InSight mission: the Mars ‘Mole’ takes a break

Mission InSight: Pause für den Marsmaulwurf

05 March 2019

Autoplay
Show Info
Hide Info
Information
Close
Fullscreen
Normal
back
next
{{index}}/{{count}}
Tip:
Use <Escape>, to leave fullscreen.
  • HP3%2dExperiment auf dem Mars
    HP3 experiment on Mars

    The housing of the HP3 experiment moved slightly during hammering.

  • Die NASA%2dSonde InSight auf der Marsoberfläche
    Artist’s impression of the NASA InSight lander on the Martian surface

    Launched on 5 May 2018, NASA’s InSight spacecraft landed on 26 November 2018 just north of the Martian equator, and deploy its solar panels. SEIS, an instrument for recording seismic waves (left of image), and HP3, an instrument developed by DLR to measure the thermal conductivity of the Martian regolith and the heat flow from the interior of the planet (right of image), have been placed on the planet's surface.

  • HP3 cutaway rendering

    An artist's concept of InSight's heat probe, called the Heat Physical Properties Package, or HP³.

    This annotated cutaway rendering labels various parts inside of the instrument.

    JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

    A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES and the Institut de Physique du Globe de Paris (IPGP) provided the Seismic Experiment for Interior Structure (SEIS) instrument, with significant contributions from the Max Planck Institute for Solar System Research (MPS) in Germany, the Swiss Federal Institute of Technology (ETH Zurich) in Zurich, Switzerland, Imperial College London and Oxford University in the United Kingdom, and JPL. DLR provided the Physical Properties Package (HP³) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the wind sensors.

  • Rammsonde "Maulwurf"
    The HP3 Mole penetrometer

    On 12 February 2019 at 19:18 CET, DLR's Mars 'Mole' was released onto the Martian surface with the robotic arm of the NASA lander InSight.

  • Die InSight%2dLandesonde kurz vor der Fertigstellung
    The InSight lander nearing its completion

    Lockheed Martin Space constructed the InSight lander for NASA. The InSight lander will carry two major experiments, the Heat Flow and Physical Properties Probe (HP3) and the Seismic Experiment for Interior Structure (SEIS), to Mars, where a robotic arm will place them beside the spacecraft after landing.

  • Selfie der InSight%2dLandesonde auf dem Mars
    'Selfie' of the InSight lander on the Martian surface

    InSight's first complete 'selfie' on Mars. It shows the solar arrays and the platform of the lander. On the platform are its scientific instruments and the UHF antenna.

  • The Mars ‘Mole’ began hammering into the surface on 28 February.
  • It may have come up against a rock or something else that is proving highly resistant beneath the surface.
  • The researchers will analyse the data before it can continue hammering.
  • Focus: Space, exploration

As part of NASA’s InSight mission, the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) developed a penetrometer designed to dig three to five metres below the surface of Mars and measure the heat emanating from the planet’s interior. After the Mars ‘Mole’ began hammering into the ground on Thursday 28 February, the probe, which is part of DLR’s HP3 (Heat and Physical Properties Package) instrument, came about three-quarters of the way out of its housing structure before stopping. Data also suggests that the 'Mole' is at a 15-degree tilt.  

“The team has therefore decided to pause the hammering for about two weeks to allow the situation to be analysed more closely and jointly come up with strategies for overcoming the obstacle,” writes Tilman Spohn of the DLR Institute of Planetary Research, Principal Investigator of the HP3 experiment, on his InSight mission blog. The researchers suspect that the Mole has hit a rock or some gravel. The team had hoped that there would be relatively few rocks beneath the soil, as images of the landing site show only a few on the surface near the landing module. In principle, the Mars Mole has been designed to push smaller stones aside, and proved capable of such a feat in tests conducted before it was launched for Mars.

Thermal conductivity measurements get under way

All of the data received show that the Mole is continuing to work as expected: after heating up by 28 degrees Celsius during the hammering process, it measured how quickly heat dissipated into the soil as it cooled down. This property, known as thermal conductivity, helps to determine the heat flow from deep inside the planet. Once the Mole is deep enough, it will be possible to calculate the heat flow with greater accuracy.

The researchers will carry out more measurements this week in order to gauge the thermal conductivity of the upper layer of the Martian soil (regolith) more precisely. In addition, the radiometer on InSight’s deck will be used to analyse temperature changes in the soil caused as Phobos, one of Mars’ moons, moves in front of the Sun. Phobos’ shadow will cross the radiometer’s field of view three times this week, rather like an eclipse of the Sun on Earth, and the instrument will measure the result.

HP3_Flickr_Galerie

The HP³ Instrument instrument on NASA’s InSight mission

The InSight mission is being carried out by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, on behalf of the agency’s Science Mission Directorate. InSight is part of NASA’s Discovery Program. DLR is contributing the Heat Flow and Physical Properties Package (HP³) experiment to the mission. The scientific leadership lies with the DLR Institute of Planetary Research, which was also in charge of developing and implementing the experiment in collaboration with the DLR Institutes of Space Systems, Optical Sensor Systems, Space Operations and Atronaut Training, Composite Structures and Adaptive Systems, and System Dynamics and Control, as well as the Institute of Robotics and Mechatronics. Participating industrial partners are Astronika and the CBK Space Research Centre, Magson GmbH and Sonaca SA, the Leibniz Institute of Photonic Technology (IPHT) as well as Astro- und Feinwerktechnik Adlershof GmbH. Scientific partners are the ÖAW Space Research Institute at the Austrian Academy of Sciences and the University of Kaiserslautern. The DLR Microgravity User Support Center (MUSC) in Cologne is responsible for HP³ operations. In addition, the DLR Space Administration, with funding from the German Federal Ministry for Economic Affairs and Energy, supported a contribution by the Max Planck Institute for Solar System Research to the French main instrument SEIS (Seismic Experiment for Interior Structure).

Detailed information on the InSight mission and the HP³ experiment is available on DLR’s dedicated mission site with extensive background articles. You can also find information in the animation and brochure about the mission or via the hashtag #MarsMaulwurf on the DLR Twitter channel. Tilman Spohn, the Principal Investigator for the HP³ experiment, is also providing updates in the DLR Blog portal about the activities of the Mars Mole.

Last modified:
05/03/2019 18:48:11

Contacts

 

Falk Dambowsky
German Aerospace Center (DLR)

Media Relations

Tel.: +49 2203 601-3959
Prof.Dr. Tilman Spohn
German Aerospace Center (DLR)

DLR Institute of Planetary Research

Tel.: +49 30 67055-300

Fax: +49 30 67055-303
Christian Krause
German Aerospace Center (DLR)

Operation: HP3, STATIL
Dr Matthias Grott
German Aerospace Center (DLR)

DLR Institute of Planetary Research

Tel.: +49 30 67055-419
Torben Wippermann
German Aerospace Center (DLR)

DLR Institute of Space Systems

Tel.: +49 421 24420-1120
Dr Anko Börner
German Aerospace Center (DLR)

DLR Institute of Optical Sensor Systems

Tel.: +49 30 67055-509
Dr Roy Lichtenheldt
German Aerospace Center (DLR)

Institute of System Dynamics and Control

Tel.: +49 8153 28-3095
Dr Martin Knapmeyer
German Aerospace Center (DLR)

DLR Institute of Planetary Research

Tel.: +49 30 67055-394
Dr.-Ing. Björn Timo Kletz
German Aerospace Center (DLR)

DLR Institute of Composite Structures and Adaptive Systems

Tel.: +49 531 295-3228

Fax: +49 531 295-2876