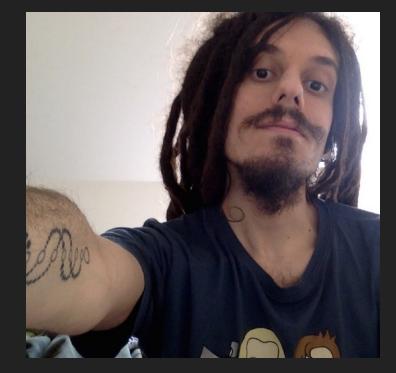


UNIVERSITÀ DEGLI STUDI DI GENOVA

PALLADIO: A PARALLEL FRAMEWORK FOR ROBUST VARIABLE SELECTION IN HIGH-DIMENSIONAL DATA

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi

UNIVERSITÀ **DEGLI STUDI DI GENOVA**



MATTEO BARBIERI

SAMUELE FIORINI

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi

FEDERICO TOMASI

ANNALISA BARLA

http://slipguru.unige.it/

SUMMARY

Background: supervised learning and variable selection Framework description Validation on synthetic datasets Conclusions and future works

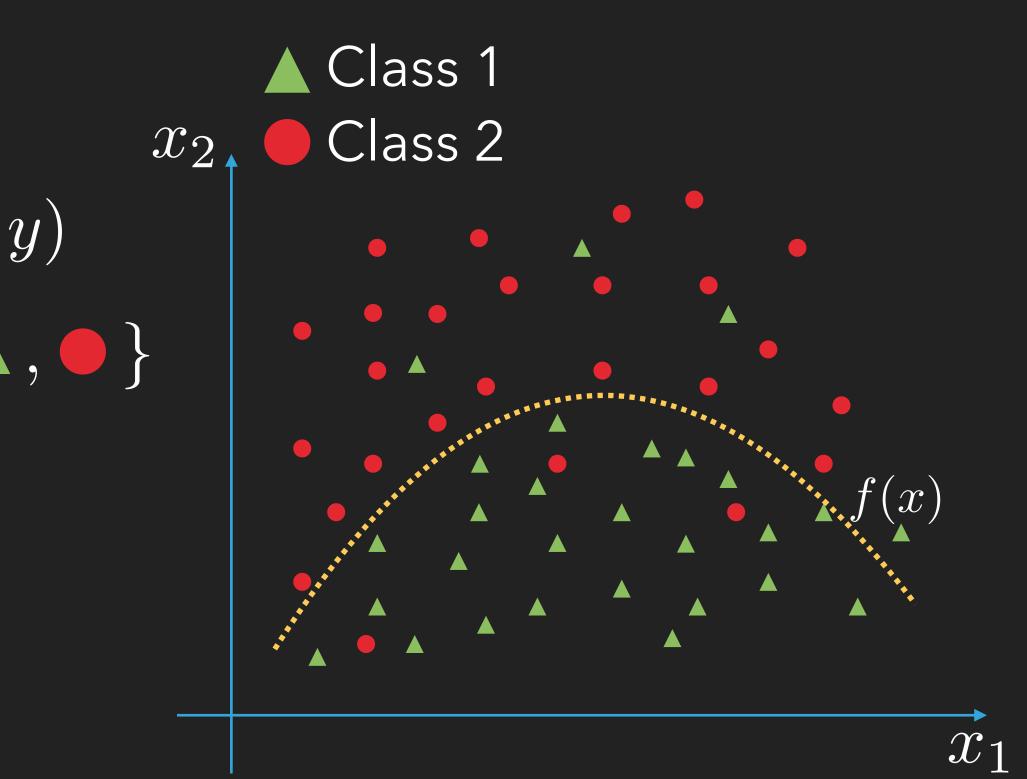
BACKGROUND

LEARNING FROM EXAMPLES

Examples: pairs of the form (\mathbf{x}, y) e.g. $\mathbf{x} = [x_1, x_2]$ and $y \in \{ \blacktriangle, \bullet \}$

Goal: infer function f such that $f(\mathbf{x}) \sim y$

More generally: $\mathbf{x} \in \mathbb{R}^d$



VARIABLE SELECTION

The process of identifying the subset of relevant variables

ASSUMPTION

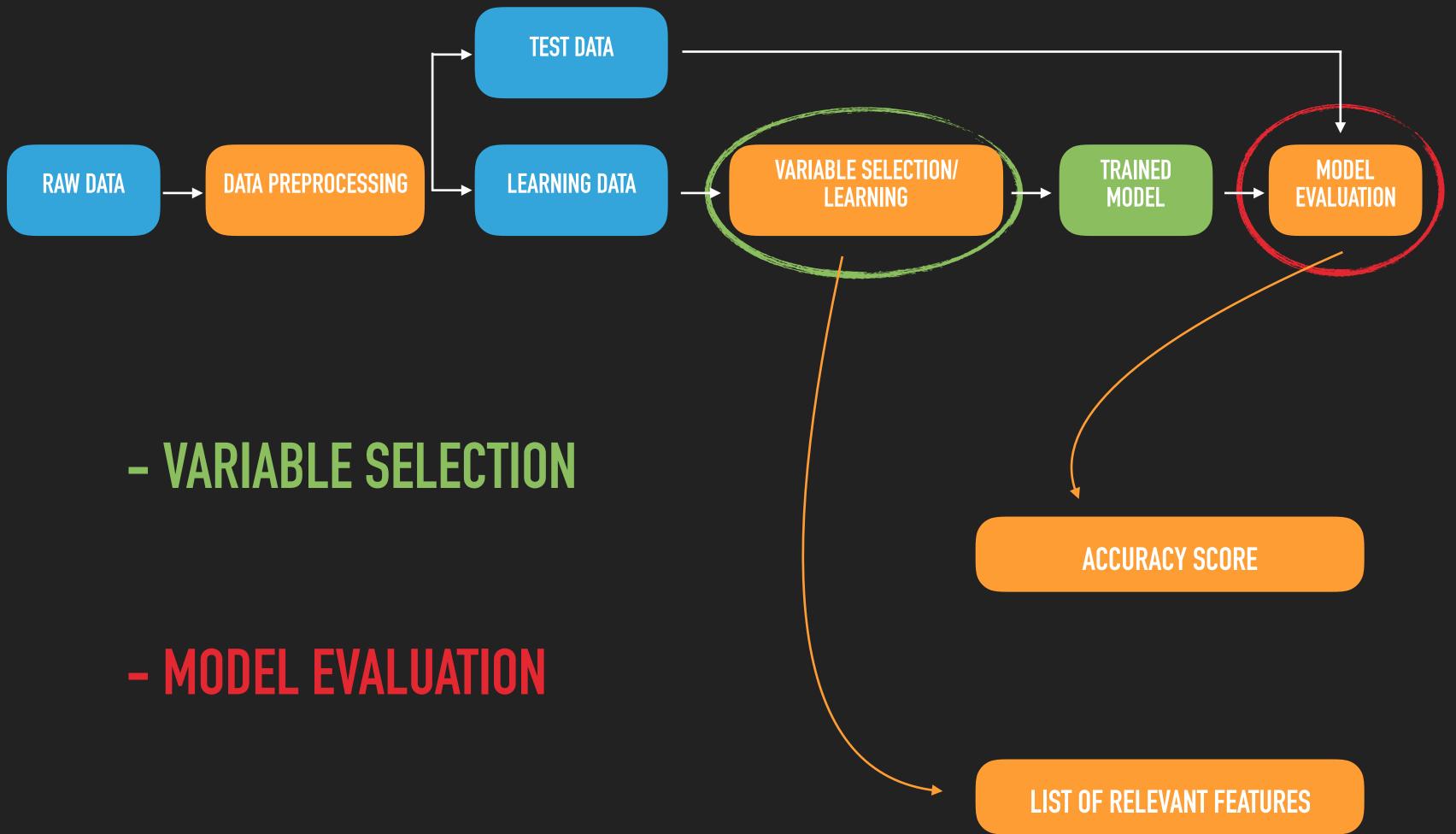
Not all variables are relevant for the problem

PURPOSE

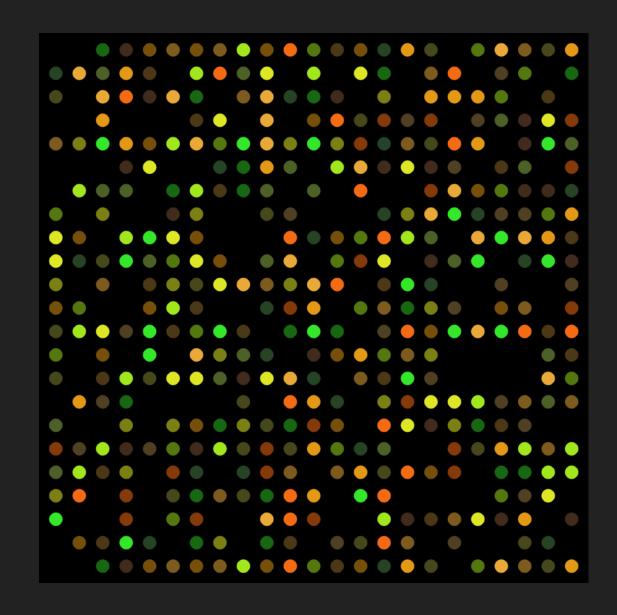
Reduce computational time

Enhance interpretability

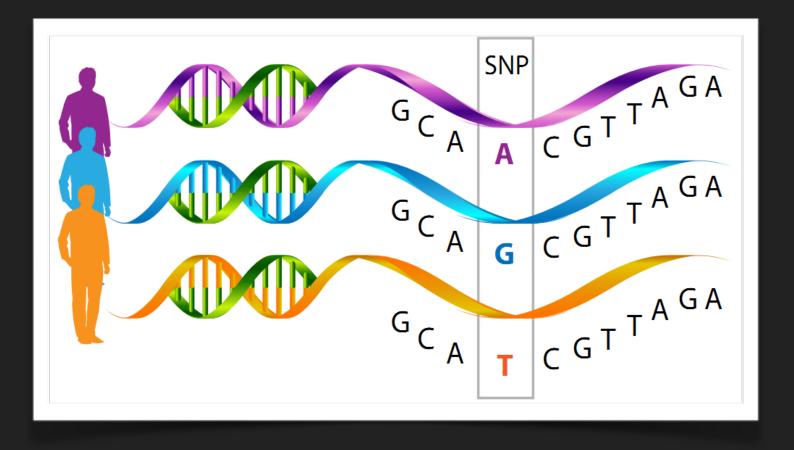
THE LEARNING PIPELINE



EXTREME CASES: $n \ll d$, WEAK CORRELATION



Few examples (10²), high dimensionality (10⁴ - 10⁶) Input and output are weakly correlated



- Classification accuracy close to chance

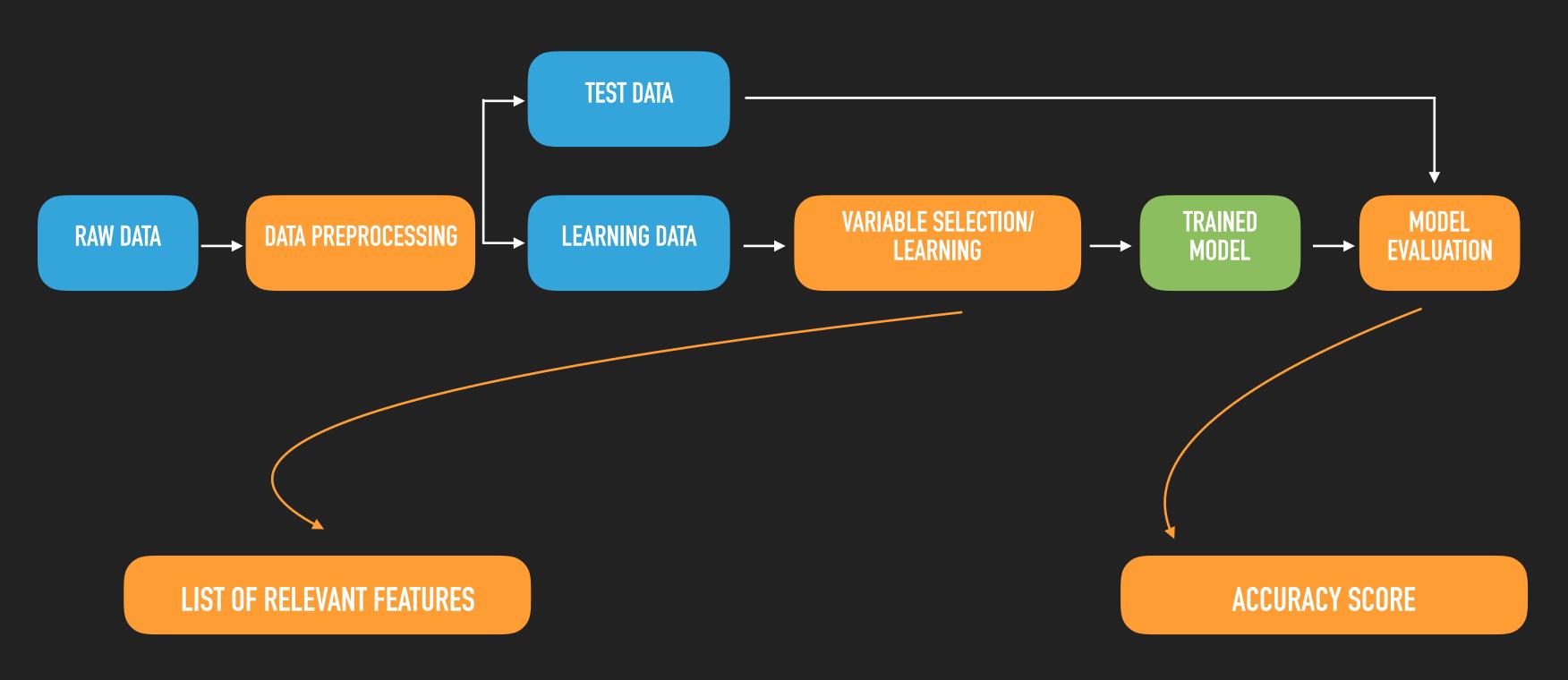
A PARALLEL FRAMEWORK FOR ROBUST VARIABLE SELECTION IN HIGH-DIMENSIONAL DATA

PAL LAD

- Select a subset of relevant variables

- Provide a measure of the reliability of the results

SCHEMA



<u>One</u> accuracy score, <u>one</u> list of variables

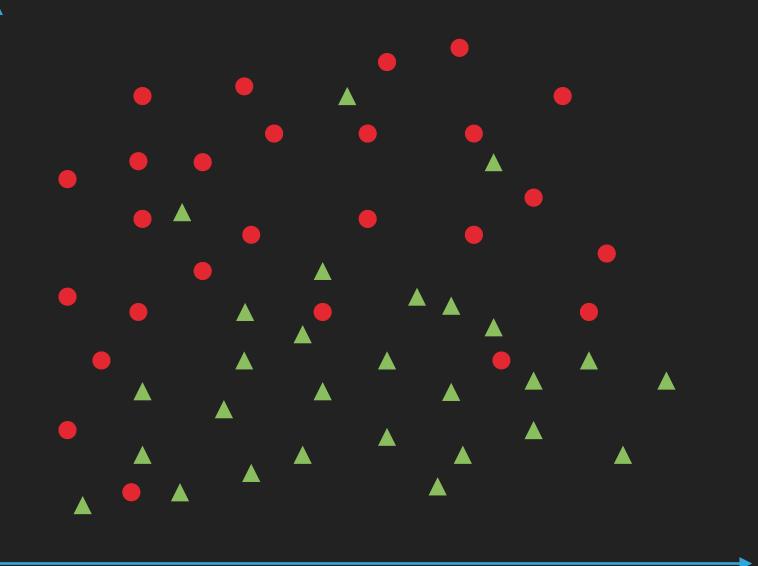
Is it good? (chance is 50%) Does it depend on the split?

Accuracy = 54%

Repeat the experiments many times (100)

Resample learning and test set with MCCV

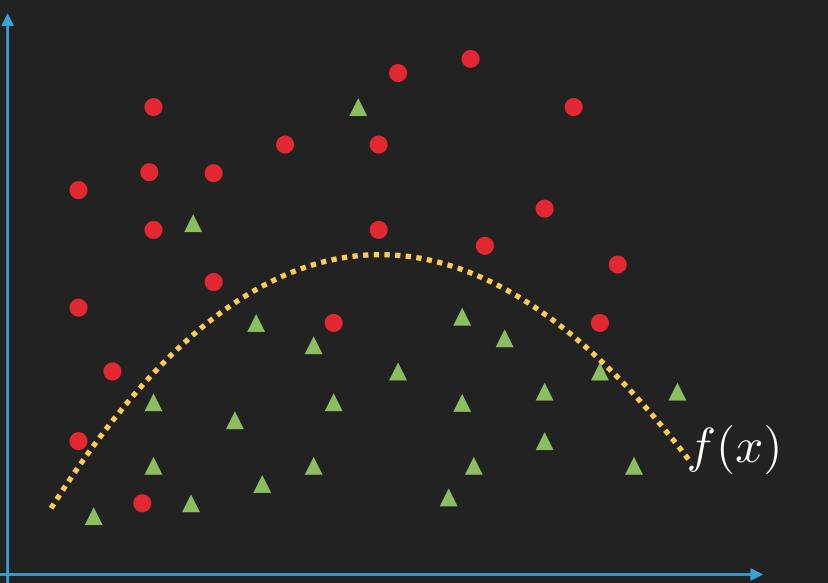
EXPERIMENT 1



Repeat the experiments many times (100)

Resample learning and test set with MCCV

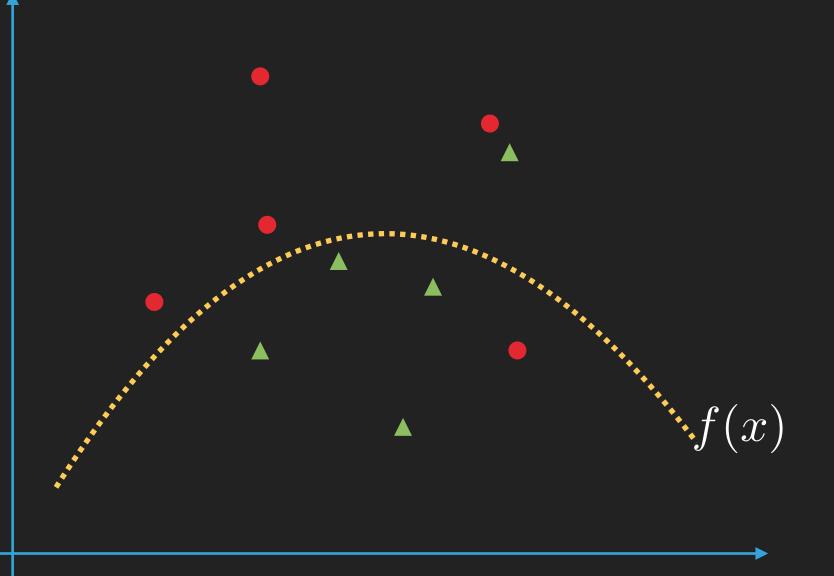
EXPERIMENT 1: LEARNING SET



Repeat the experiments many times (100)

Resample learning and test set with MCCV

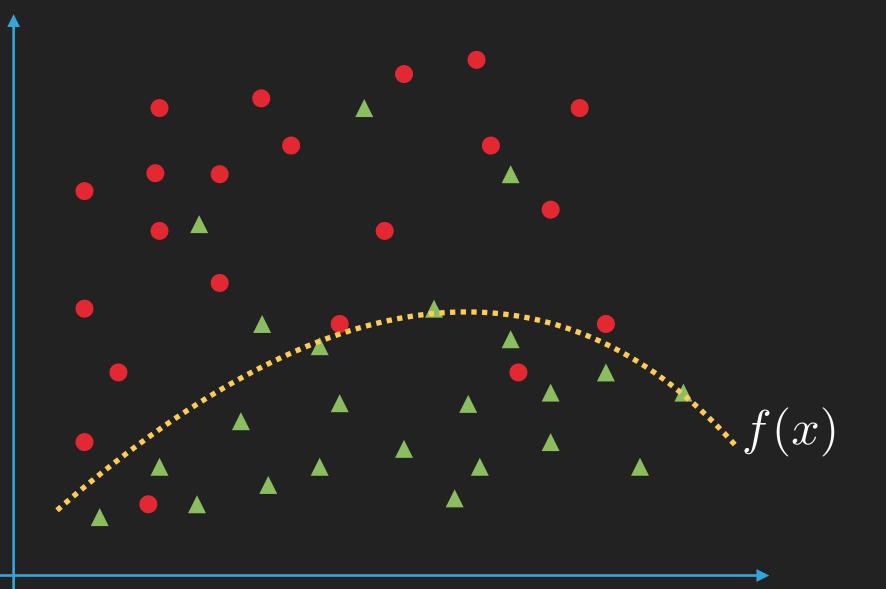
EXPERIMENT 1: TEST SET



Repeat the experiments many times (100)

Resample learning and test set with MCCV

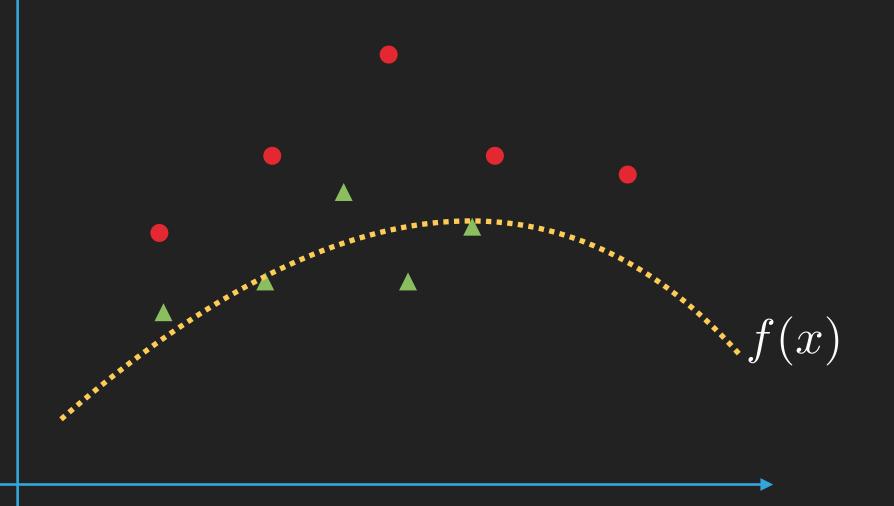
EXPERIMENT 2: LEARNING SET



Repeat the experiments many times (100)

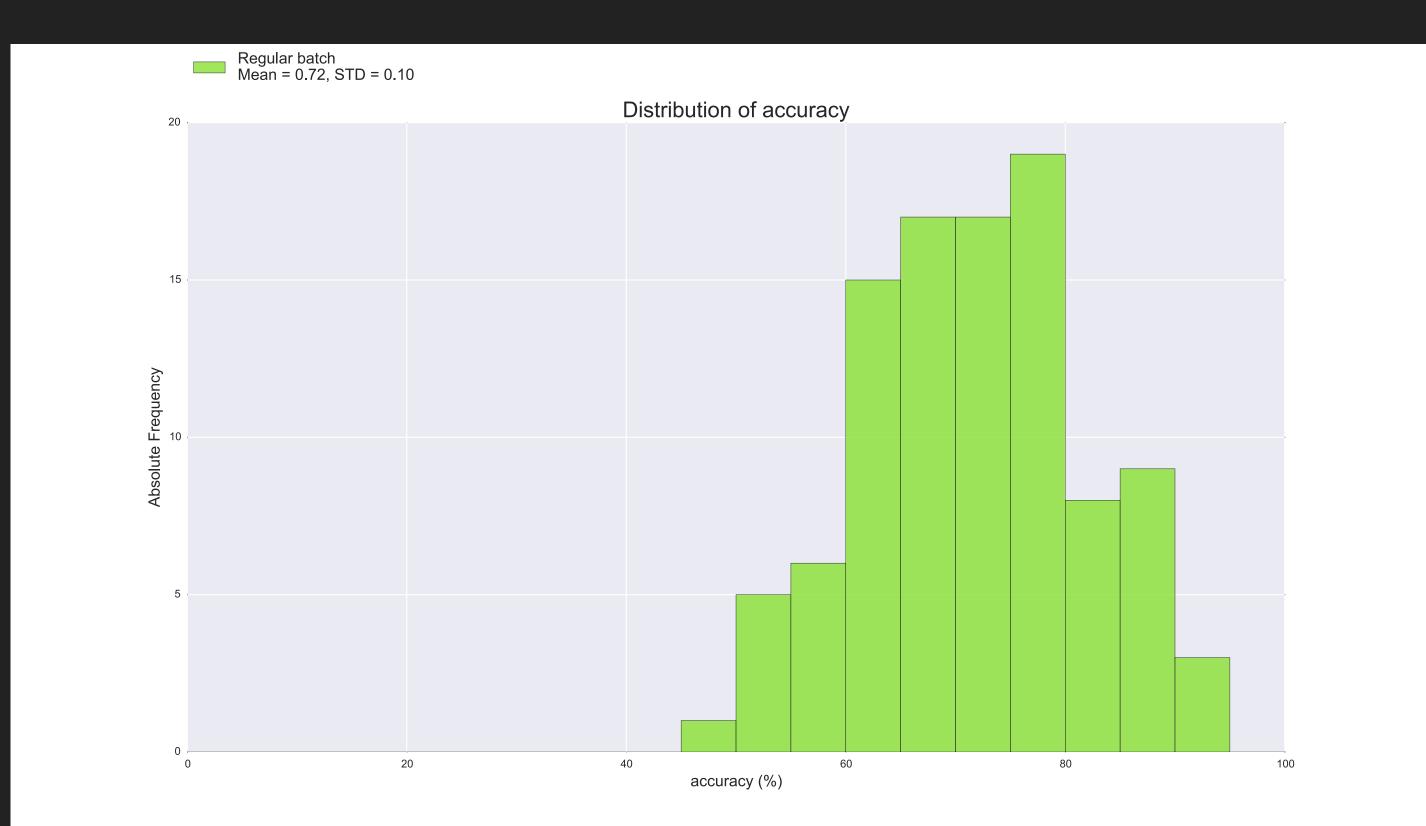
Resample learning and test set with MCCV

EXPERIMENT 2: TEST SET



Repeat the experiments many times (100)

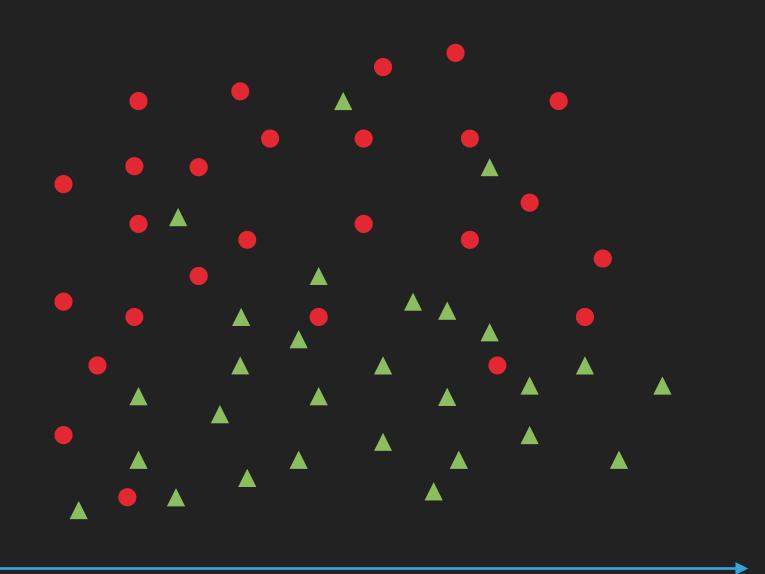
Resample learning and test set with MCCV



Permutation test

Labels in the learning set are shuffled

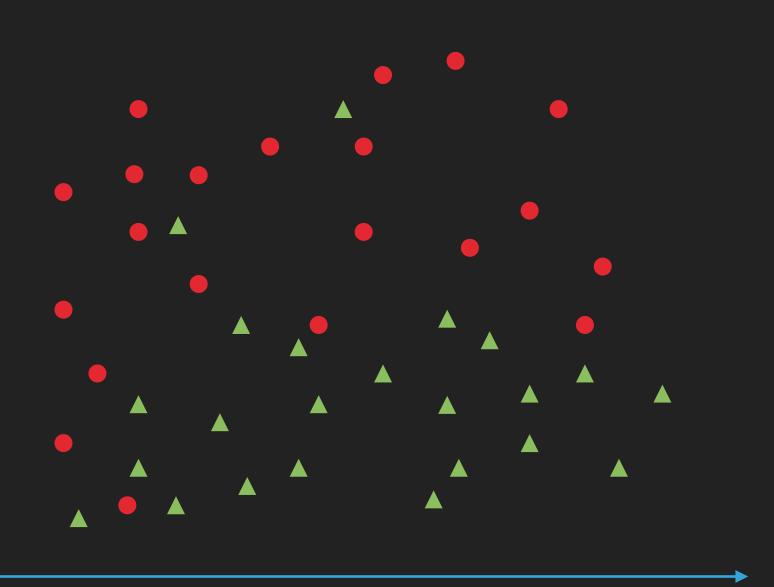
EXPERIMENT 1



Permutation test

Labels in the learning set are shuffled

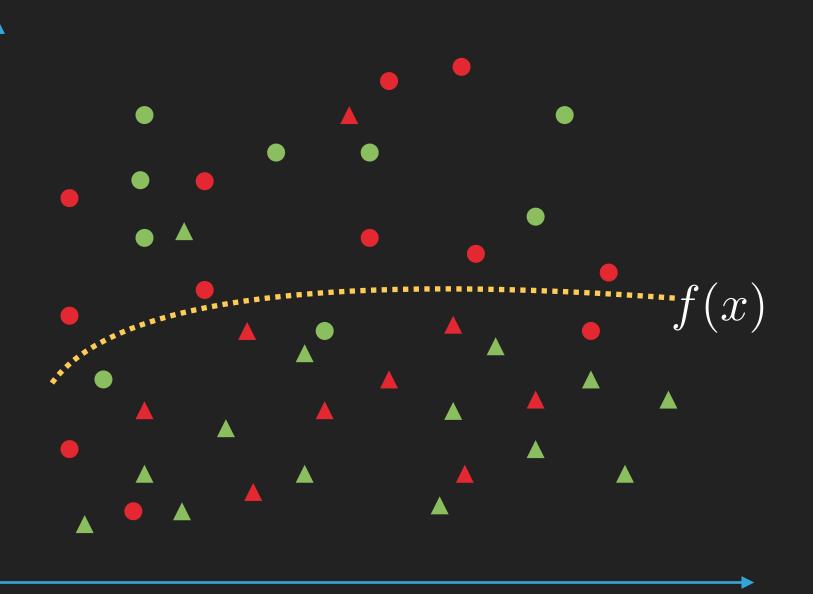
EXPERIMENT 1: LEARNING SET



Permutation test

Labels in the learning set are shuffled

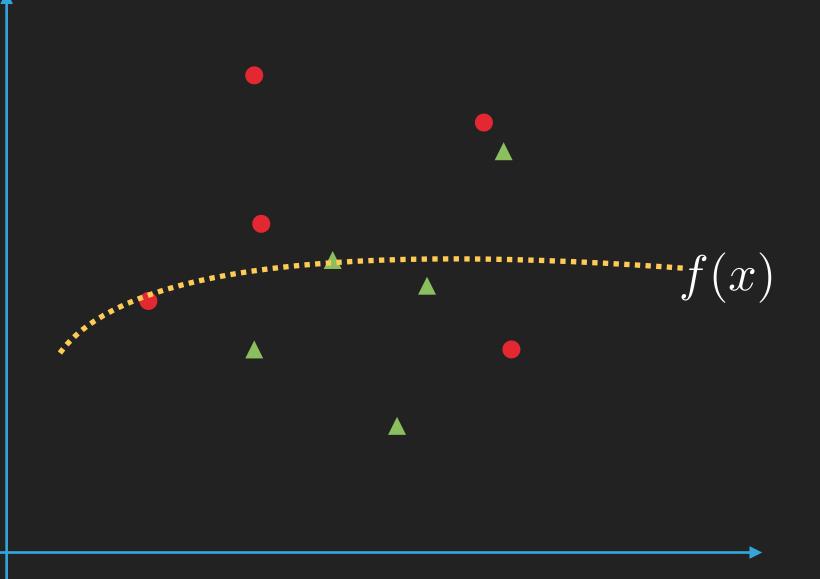
EXPERIMENT 1: LEARNING SET



Permutation test

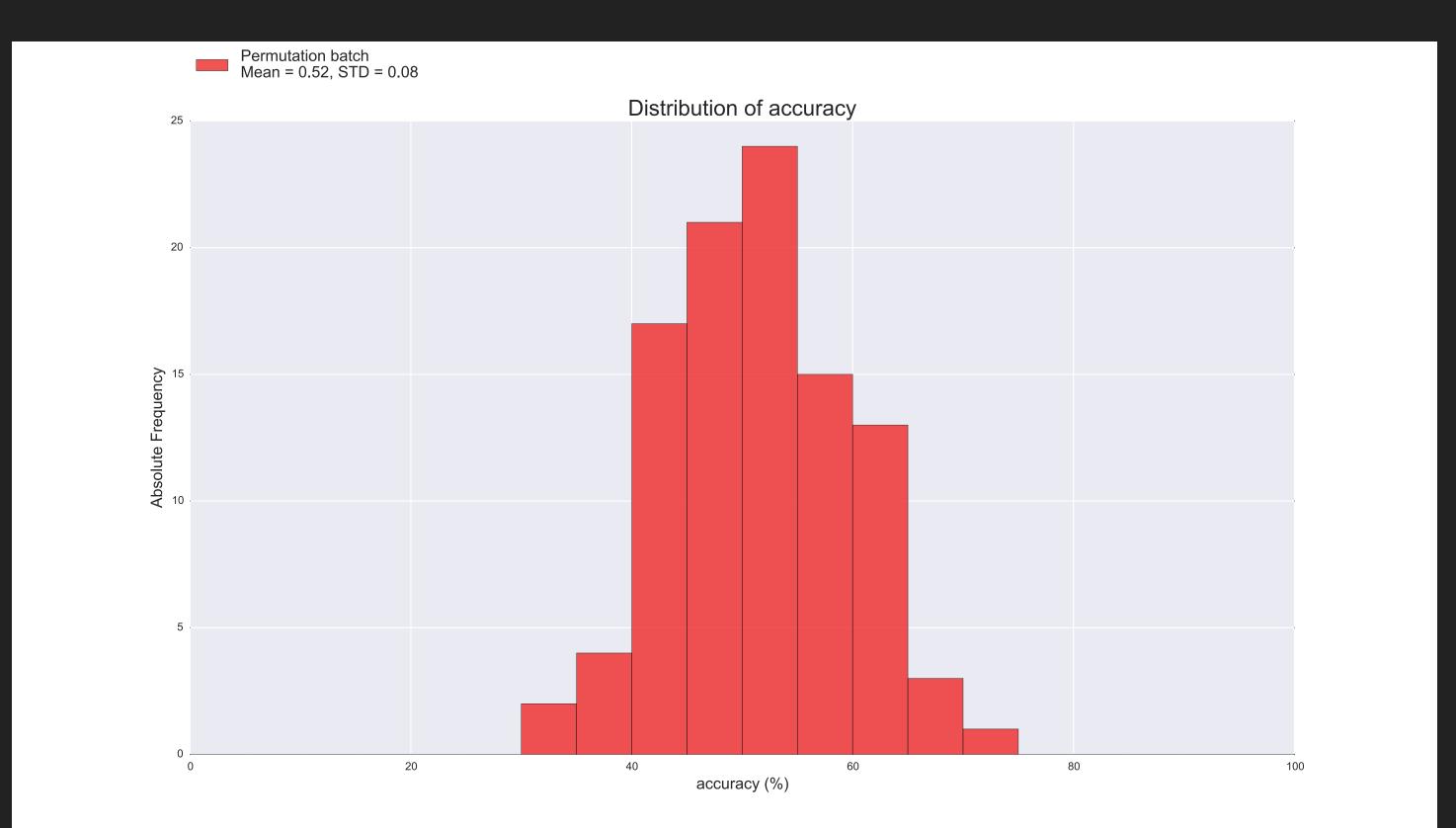
Labels in the learning set are shuffled

EXPERIMENT 1: TEST SET

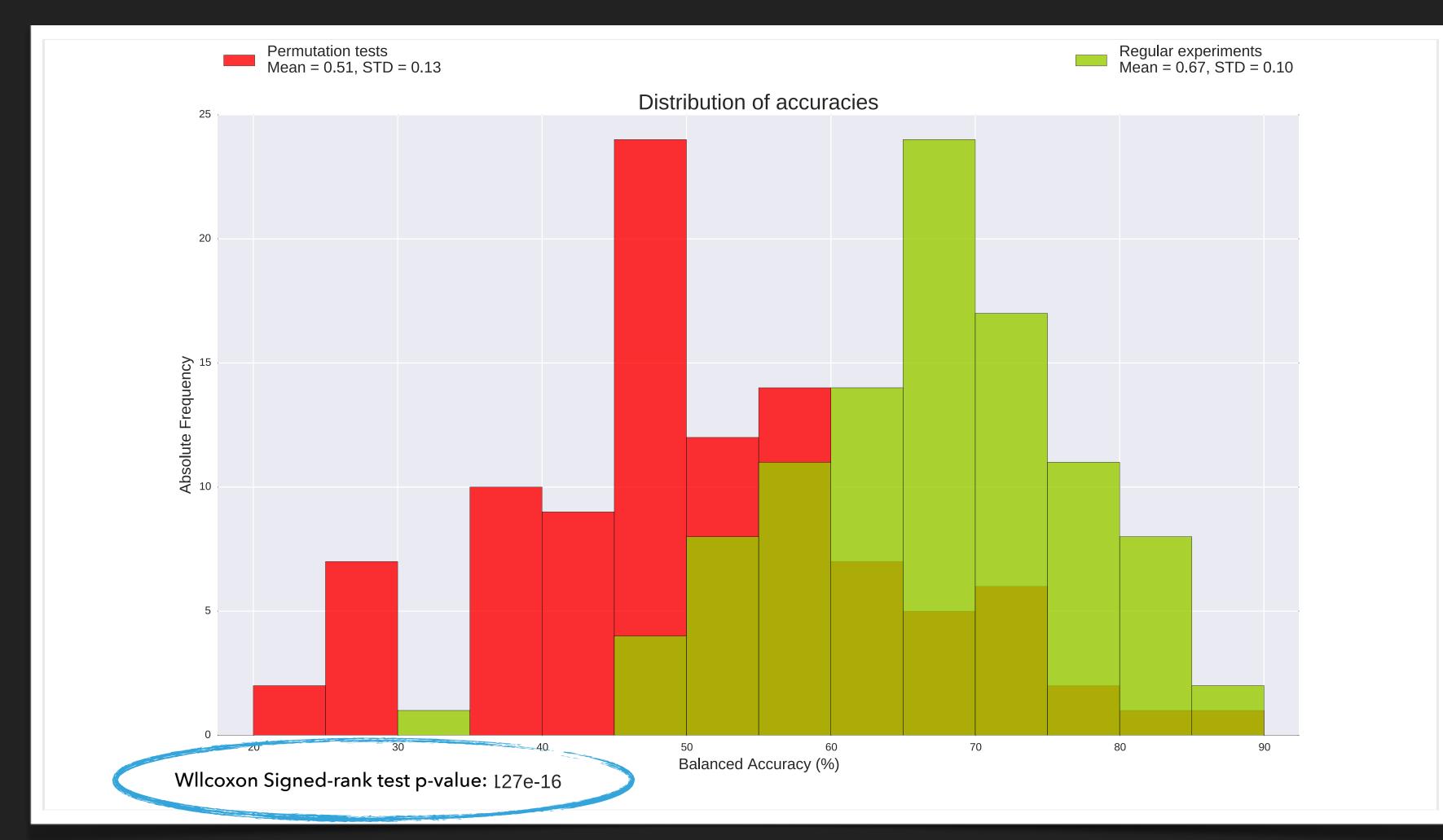


Permutation test

Labels in the learning set are shuffled



RESULTS – DISTRIBUTION OF ACCURACIES



RESULTS – VARIABLES SELECTION FREQUENCIES

- VAR #4, VAR #8, VAR #71, ...
- VAR #4, VAR #29, VAR #17, ...
- VAR #3, VAR #78, VAR #2, ...
- VAR #4, VAR #17, VAR #31, ...

RESULTS – VARIABLES SELECTION FREQUENCIES

VAR #4 VAR #7 VAR #29 VAR #17 \bullet \bullet \bullet VAR #78

VARIABLE FREQUENCY

97% 91% 83% 78% $\bullet \bullet \bullet$ 12%

WORKLOAD DISTRIBUTION

MPI is used to distribute jobs in a cluster

••• Experiment #20 Experiment #20

• • •

Experiment #21 Experiment #21 Experiment #22 Experiment #22

Experiment #40 Experiment #40

• • •

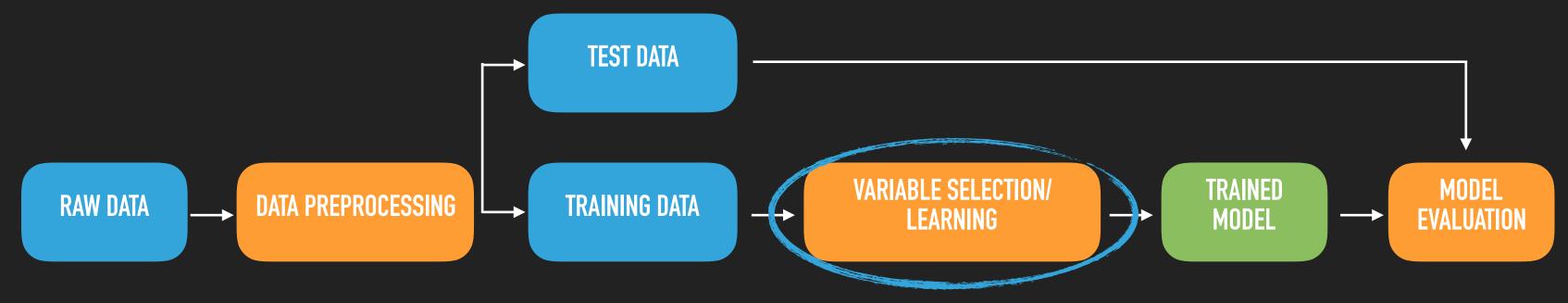
Experiment #81 Experiment #81 Experiment #82 Experiment #82

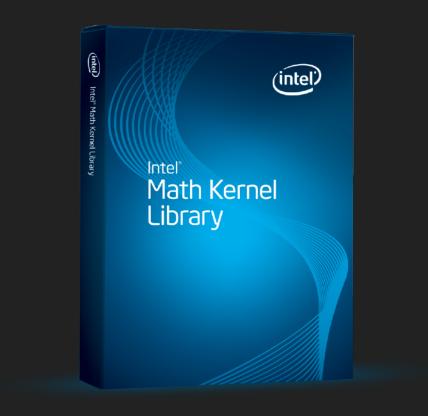
• • •

Experiment #100 Experiment #100

MKL/CUBLAS ACCELERATION

Libraries for linear algebra





OUR MACHINES

Intel® Xeon® CPU E5-2630 v3 8 cores 2.4 GHz 32 GB of RAM NVIDIA Quadro K2200

Two Intel® Xeon® CPUs E5-2630 v3 8 cores 2.4 GHz (each) 128 GB of RAM NVIDIA Tesla K40c

VALIDATION ON Synthetic datasets

REAL VALUED DATASETS – DATA

45 datasets of different sizes: $50 \le n \le 1000$ $1000 \le d \le 500000$ Binary classification task The number of relevant variables was proportional to the data dimensionality (between 25 and 100 relevant variables)

SYNTHETIC DATASETS - ACCURACY RESULTS

Accuracy values for all 45 experiments

Accuracy											1.00
50	0.87	0.88	0.72	0.90	0.92	0.90	0.98	0.93	0.92		0.95
es n 100	0.95	0.92	0.85	0.95	0.95	0.95	1.00	1.00	1.00		0.90
Number of samples n 200	0.96	0.93	0.90	0.98	0.98	0.98	1.00	1.00	1.00		0.85
Num 500	0.96	0.96	0.95	0.99	1.00	0.99	1.00	1.00	1.00		0.80
1000	0.99	0.96	0.98	1.00	0.99	0.99	1.00	1.00	1.00		0.75
1000 2000 5000 10000 20000 50000 100000 200000 500000 Number of dimensions d											

SYNTHETIC DATASETS – VARIABLE SELECTION RESULTS

F1 Scores for all 45 experiments

F1												
50	0.70	0.54	0.56	0.45	0.46	0.48	0.23	0.25	0.21			0.90
Number of samples n1000500200100	0.59	0.59	0.78	0.79	0.75	0.73	0.72	0.68	0.59			0.75
	0.54	0.56	0.62	0.72	0.82	0.84	0.94	0.94	0.95			0.60
	0.43	0.42	0.46	0.59	0.65	0.72	0.87	0.89	0.98			0.45
	0.79	0.60	0.96	0.44	0.58	0.62	0.75	0.84	0.93			0.30
	1000	2000	5000	10000 Number	20000 of dime	50000 nsions d		200000	500000			

CPU VS GPU SPEEDUP

50	0.32	0.35	0.41	0.49	0.54	0.72	0.87	0.97	1.05		1.50
ples n ¹⁰⁰	0.61	0.59	0.63	0.77	0.86	1.36	1.47	1.51	1.60		1.25
Number of samples n 200 200 100	0.80	0.82	0.85	0.99	1.59	1.72	1.71	1.69	1.65		1.00
Numb 500	1.24	1.18	1.28	1.64	1.64	1.67	1.66	1.73	1.73		0.75
1000	1.14	1.25	1.28	1.32	1.44	1.61	1.64	1.70	1.73		0.50
1000 2000 5000 10000 20000 50000 100000 200000 500000 Number of dimensions d											

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

- The framework allowed us to obtain clear results (either positive or negative) on both synthetic and real datasets
- The MPI implementation allows for the analysis of large datasets in a reasonable amount of time

FUTURE WORKS

- Extension to the regression problems
 Inclusion of wrappers for more learning algorithms
 A different job distribution strategy (Master/Slave) for heterogeneous clusters
- Obtaining a single model through a final training step

AKNOWLEDGEMENTS

THANKS

HTTPS://GITHUB.COM/SLIPGURU/PALLADIO

Matteo Barbieri, 2016