Der DLR-Standort Bremen

Der Mars auf einem Kubikmeter

Tests für den InSight-Maulwurf

Donnerstag, 11. April 2019

Autoplay
Info an
Info aus
Informationen
Schließen
Vollbild
Normal
zurück
vor
{{index}}/{{count}}
Tipp:
<Escape>, um fullscreen zu beenden.
  • HP3%2dErsatzmodell im DLR%2dTestlabor in Bremen
    HP3-Ersatzmodell im DLR-Testlabor in Bremen

    Das Ersatzmodell des Marsmaulwurfs wird im DLR-Institut für Raumfahrtsysteme in Bremen in einer Box auf Sand getestet. Bei allen Versuchen lauscht ein Seismometer auf die Tätigkeit des irdischen Maulwurfs, das vor dem HP3-Experiment auf dem Sand zu sehen ist.

  • DLR%2dIngenieur Dr. Torben Wippermann am HP3%2dVersuchsaufbau
    DLR-Ingenieur Torben Wippermann am HP3-Versuchsaufbau

    Über dem HP3-Experiment ist ein Ballon zu sehen, der das Experiment entlastet, um verringerte Schwerkraftverhältnisse, wie auf dem Mars zu simulieren.

  • Testaufbau des HP3%2dExperiments am DLR in Bremen
    Testaufbau des HP3-Experiments am DLR in Bremen

    Das HP3-Experiment steht auf einer mit Sand gefüllten Box. Oben am Gehäuse ist ein Stück des Maulwurfs zu erkennen, der sich mit einem Schlagmechanismus allein in den Untergrund hämmern kann.

  • HP3%2dExperiment auf dem Mars
    HP3-Experiment auf dem Mars

    Das Gehäuse des HP3-Experiments hat sich an den Füßen im Zuge des Hämmerns etwas bewegt.

  • Die NASA%2dSonde InSight auf der Marsoberfläche
    Die NASA-Sonde InSight auf der Marsoberfläche

    Nach ihrem Start am 5. Mai landete die NASA-Sonde InSight am 26. November 2018 etwas nördlich des Marsäquators und entfaltete seine Solarpanele (künstlerische Darstellung).

  • Das Experiment HP3
    Das Experiment HP3

    Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) steuert das Experiment HP3 zur NASA-Mission InSight bei. HP3 steht für Heat Flow and Physical Properties Package und wurde federführend am DLR-Institut für Planetenforschung entwickelt. Mit einer sich fünf Meter tief in den Marsboden hämmernden Tiefensonde wird die Wärmeleitfähigkeit des Bodens unter der Landestelle gemessen sowie die Wärmemenge bestimmt, die vom Inneren des Mars an die Oberfläche strömt. Das Experiment ist auf zwei Jahre ausgelegt. Wesentliche Bestandteile von HP3 sind die ‚Mole’ (engl. für Maulwurf) genannte Rammsonde und das Flachbandkabel mit den Temperatursensoren, das der Mole für die Messungen hinter sich in den Boden ziehen wird.

  • Rammsonde "Maulwurf"
    Rammsonde "Maulwurf"

    Am 12. Februar 2019 um 19:18 Uhr MEZ ist der Marsmalwurf HP3 des DLR nun mit dem robotischen Arm des NASA-Landers InSight ausgesetzt worden.

  • Die InSight%2dLandesonde kurz vor der Fertigstellung
    Die InSight-Landesonde kurz vor der Fertigstellung

    Im Reinraum-Labor bei der Firma Lockheed Martin Space in Denver (US-Bundesstaat Colorado) wird letzte Hand an InSight angelegt. Prominent in der Bildmitte ist das französische Seismometer SEIS mit seiner silbernen Kuppel zu erkennen, direkt dahinter ist das DLR-Experiment HP3 für die Reise zum Mars befestigt. InSight steht für "Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport" und wird den inneren Aufbau des Mars und seinen thermischen Zustand untersuchen und Erdbebenwellen aufzeichnen.

  • Selfie der InSight%2dLandesonde auf dem Mars
    Selfie der InSight-Landesonde auf dem Mars

    InSight's erstes vollständiges Selfie auf dem Mars. Es zeigt die Solarmodule und die Plattform des Landers. Auf der Plattform befinden sich seine wissenschaftlichen Instrumente und die UHF-Antenne.

  • Verschiedene denkbare Szenarien werden untersucht, um herauszufinden, was den Maulwurf auf dem Mars zum Stoppen brachte.
  • Ersatzmodell des Maulwurfs trifft testweise in einer Box auf Sand, der sich schnell verfestigt und in dem durch das Hämmern Hohlräume entstehen können.
  • Schwerpunkte: Raumfahrt, Exploration

Eine blaue Box, ein Kubikmeter marsähnlicher Sand, ein Stein, ein Modell des Marsmaulwurfs und ein Seismometer - das sind die Hauptbestandteile, mit denen das Deutsche Zentrum für Luft- und Raumfahrt (DLR) derzeit die Lage auf dem Mars simuliert. Nachdem das DLR-Instrument HP³ (Heat Flow and Physical Properties Package), der Marsmaulwurf, nach seinem ersten Hämmern am 28. Februar 2019 nur etwa 30 Zentimeter in den Marsboden vordringen konnte, analysieren die Planetenforscher und Ingenieure des DLR, wie es dazu kommen konnte und welche Maßnahmen Abhilfe schaffen könnten. "Wir untersuchen und testen verschiedene denkbare Szenarien, um so die Konstellation herauszufinden, die auf dem Mars zum Stoppen unseres Maulwurfs geführt hat", erläutert Testleiter Torben Wippermann vom DLR-Institut für Raumfahrtsysteme in Bremen. Die Basis für die Arbeit der Wissenschaftler: Einige Fotos, Temperaturdaten, Daten des Radiometers sowie Aufzeichnungen des französischen Seismometers während eines kurzen Probehämmerns am 26. März 2019.

Eigentlich hatte nach dem Aufsetzen des Landers InSight der amerikanischen Raumfahrtbehörde NASA alles besser ausgesehen als erwartet: Die Kamera des Landers zeigte zwar in einiger Entfernung zahlreiche Steine, die direkte Umgebung war allerdings erfreulich frei von Steinen und Geröll. Warum der Maulwurf nach seinem Aussetzen auf die Marsoberfläche sich zunächst zügig in den Untergrund hämmerte und sich dann nicht mehr weiter vorarbeiten konnte, wird nun per Ferndiagnose geklärt. "Es gibt verschiedene mögliche Erklärungen, auf die wir unterschiedlich reagieren müssen", sagt Dr. Matthias Grott, Planetenforscher und HP³-Projektwissenschaftler. Eine der Erklärungen: Der Marsmaulwurf befindet sich in einem selbst geschaffenen Hohlraum und hat an den Seiten die erforderliche Reibung mit dem Sand verloren.

Eine weitere Sorte Sand

In Bremen wird daher nun mit einer weiteren Sorte Sand experimentiert: "Bisher haben wir mit einer marsähnlichen Sandsorte getestet, die nicht sehr kohäsiv ist", erläutert Torben Wippermann. Dieser Sand stammt noch von früheren Tests, bei denen sich der Maulwurf in Vorbereitung auf die Mission in einer Fünf-Meter-Säule in die Tiefe hämmerte. Nun soll das Ersatzmodell des Maulwurfs in einer Box auf Sand treffen, der sich schnell verfestigt und in dem durch das Hämmern Hohlräume entstehen können. Im Sand deponieren die Wissenschaftler bei einigen ihrer Testläufe auch einen Stein mit einem Durchmesser von circa zehn Zentimetern - ein solches Hindernis im Marsgrund könnte schließlich ebenfalls ein Grund dafür sein, dass das HP³-Instrument auf dem Roten Planeten ausgebremst wurde. Bei allen Versuchen lauscht ein Seismometer auf die Tätigkeit des irdischen Maulwurfs. Bei einem "diagnostischen" kurzen Hämmern auf dem Mars hatte das französische Instrument SEIS ebenfalls die Erschütterungen aufgezeichnet, um mehr über den Schlagmechanismus des Maulwurfs zu erfahren und Rückschlüsse ziehen zu können. Der Vergleich der Daten hilft, sich der realen Situation anzunähern. "Im Idealfall können wir möglichst exakt die bisherigen Abläufe auf dem Mars rekonstruieren."

Irdische Maulwürfe als Versuchskaninchen

Haben die Wissenschaftler herausgefunden, was am 28. Februar 2019 in über 228 Millionen Kilometer Entfernung den Maulwurf aus dem Rhythmus gebracht hat, folgt der nächste Schritt: Mögliche Maßnahmen, wie man das Instrument weiter in den Boden vordringen lassen kann, müssen dann ebenso akribisch auf der Erde getestet und analysiert werden. Daher wurde auch bereits ein weiteres DLR-Modell des Maulwurfs zum Jet Propulsion Laboratory (JPL)  der NASA in die USA geschickt. Dort kann mit den Erkenntnissen der DLR-Forscher im Zusammenspiel von Maulwurf, HP³-Gehäuse und robotischen Arm geprobt werden, ob beispielsweise ein Anheben oder Verschieben der  Außenstruktur zielführend ist. „Ich schätze, dass wir erst in einigen Wochen eine Aktion auf dem Mars ausführen werden“, sagt DLR-Planetenforscher Dr. Matthias Grott. Erst wenn für die irdischen Maulwürfe eine Lösung gefunden wurde, wird die Pause für den Maulwurf im All enden.

HP3_Flickr_Galerie

Das HP³-Instrument auf der NASA-Mission InSight

Die Mission InSight wird vom Jet Propulsion Laboratory (JPL) in Pasadena, Kalifornien, im Auftrag des Wissenschaftsdirektorats der NASA durchgeführt. InSight ist eine Mission des NASA-Discovery-Programms. Das DLR steuert zur Mission das Experiment HP³ (Heat Flow and Physical Properties Package) bei. Die wissenschaftliche Leitung liegt beim DLR-Institut für Planetenforschung, welches das Experiment federführend in Zusammenarbeit mit den DLR-Instituten für Raumfahrtsysteme, Optische Sensorsysteme, Raumflugbetrieb und Astronautentraining, Faserverbundleichtbau und Adaptronik, Systemdynamik und Regelungstechnik sowie Robotik und Mechatronik entwickelt und realisiert hat. Daneben sind beteiligte industrielle Partner: Astronika und CBK Space Research Centre, Magson und Sonaca, das Institut für Photonische Technologie (IPHT) sowie die Astro- und Feinwerktechnik Adlershof GmbH. Wissenschaftliche Partner sind das ÖAW Institut für Weltraumforschung und die Universität Kaiserslautern. Der Betrieb von HP³ erfolgt durch das Nutzerzentrum für Weltraumexperimente (MUSC) des DLR in Köln. Darüber hinaus hat das DLR Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Energie einen Beitrag des Max-Planck-Instituts für Sonnensystemforschung zum französischen Hauptinstrument SEIS (Seismic Experiment for Interior Structure) gefördert.

Ausführliche Informationen zur Mission InSight und zum Experiment HP³ finden Sie auf der DLR-Sonderseite zur Mission mit ausführlichen Hintergrundartikeln sowie in der Animation und der Broschüre zur Mission und über den Hashtag #MarsMaulwurf auf dem DLR-Twitterkanal. Aktuell berichtet Prof. Tilman Spohn, leitender Wissenschaftler des HP³-Experiments, in Blogposts über die Aktivitäten des 'Marsmaulwurfs‘.

Autorin: Manuela Braun

Zuletzt geändert am:
11.04.2019 15:49:06 Uhr

Kontakte

 

Falk Dambowsky
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Media Relations

Tel.: +49 2203 601-3959

Fax: +49 2203 601-3249
Prof. Dr. Tilman Spohn
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Planetenforschung

Tel.: +49 30 67055-300

Fax: +49 30 67055-303
Christian Krause
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Nutzerzentrum für Weltraumexperimente (MUSC), Raumflugbetrieb und Astronautentraining

Tel.: +49 2203 601-3048
Dr. Matthias Grott
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Planetenforschung

Tel.: +49 30 67055-419
Torben Wippermann
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Raumfahrtsysteme

Tel.: +49 421 24420-1307
Dr. Anko Börner
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Optische Sensorsysteme

Tel.: +49 30 67055-509
Dr. Roy Lichtenheldt
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Systemdynamik und Regelungstechnik

Tel.: +49 8153 28-3095
Dr. Martin Knapmeyer
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Planetenforschung

Tel.: +49 30 67055-394
Prof. Dr. Jörg Melcher
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Faserverbundleichtbau und Adaptronik

Tel.: +49 531 295-2850

Fax: +49 531 295-2875
Marco Scharringhausen
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Raumfahrtsysteme

Tel.: +49 421 24420-1106