on accel-
erating Python through low-level code generation.

By contrast, we are interested primarily in the
task of generating assembly code using Python.
This style of Python-assisted assembly program-
ming was pioneered by CorePy [7], the works of
Malas et al. [8], Dongarra and Luszczek [9], and
several other projects [10, 11]. CorePy [7] enabled
developers a programmer to write an assembly
program in Python and compile it from the Python
interpreter. The authors suggested using CorePy
to optimize performance-sensitive parts of Python
application. Malas et al. [8] used Python to auto-
tune assembly for PowerPC 450 processors power-
ing Blue Gene/P supercomputers. Their assembly
framework could simulate the processor pipeline
and reschedule instructions to avoid data hazards
and improve performance. The assembly code-
generator of Dongarra and Luszczek [9] focuses on
an assembly programmer productivity, and is the
most similar in spirit to PeachPy. The primary use-
case for their code-generator is cross-compilation
to ARM, but they also supported a debug mode,
where the code-generator outputs equivalent C
code.

The audience for PeachPy is an optimization
expert writing multiple but similar kernels in as-

PyHPC 2013, November 18, 2013, Denver, Colorado, USA

sembly, as might happen when implementing the
same operation in both double and single preci-
sion or for multiple architectures. PeachPy further
aids the programmer by automating a number of
essential assembly programming tasks; however, it
does so only in instances when there will be no
unintended losses in performance. To achieve these
design goals, PeachPy has a unique set of features:

• Like prior efforts [7–9], PeachPy represents
assembly instructions, registers, and other
operands as first-class Python objects.

• PeachPy’s syntax closely resembles traditional
assembly language.1 Most instructions can be
converted to calls to equivalent PeachPy func-
tions by just enclosing their operands in paren-
theses.

• PeachPy enriches assembly programming with
some features of compilers for higher-level
languages. PeachPy performs liveness analysis
on assembly functions, does fully automatic
register allocation,2 adapts program to differ-
ent calling conventions, and coalesces equal
constants in memory.

• PeachPy collects information about the instruc-
tion sets used in the program. This information
enables the implementation of dynamic dis-
patching between several code versions based
on instruction extensions available on a given
host processor.

• PeachPy aims to replace traditional assembly
language programming models. Furthermore,
PeachPy-generated code does not impose any
requirements on runtime libraries and does
not need Python to run. PeachPy supports a
wide variety of instruction set architectures,
including various versions of SSE, AVX and
AVX2, FMA3 and FMA4 on x86 and NEON
on ARM.

A. Contributions

PeachPy brings two improvements to the process
of developing assembly kernels:

1) Advancing Python-based assembly metapro-
gramming (§ III): PeachPy represents assem-
bly instructions, registers, and constants as
first-class Python functions and objects. As
such, PeachPy enables Python to serve as

1Malas et al [8] followed the same principle in their PowerPC
assembler

2Most previous research for assembly code generation used
some kind of register management mechanism. However, it
required the programmer to explicitly allocate and release regis-
ters. PeachPy allocates registers automatically based on liveness
analysis.

a modern alternative to traditional assem-
bly macro programming. The use of Python-
based metaprogramming lets an optimization
expert generate compute kernels for different
data types, operations, instruction sets, mi-
croarchitectures, and tuning parameters from
a single source. While earlier works pioneered
the use of Python for assembly metaprogram-
ming [7–9], PeachPy goes further with new
tools and support for a wider range of use-
cases. For instance, PeachPy makes it easier to
write software pipelined code and to emulate
newer instruction sets using older instruc-
tions. Another important PeachPy-enabled
use-case is creating fat binaries with versions
for multiple instruction sets or microarchitec-
tures.

2) Automation of routine tasks in assembly
(§ II): PeachPy fully automates some tasks
in assembly programming, but only where
such automation is not likely to impact per-
formance. For example, PeachPy handles reg-
ister allocation because on modern out-of-
order processors the choice of physical regis-
ters to use for virtual registers does not affect
performance. However, unlike compilers for
high-level languages, if PeachPy finds that it
cannot fit all virtual registers onto physical
registers without spilling, it will not silently
spill registers on local variables, which might
degrade performance; rather, it will alert the
programmer by generating a Python excep-
tion.

B. PeachPy DSL

PeachPy contains two Python modules,
peachpy.x64 and peachpy.arm, which
implement assembly instructions and registers
for x86-64 and ARM architectures, respectively,
as Python objects. These modules are intended to
be used with the from peachpy.arch import

* statement. When imported this way, PeachPy
objects let the programmer write assembly in
Python with syntax similar to traditional assembly,
effectively implementing an assembly-like domain-
specific language (DSL) on the top of Python..

Assembly functions are represented by a
Function class in peachpy modules. The function
constructor accepts four parameters that specify the
assembler object (storage for functions), function
name, tuple of function arguments, and the string
name of a target microarchitecture. The latter
restricts the set of instructions which can be used:
an attempt to use an instruction unsupported on

the target microarchitecture will cause throw an
exception. Once a function is created, it can be
made active by the with statement. Instructions
generated in the scope of with statement are
added to the active function. When the execution
of the Python script leaves the scope of the with
statement, PeachPy will run the post-processing
analysis passes and generate final assembly code.

Listing 1 Minimal PeachPy example

from peachpy.x64 import *

abi = peachpy.c.ABI(’x64-sysv’)
assembler = Assembler(abi)
x_argument = peachpy.c.Parameter("x",

peachpy.c.Type("uint32_t"))
arguments = (x_argument)
function_name = "f"
microarchitecture = "SandyBridge"

with Function(assembler, function_name,
arguments, microarchitecture):
MOV(eax, 0)
RETURN()

print assembler

II. AUTOMATION OF ROUTINE TASKS

By design, PeachPy only includes automation
of assembly programming tasks that will not ad-
versely affect the efficiency of the generated code.
Any automating choices which might affect per-
formance are left to the programmer. This design
differs from the philosophy of higher-level pro-
gramming models, where the compiler must cor-
rectly handle all situations, even if doing so might
result in suboptimal performance. PeachPy opts
for relatively less automation, in part because we
expect it will be used for codes where the high-
automation approach of high-level compilers does
not deliver good performance.

A. Register allocation

While PeachPy allows referencing of registers
using their standard names (e.g., rcx or xmm0 on
x86), it also provides a virtual register abstraction.
The programmer creates a virtual register by calling
constructors without parameters for the register
classes. Virtual registers can be used as instruction
operands in the same way as physical registers. Af-
ter PeachPy receives all instructions that constitute

an assembly function, it performs a liveness anal-
ysis for virtual registers and uses it to bind virtual
registers to physical registers. If it cannot perform
this binding without spilling, it will generate a
Python exception to alert the programmer about the
situation. The programmer may then rewrite the
function to use fewer virtual registers or manually
spill virtual registers to local variables.

B. Constant allocation

Code and data are physically stored in different
sections of the executable, and in assembly pro-
gramming they are defined and implemented in
different parts of the source file. The code where
an in-memory constant is used might be far from
the line where the constant is defined. Thus, the
programmer has to always keep in mind the names
of all constants used in a function. PeachPy solves
this problem by allowing constants to be defined
exactly where they are used. When PeachPy final-
izes an assembly function, it scans all instructions
for such constants, coalesces equal constants (it can
coalesce integer and floating-point constants with
the same binary representation), and generates a
constants section.

C. Adaptation to calling conventions

Both x86-64 and ARM architectures can be used
with several variants of function calling conven-
tions. They might differ in the how the param-
eters are passed to a function or which registers
must be saved in the function’s prolog and re-
stored in the epilog. For assembly programmers,
supporting multiple calling conventions requires
having several versions of assembly code. While
these versions are mostly similar, maintaining them
separately can quickly become a significant burden.

To assist adaptation of function to different
calling conventions, PeachPy provides a pseudo-
instruction, LOAD.PARAMETER which loads a func-
tion parameter into a register. If the parameter is
passed in a register and the destination operand
of the LOAD.PARAMETER pseudo-instruction is a
virtual register, PeachPy will bind this virtual reg-
ister to the physical register where the parameter is
passed, and the LOAD.PARAMETER instruction will
become a no-op.

III. METAPROGRAMMING

One of the goals of PeachPy project was to sim-
plify writing multiple similar compute kernels in
assembly. To achieve this goal, PeachPy leverages
flexibility of Python to replace macro preprocessors
in traditional assemblers.

A. Custom Instructions

PeachPy users can define Python functions that
will be used interchangeably with real assembly
instructions, just like macros in traditional assembly
can be used similar to instructions. Unlike macros,
Python-based PeachPy functions that implement
an instruction can use virtual registers to hold
temporaries without making them part of the in-
terface. Listing 2 shows how the SSE3 instruction
HADDPD can be simulated using SSE2 instructions
in PeachPy. The interface of the simulated HADDPD
instruction exactly matches the interface of the real
HADDPD, and can be transparently used by compute
kernels which need this instruction.

Listing 2 Simulation of HADDPD with x86 SSE2
instructions

def HADDPD(xmm_dst, xmm_src):
xmm_tmp = SSERegister()
MOVAPD(xmm_tmp, xmm_dst)
UNPACKLPD(xmm_dst, xmm_src)
UNPACKHPD(xmm_tmp, xmm_src)
ADDPD(xmm_tmp, xmm_dst)

B. Parameterized Code Generation

With PeachPy, a programmer can use Python’s
control flow statements and expressions to
parametrize the generation of assembly code.
Then, an optimization expert might tune the
parameters to maximize the performance. Common
examples of such parameters in HPC kernels are
loop unrolling factors and prefetch distances. An
example of parameterized code generation for an
array summation kernel appears in Listing 3.

Listing 3 Array summation kernel parametrized by
loop unroll factor and prefetching distance using
x86 AVX instructions
def VECTOR_SUM(unroll_regs, prefetch_distance):

ymm_acc = [AVXRegister()
for _ in range(unroll_regs)]

for i in range(unroll_regs):
VXORPD(ymm_acc[i], ymm_acc[i])

LABEL("next_batch")
PREFETCHNTA([arrayPtr + prefetch_distance])
for i in range(unroll_regs):

VADDPD(ymm_acc[i], [arrayPtr + i * 32])
ADD(arrayPtr, unroll_regs * 32)
SUB(arrayLen, unroll_regs * 8)
JNZ("next_batch")
Sums all ymm_acc to scalar in ymm_acc[0]
REDUCE.SUM(ymm_acc, peachpy.c.type("float"))
VMOVSS([sumPtr], ymm_acc[0].get_oword())

C. Generalized Kernels
Since instructions in PeachPy are first-class

Python objects, it is easy to parametrize the oper-
ation or data type of a compute kernel to enable
generating multiple similar kernels from a single
generalized kernel. Listing 4 gives an example of
one such generalized kernel.

Listing 4 Generalized kernel which generates ad-
dition and subtraction for 32-bit and 64-bit integer
arrays

def VECTOR_OP(operation, data_size):
SIMD_OP = {(’Add’, 4): VPADDD,

(’Add’, 8): VPADDQ,
(’Sub’, 4): VPSUBD,
(’Sub’, 8): VPSUBQ}
[(operation, data_size)]

LABEL("next_batch")
xmm_x = SSERegister()
xmm_y = SSERegister()
VMOVDQU(xmm_x, [xPtr])
VMOVDQU(xmm_y, [yPtr])
SIMD_OP(xmm_x, xmm_x, xmm_y)
VMOVDQU([zPtr], xmm_x)
for ptr in [xPtr, yPtr, zPtr]:

ADD(ptr, 16)
SUB(length, 16 / data_size)
JNZ("next_batch")

D. ISA-Specific Code Generation
A PeachPy user must specify the target mi-

croarchitecture when creating a Function object.
This information is provided back to PeachPy
kernels via static methods of the Target class.
Target.has_<isa-extension> methods indi-
cate if the target microarchitecture supports various
ISA extensions, such as SSE4.2, AVX, FMA4, or
ARM NEON. HPC kernels may use this infor-
mation to benefit from new instructions without
rewriting the whole kernel for each ISA level. List-
ing 5 shows how to make a dot product kernel use
AVX, FMA3, or FMA4 instructions, depending on
the target microarchitecture.

E. Instruction Streams
By default, PeachPy adds each generated in-

struction to the active assembly function. How-
ever, it may also make sense to generate sim-
ilar instruction streams and then combine them
together. One example is optimizing the kernel
for the ARM Cortex-A9 microarchitecture. Cortex-
A9 processors can decode two instructions per

Listing 5 Dot product kernel which can use AVX,
FMA3 or FMA4 instructions
def DOT_PRODUCT():

if Target.has_fma4() or Target.has_fma3():
MULADD = VFMADDPS if Target.has_fma4()

else VFMADD231PS
else:

def MULADD(ymm_x, ymm_a, ymm_b, ymm_c):
ymm_t = AVXRegister()
VMULPS(ymm_t, ymm_a, ymm_b)
VADDPS(ymm_x, ymm_t, ymm_c)

ymm_acc = AVXRegister()
VXORPS(ymm_acc, ymm_acc)
LABEL("next_batch")
ymm_tmp = AVXRegister()
VMOVAPS(ymm_tmp, [xPtr])
MULADD(ymm_acc, ymm_tmp, [yPtr], ymm_acc)
ADD(xPtr, 32)
ADD(yPtr, 32)
SUB(length, 8)
JNZ("processBatch")
REDUCE.SUM([ymm_acc],

peachpy.c.type("float"))
VMOVSS([resultPtr], ymm_acc.get_oword())

cycle, but only one of them can be a SIMD in-
struction. Thus, performance may be improved by
mixing scalar and vector operations. Bernstein and
Schwabe [12] found that such instruction blending
improves performance of Salsa20 stream cipher
on the ARM Cortex-A8 microarchitecture, which
has a similar limitation on instruction decoding.
PeachPy instruction streams provide a mechanism
to redirect generated instructions to a different
sequence, and later merge sequences of instruc-
tions. When the InstructionStream object is
used with the Python with statement all instruc-
tions generated in the with scope are added to
the instruction stream instead of active function.
Instructions stored in InstructionStream then
can be added one-by-one to the active function
(or active InstructionStream object) by calling the
issue method. Listing 6 outlines the use of instruc-
tion stream object to mix scalar and vector variants
of the kernel.

F. Software Pipelining

Instruction streams can also assist in develop-
ing software-pipelined versions of compute kernels.
Using instruction streams, the programmer can sep-
arate similar instructions from different unrolled
loop iterations into different instruction streams.
Listing 7 applies this technique to a kernel which
adds constant to a vector of integers.

After similar instructions are collected in instruc-
tion streams, it is often possible to shift these se-
quences relative to each other so that by the time

Listing 6 Use of instruction streams to interleave
scalar and vector instructions

scalar_stream = InstructionStream()
with scalar_stream:

Scalar kernel
...

vector_stream = InstructionStream()
with vector_stream:

SIMD kernel
...

while scalar_stream or vector_stream:
Mix scalar and vector instructions
scalar_stream.issue()
vector_stream.issue()

Listing 7 Use of instruction streams to separate
similar instructions for software pipelining

instruction_columns = [InstructionStream()
for _ in range(3)]

ymm_x = [AVXRegister for _ in range(unroll_regs)]
for i in range(unroll_regs):

with instruction_columns[0]:
VMOVDQU(ymm_x[i], [xPtr + i * 32])

with instruction_columns[1]:
VPADDD(ymm_x[i], ymm_y)

with instruction_columns[2]:
VMOVDQU([zPtr + i * 32], ymm_x[i])

with instruction_columns[0]:
ADD(xPtr, unroll_regs * 32)

with instruction_columns[2]:
ADD(zPtr, unroll_regs * 32)

any instruction is decoded its inputs are already
computed, so the instruction can issue immedi-
ately. Figure 1 illustrates this principle. Making a
software pipelined version of a kernel typically
involves duplicating the kernel code twice, skew-
ing the instruction columns relative to each other,
and looping on the middle part of the resulting
sequence.

IV. PERFORMANCE STUDY

Although PeachPy improves the programmabil-
ity of traditional assembly, PeachPy code is harder
to develop and maintain than code in C or FOR-
TRAN. As such, we might want to check that opti-
mization at the assembly level can at least improve
performance compared to using an optimizing C
compiler. Previous research provides ambiguous
results: Malas et al. [8] found that, on PowerPC
450 processor, optimized assembly can deliver up
to twice the performance of the best autotuned C

Fig. 1: Illustration of software pipelining principle
for kernel in Listing 7. Instruction streams corre-
spond to columns on this illustration. Instructions
are executed in left-to-right, then top-to-bottom
order.

and Fortran code; by contrast, and Satish et al. [13]
suggest that code optimized with assembly or C
intrinsics is just 10− 40% faster than C code.

In this section we describe a limited study of per-
formance of PeachPy-generated code versus code
generated by C++ compilers from equivalent C++
intrinsics. For this study we used kernels for com-
puting vector logarithm and vector exponential
functions3 from Yeppp! library (www.yeppp.info)
on an Intel Core i7-4770K (Haswell microarchitec-
ture). A kernel takes a batch of 40 double preci-
sion elements, and computes log or exp on each
element using only floating-point multiplication,
addition, integer and logical operations. These ker-
nels were originally implemented in PeachPy. For
this study, we wrote an equivalent C++ version
by converting each assembly instruction generated
by PeachPy into an equivalent C++ intrinsic call.
In the C++ source code, the intrinsics are called
in exactly the same order as the corresponding
assembly instructions in PeachPy code.

Several properties make this code nearly ideal for
a C++ compiler:

• The code is already vectorized using intrinsic
functions, so it does not depend on the quality
of the compiler’s auto-vectorizer.

• There is only one final branch in a loop itera-
tion, so a loop iteration forms a basic block. In
the PeachPy output, each loop iteration for log
contains 581 instructions and the same itera-
tion for exp contains 400 instructions, which

3Vector logarithm and vector exponential functions compute
log and exp on each elements of an input vector and produce
a vector of outputs

gives the C++ compiler a lot of freedom to
schedule instructions.

• The initial order of instructions is close to
optimal, as it exactly matches the manually
optimized PeachPy code. The only part left to
the compiler is register allocation. If the com-
piler could replicate the register allocation used
in the PeachPy code, it would get exactly the
same performance. But the compiler could also
improve upon the PeachPy implementation by
finding a better instruction schedule.

Figure 2 demonstrates the performance results.
None of the three tested compilers could match
the performance of manually optimized assembly,
although for vector logarithm gcc’s output is very
close. This result suggests that developing HPC
codes in assembly might be necessary to get op-
timal performance on modern processors. In such
cases, developers can leverage PeachPy to make
assembly programming easier.

Fig. 2: Performance evaluation of code generated by
PeachPy and three C++ compilers from equivalent
intrinsics.

V. CONCLUSION

In this paper, we introduced a Python framework
for developing assembly compute kernels called
PeachPy. PeachPy simplifies writing HPC kernels
compared to traditional assembly, and introduces
a significant degree of automation to the process.
PeachPy allows developers to leverage the flexibil-
ity of Python to generate a large number of similar
kernels from a single source file.

ACKNOWLEDGEMENTS

We thank Aron Ahmadia for his useful and
insightful comments on this research and careful
proofreading of the final draft of this paper. We
thank Richard Vuduc for detailed suggestions of
improvements for this paper.

www.yeppp.info

This work was supported in part by grants
to Prof. Richard Vuduc’s research lab, The
HPC Garage (www.hpcgarage.org), from the Na-
tional Science Foundation (NSF) under NSF CA-
REER award number 0953100; and a grant from
the Defense Advanced Research Projects Agency
(DARPA) Computer Science Study Group program.

REFERENCES

[1] F. G. Van Zee, T. Smith, F. D. Igual,
M. Smelyanskiy, X. Zhang, M. Kistler, V. Aus-
tel, J. Gunnels, T. M. Low, B. Marker, L. Kil-
lough, and R. A. van de Geijn, “Implementing
level-3 BLAS with BLIS: Early experience,”
The University of Texas at Austin, Department
of Computer Science, FLAME Working Note
#69. Technical Report TR-13-03, Apr. 2013.

[2] K. Yotov, T. Roeder, K. Pingali, J. Gunnels,
and F. Gustavson, “An experimental
comparison of cache-oblivious and cache-
conscious programs,” in Proceedings of the
nineteenth annual ACM symposium on
Parallel algorithms and architectures, 2007,
pp. 93–104.

[3] A. Rigo and S. Pedroni, “PyPy’s approach to
virtual machine construction,” in Companion
to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems,
languages, and applications, 2006, pp. 944–
953.

[4] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin,
D. Seljebotn, and K. Smith, “Cython: The
best of both worlds,” Computing in Science
Engineering, vol. 13, no. 2, pp. 31–39, March-
April 2011.

[5] llvmpy: Python bindings for LLVM. [Online].
Available: http://www.llvmpy.org

[6] A. Klöckner, N. Pinto, Y. Lee, B. Catan-
zaro, P. Ivanov, and A. Fasih, “PyCUDA
and PyOpenCL: A scripting-based approach
to GPU run-time code generation,” Parallel
Computing, vol. 38, no. 3, pp. 157–174, 2012.

[7] A. Friedley, C. Mueller, and A. Lumsdaine,
“High-performance code generation using
CorePy,” in Proc. of the 8th Python in Science
Conference, Pasadena, CA USA, 2009, pp. 23–
28.

[8] T. Malas, A. J. Ahmadia, J. Brown, J. A. Gun-
nels, and D. E. Keyes, “Optimizing the perfor-
mance of streaming numerical kernels on the
IBM Blue Gene/P PowerPC 450 processor,”
International Journal of High Performance
Computing Applications, vol. 27, no. 2, pp.
193–209, 2013.

[9] J. Dongarra and P. Luszczek, “Anatomy of
a globally recursive embedded LINPACK
benchmark,” in High Performance Extreme
Computing (HPEC), 2012 IEEE Conference on,
2012, pp. 1–6.

[10] F. Boesch. (2008) pyasm, a python assembler.
[Online]. Available: http://bitbucket.org/
pyalot/pyasm

[11] G. Olson. (2006) PyASM users guide v.
0.3. /doc/usersGuide.txt. [Online]. Available:
http://github.com/grant-olson/pyasm

[12] D. J. Bernstein and P. Schwabe, “NEON
crypto,” in Cryptographic Hardware and
Embedded Systems–CHES 2012. Springer,
2012, pp. 320–339.

[13] N. Satish, C. Kim, J. Chhugani, H. Saito,
R. Krishnaiyer, M. Smelyanskiy, M. Girkar,
and P. Dubey, “Can traditional programming
bridge the Ninja performance gap for paral-
lel computing applications?” in Proceedings
of the 39th International Symposium on
Computer Architecture, 2012, pp. 440–451.

www.hpcgarage.org
http://www.llvmpy.org
http://bitbucket.org/pyalot/pyasm
http://bitbucket.org/pyalot/pyasm
http://github.com/grant-olson/pyasm

	Introduction
	Contributions
	PeachPy DSL

	Automation of routine tasks
	Register allocation
	Constant allocation
	Adaptation to calling conventions

	Metaprogramming
	Custom Instructions
	Parameterized Code Generation
	Generalized Kernels
	ISA-Specific Code Generation
	Instruction Streams
	Software Pipelining

	Performance Study
	Conclusion

