

DLR's Airborne SAR System

F-SAR PRODUCT DESCRIPTION

German Aerospace Center (DLR) Microwaves and Radar Institute Department of SAR Technology

prepared:		
	Martin Keller, Jens Fischer, Marc Jäger	Datum
approved:	Rolf Scheiber	Datum
released:	· · · · · · · · · · · · · · · · · · ·	
	Andreas Reigber	Datum

Doc. : DLR-FSAR-PRODVersion:3.3Date:27.08.2024Page:2 of 23

Intentionally left blank!

GENERAL

Verteiler

Organisation	Copies	Name
DLR/HR	1	Martin Keller
DLR/HR	1	Jens Fischer
DLR/HR	1	Marc Jäger
DLR/HR	1	Rolf Scheiber
DLR/HR	1	Andreas Reigber
DLR/HR	1	Ralf Horn
DLR/HR	1	Eric Schreiber

The custodian of this document is Martin Keller.

Revision Control

Version	Rev.	Date	Pages	Changes	Status
2	3	2013-06-15	all	First version released	Draft
2	4	2013-08-01	19	Description of Mosaic Products	Draft
2	5	2014-12-01	all	Circular SAR products	Draft
2	6	2015-06-09	all	CSAR and HoloSAR products	Draft
2	7	2015-10-19	8,13,	Pauli basis quicklooks;	Draft
			29-30	Specific change detection product components	
				Specific ice sounding product files	
2	8	2016-06-02	all	Various changes to improve consistency, added a short explanation relating to binary data formats used, updated the mosaic product description.	Draft
2	9	2016-10-18	5,8,14,16,32	Added appendix concerning radiometric calibration. Updated INF product definition. Updated GTC-LUT component definition to include polynomial coefficient matrices for "3D Geocoding"	Draft
2	10	2016-11-25	27-29	Product components for HoloSAR mode updated	Draft
3	0	2016-11-25	all	Included up-to-date examples of parameter structures, added GTC-LUT figure, changed heading indent	Draft
3	0	2017-08-16	31	Added remark regarding geocoded change detection results.	Draft
3	0	2018-03-01	17	Corrected the units of the vertical wavenumber (kz).	Draft
3	1	2019-07-12	34	Added description of the range- compressed-raw product	Draft
3	2	2019-11-28	7,31-38	Added description of the auxiliary data, in particular antenna and calibration related information.	Draft
3	2	2020-03-19	9,10	Added GPS week second row to real and reference tracks	Draft

Doc. : D	LR-FSAR-PROD	DLR's Airborne SAR	Λ
Version:	3.3	F-SAR Product	
Date:	27.08.2024	Description	
Page:	4 of 23		DER

3	3	2024-08-27	5-6, 8-15	Added description of file naming	Draft
				convention. Added description of GeoTiff/NetCDF4 formats. Extended GTC product with geo2sr LUTs	

CONTENTS

GENERAL		3
1 Inti	roduction	6
1.1	Purpose	6
1.2	Structure of the Document	6
1.3	Binary data formats	6
1.3.1	F-SAR Products in RAT Format	6
1.3.2	F-SAR Products in COG Format	6
2 File	e and Directory Structure	7
2.1	Directory Structure	7
2.2	Product Structure	7
2.3	Filename Convention (RGI/GTC/INF)	8
3 Cor	ntents of Individual Product Components	10
3.1	RGI Product	10
3.2	GTC Product	15
3.3	INF Product	
3.4	Mosaic Product	20
Append	ix 1: Radiometric Calibration	21
Append	lix 2: Rat Format	22

1 Introduction

1.1 Purpose

This document presents the structure of F-SAR data products. The structure is also reflected in the archive DIMS (Data Ingestion and Management System) of the German Remote Sensing Data Ceter, where F-SAR data are stored.

1.2 Structure of the Document

Section 2 lists the available F-SAR products and describes the overall product structure.

Section 3 lists the individual file content for each product's subdirectory.

1.3 Binary data formats

F-SAR data products are stored in two alternative binary formats. The first format primarily uses files in the DLR-internal RAT format along with ENVI header files to make the binary data readable in various other software packages. The second format is based around Cloud-Optimized GeoTiff (COG) files with some data held in NetCDF4 files. In both cases, the directory structure and the file naming convention is identical.

1.3.1 F-SAR Products in RAT Format

The first format primarily uses the RAT format, which is described in detail in Appendix 2: Rat Format. A source package of Python 3 code for reading RAT files, including the meta-data in the file header, and parsing the XML documents used to store parameters is available online: <u>F-SAR Data Formats (dlr.de)</u>.

In addition, most RAT files are accompanied by .hdr files, which allow the data to be opened in ENVI. The widely used GDAL software library also supports the ENVI format, such that these data can also be opened using free alternatives such as <u>QGis</u>. All of these programs then support export to various other file formats, such as GeoTiff.

For geocoded data (primarily in the GTC product), the hdr file also specifies the parameters of the geographic grid used.

1.3.2 F-SAR Products in COG Format

F-SAR Products in the GeoTiff format save all binary data as Cloud-Optimized GeoTiff (COG) files except for the track information, which is stored in NetCDF4 files. While geocoded products are associated with a valid geographic reference system, slant range data (RGI and INF products) are not.

2 File and Directory Structure

2.1 Directory Structure

Processed campaign data is typically stored in a multi-level directory structure.

Pattern: <CAMPAIGN> / FL<flight> / PS<pass> / T<processing try>

- CAMPAIGN: two digits indicating the year of data acquisition followed by a six character campaign designation
- flight: two digits indicating flight number within the campaign
- pass: two digits indicating pass within flight
- processing try: identifier used for the processing version (the same data may be re-processed with different processing parameters or external inputs)

2.2 Product Structure

The processing try directory (or the pass directory in the case of RAW products) contains one or more products. The internal folder structure of these products is as follows:

RGI: Products in radar geometry (slant range)

RGI-SR RGI-TRACK RGI-RDP RGI-QL RGI-AUX	(Slant range data) (Sensor position and attitude angles) (Processing parameters) (Quicklooks) (internal use only)
GTC: Geocoded products	
GTC-IMG GTC-DEM	(Geocoded radar data) (DSM generated from interferometric processing)
GTC-LUT	(Lookup tables for geocoding)
GTC-QL	(Quicklooks)
GTC-AUX	(internal use only)
INF: Interferometric products	
INF-SR	(Slant range data)
INF-TRACK INF-RDP	(Sensor positions) (Processing parameters)
INF-QL	(Quicklooks)
INF-AUX	(internal use only)
Mosaic products	
GTC-IMG	(Geocoded radar data)
GTC-RDP GTC-OI	(Processing parameters) (Ouicklooks)

2.3 Filename Convention (RGI/GTC/INF)

F-SAR filenames used to store processed data generally have a consistent naming convention.

Data in the RGI and GTC products adopt the following naming convention:

<prefix>_<campaign><flight><pass>_<band>[<antenna>][<polarization>]_t<processing try>.<extension>

Example 1: slc_23gabonx0706_Phh_tP01.tif

- prefix: slc (content description, in this case Single Look Complex SAR imagery)
- campaign: 23gabonx (leading digits indicate the year in which the data were acquired)
- flight: 07 (two digits indicating flight number)
- pass: 06 (two digits indicating pass within flight)
- band: P (frequency band)
- antenna: n/a (empty for the primary antenna in each frequency band; otherwise two digits indicating transmit and receive antenna number for single-pass interferometric acquisitions)
- polarization: hh (lexicographic polarization; empty for data that applies to all channels of the frequency band)
- processing try: P01 (the same data may be re-processed with different try names with different parameters or external inputs).
- Extension: tif (for COG data or .rat + .hdr for RAT/ENVI data)

Example 2: incidence_23gabonx0706_P_tP01.tif

- prefix: incidence (local incidence angle)
- polarization: n/a (applies to all channels of the frequency band)

Example 3: amp_23iceInd0604_X22vv_t01X.rat

- prefix: amp (backscatter amplitude)
- antenna: 22 (transmit and receive on the second X-Band antenna)

Interferometric data is generally stored in the slave pass. The filenames use an extended convention that includes the name of the master acquisition.

<prefix>_<insar pair>_<band>[<insar antenna>][<polarization>]_t<processing try>.<extension>

where

<insar pair> = <master campaign><master flight><master pass>_<slave campaign><slave flight><slave pass> and

<insar antenna> = <master transmit/receive antenna><slave transmit/receive antenna>

Example 1: slc_coreg_23gabonx0702_23gabonx0706_Phh_tP01.tif

- prefix: slc_coreg (co-registered slave SLC)
- master: 23gabonx0702 (pass 2 of flight 7)
- slave: 23gabonx0706 (pass 6 of flight 7)

Example 2: coh_23iceInd0604_23iceInd0604_X1122vv_t01X.rat

- prefix: coh (interferometric coherence)
- master and slave: 23iceInd0604 (single-pass interferometry)
- insar antenna: 1122 (master transmit and receive on antenna 1, slave transmit and receive on antenna 2)

3 Contents of Individual Product Components

3.1 RGI Product

RGI-SR

amp_*[.rat +.hdr .tif]	amplitude slant angle (see Appe	range SAR data, Gamm endix 1: Radiometric Calib	na-0 corrected using the local incidence	
incidence_*[.rat +.hdr .tif] mask_*[.rat +.hdr .tif] slc_*[.rat +.hdr .tif]	local incidence angle map mask indicating valid samples in the slant-range imagery single-look complex slant range SAR data. Beta-0 corrected (see Appendix 1:			
	Radiometric Cal	ibration)		
pol_full_*.png	full resolution P	olSAR colour composite i	n lexicographic basis (optional)	
	Channel	Polarisation	7	
	Red	VV	7	
	Green	HV/VH		
	Blue	HH	-	

pauli_full_*.png

full resolution PolSAR colour composite in Pauli basis (optional)

Channel	Polarisation
Red	HH - VV
Green	HV/VH
Blue	HH + VV

slantdem_*.tif

DEM in slant range geometry with heights in local coordinates (COG format only).

RGI-TRACK

Track information is saved at the full resolution. The length of the tracks may therefore be greater than the dimensions of the SLC in azimuth depending on the azimuth presuming carried out during processing (see processing parameter *pre_az* in **RGI-RDP** below).

Track information in RAT format

attit_*.rat

aircraft attitude sampled equidistant in time

Row	Description	Units		
0	Time	[GPS week seconds]		
1	Pitch	[radians]		
2	Roll	[radians]		
3	Heading	[radians]		

attit_resa_*.rat

aircraft attitude resampled equidistant in space (see **attit**)

fixpoint_*.rat

coordinate of origin of local and SAR coordinate systemsElementDescriptionUnits0Longitude[degrees]1Latitude[degrees]2Height over WGS84[m]

reference track in local coordinates, resampled equidistant in time

	Row	Description	Units	
	0	Time	[GPS week seconds]	
	1	+ towards the east	[m]	
	2	+ towards the north	[m]	
	3	+ upwards	[m]	
reftr_loc_resa_*.rat	reference track (see reftr_loc)	 k in local coordinates, resampled k in SAR coordinates, campled or 	equidistant in space	
Terti_salrat	Row		Units	
	0	Time	[GPS week seconds]	
	1	+ In flight direction		
	2	+ to the left	[m]	
	2		[m]	
	_		[]	
	Row	Description	Units	
	0			
		<u> </u>		
	2	Y		
	3	Z	[m]	
track_loc_*.rat	real track in lo (see reftr loc)	cal coordinates, sampled equidis	tant in time	
track_loc_resa_*.rat	real track in lo (see reftr_loc	cal coordinates, resampled equic _ resa)	listant in space	
track_sar_*.rat	real track in SA (see reftr sar)	AR coordinates, sampled equidist	ant in time	
track_sar_resa_*.rat	real track in SA (see reftr_sar	real track in SAR coordinates, resampled equidistant in space (see reftr sar resa)		
track_xyz_resa_*.rat	real track in W (see reftr xyz	/GS84 cartesian coordinates, resa : resa)	ampled equidistant in space	

Track information in NetCDF4 format

Track information in NetCDF4 format is stored in two types of files. The first file, with prefix "refgeom", holds information about the reference geometry, which is the same for all channels in a given frequency band. The second fine, with prefix "tracks", holds channel dependent information.

Unless stated otherwise, the contents of variables stored in the NetCDF4 files follow the coordinate conventions of the RAT files with the same prefix.

refgeom*.nc / fixpoint	coordinate of origin of local and SAR coordinate systems			
	Element	Description	Units	
	0	Longitude	[radians]	
	1	Latitude	[radians]	
	2	Height over WGS84	[m]	
refgeom*.nc / reftr_loc	reference track in local coordinates, sampled equidistant in time			
refgeom*.nc / reftr_loc_resa	reference track in local coordinates, resampled equidistant in space			

coordinate of origin of local and SAR coordinate systems

Doc. : DLR-FSAR-PRODVersion:3.3Date:27.08.2024Page:12 of 23

refgeom*.nc / reftr_sar	reference track in SAR coordinates, sampled equidistant in time
refgeom*.nc / reftr_sar_resa	reference track in SAR coordinates, resampled equidistant in space
refgeom*.nc / reftr_xyz_resa	reference track in WGS84 Cartesian coordinates, resampled equidistant in space
tracks*.nc / attit	aircraft attitude sampled equidistant in time
tracks*.nc / attit_resa	aircraft attitude resampled equidistant in space
tracks*.nc / track_loc	real track in local coordinates, sampled equidistant in time
tracks*.nc / track_loc_resa	real track in local coordinates, resampled equidistant in space
tracks*.nc / track_sar	real track in SAR coordinates, sampled equidistant in time
tracks*.nc / track_sar_resa	real track in SAR coordinates, resampled equidistant in space
tracks*.nc / track_xyz_resa	real track in WGS84 cartesian coordinates, resampled equidistant in space

RGI-RDP

pp_*.xml step.xsl processing parameters xml style file to display XML parameters in a tabular format (see the following example)

Parameter	Value	Units	Remark
Processor	STEP-trunk	string	The name of the processor
Build	4091	string	The processor build (SVN version)
Ident	OP16BF0412	string	Campaign, flight and pass of the channel
Coding	T1X1H0_R2X1H0	string	Coding of the channel transmit and receive paths
Site	Kaufbeuren	string	Site of the image acquisition
Date	23-Jun-2016 13:29:50	date	Date and time of the acquisition (DD/MM/YYYY)
time_stamp	368890190	1	F-SAR RTC time
Band	Х	string	Frequency Band (S/X/L etc.)
polarisation	HH	string	Transmit and receive polarisation (H or V for each)
Campaign	16op16bf	string	Name of the campaign
Flight	04	string	Flight (sensor continuously airborne)
Pass	12	string	Pass (individual acquisition)
prockernel	EOK	string	The name of the processing kernel used for image formation (EOK,FFBP etc.)
Azbins	83160	1	The number of azimuth bins in the raw data
Rgbins	28160	1	The number of range bins in the raw data
Prf	1201.9231	Hz	Pulse repetition frequency
Cd	1.0016000e-05	S	Chirp Duration
Rd	1.6864000e-05	S	Range Delay
Rsf	1.000000e+09	Hz	Range sampling frequency
c0	2.9971190e+08	m/s	Speed of light in air
v0	91.148202	m/s	Sensor velocity
f0	9.600000e+09	Hz	Centre Frequency
Lambda	0.031219990	m	Wavelength
Squint	-1.5077326	deg	Processed squint angle

DLR's Airborne SAR F-SAR Product Description

Heading	91.164020	deg	Sensor heading			
Antdir	1	1	Antenna pointin	ng direction (-1/1 for left/right)		
h0	3047.7072	m	Sensor altitude			
terrain	779.59671	m	Average terrain height			
cbw	7.600000e+08	Hz	Chirp bandwidt	h		
abw	233.54506	Hz	Processed azim	uth bandwidt	h	
res_az	0.5000000	m	Processed azim	uth resolution	l	
res rg	0.25261143	m	Processed range	e resolution		
res az ml	0.5000000	m	Multi-looked az	imuth resolut	tion	
res rg ml	0.5000000	m	Multi-looked ra	nge resolutio	n	
looks az	1	1	Number of look	s in azimuth	after multi-looking	
looks rg	1	1	Number of look	s in range aft	er multi-looking	
ps_az	0.30334121	m	Pixel spacing in	azimuth	<u> </u>	
ps rg	0.14985595	m	Pixel spacing in	range		
sub_az	1	1	Sub-sampling in	n azimuth		
sub_rg	1	1	Sub-sampling in	n range		
sub az ml	2	1	Sub-sampling in	n azimuth afte	er multi-looking	
sub_rg_ml	1	1	Sub-sampling in	n range after 1	multi-looking	
pre az	4	1	Presumming in	azimuth		
alpha	[0.540000,0.540000]	1	Vector of hanni [azimuth.range]	ng alpha para	meters for spectral weighting in	
alpha_ml	[0.540000,0.540000]	1	Vector of hanni	ng alpha para in multi-lool	meters for spectral weighting in	
R	Pointer	m	Vector of one-w range image	ay range dist	ances for the columns of the slant	
rref	3618.0471	m	Reference range for processing (ECS only)		ng (ECS only)	
nrx	46080	1	Number of pixels in azimuth for the processed image			
nrv	14560	1	Number of pixe	ls in range fo	r the processed image	
nrx_part	[15233,61312]	1	The [start,end] (was processed)	of the scene in	n azimuth (if only part of the scene	
nrx_part_to	[15165,61244]	samples	samples Part of date processed, with respect to the non-resampled track			
nry_part	[5456,20015]	1	1 [The [start,end] of the scene in range (if only part of the scene processed)		n range (if only part of the scene was	
nry_pad	24576 1 The number of		The number of	pixels in rang	e, padded for processing speed	
rb_first	0	1	The column ind	ex of the first	valid range bin	
rb_last	14559	1	The column ind	ex of the last	valid range bin	
calib_type	0	1	The type of cali beta0, 2: sigma(bration carrie), 3: gamma0	d out (-1: none, 0: beta0 (ECS), 1: , 4: gamma0 w/o DEM slope)	
rfi_thresh	0.0000000	1	Threshold for R	FI filtering (() deactivates filtering)	
topo_moco	2	1	The type of topo 1: ECS moco, 2	ography comp : ECS with S	pensation during processing (0: none, ATA)	
highsquint	0	1	Flag to indicate Enables high-fic	that this data lelity MoCo	has has exceptionally high squint:	
ang_range	[15.000000,90.000000]	deg	Range of valid of max angle] in do	off-nadir angl egrees.	es in the processed image: [min angle,	
		Sti	ructure geo_poly	T		
The boundin	g polygon of the valid pixel	s in the p	rocessed image.	Given in pixe	els and Longitude/Latitude/Height.	
Geographic coordinates are with respect to the WGS84 ellipsoid.				ellipsoid.		
Parameter	Value			Units	Remark	
Pixels	[0.0000000,167.00000, 14559.000,311.00000, 14559.000,11208.000, 0.0000000,11352.000]			pixels	Pixel coordinates of the valid samples in the processed image: [x1,y1,,x4,y4].	
Lonlat	Lonlat [10.593800,47.873338,795.46507, 10.592819,47.846476,793.71590, 10.636977.47.846148.738.46193			Geographic coordinates	The geographic coordinates corresponding to the points in 'pixels': [lon1 lat1 heigh1 lon4 lat4 height4]	

	10.639179,47.874019,727.46173]			where 'lon' and 'lat' denote 'longitude and 'latitude', respectively.
sounder_r	mode 0 1		1 indicates that geometry	t this data set was acquired in nadir-looking

RGI-QL

amp_full_*.png	high resolution amplitude slant range image (optional)
amp_pres_*.png	presummed amplitude slant range quicklooks
attitude_*.png	plots of the sensor attitudes
pol_pres_*.png	presummed PolSAR colour composite in lexicographic basis
	(see pol_full in RGI-SR)
pauli_pres_*.png	presummed PolSAR colour composite in Pauli basis
	(see pauli_full in RGI-SR)
track_*.png	plots of the real and reference tracks in black and red, respectively

RGI-AUX (for internal use only)

ant1d_*.sav	1D antenna diagrams in elevation and azimuth
ant2d_*.sav	2D antenna pattern (elevation and azimuth) for central frequency
ant3d_*.sav + .png	3D antenna pattern (squint,off-nadir,frequency)
ant3d_pha_cent* .png	3D antenna phase center
offnadir_*[.rat +.hdr .tif]	Off-Nadir angle for each pixel of the SLC [radians]
pol_nesz_*.rat + .png	2D image of estimated NESZ values (presummed)
pol_nesz_vec_*.rat	1D vector of NESZ values as a function of off-nadir angle
pol_profile_*.png	HH/HV/VH/VV intensities as a function of range and co-/cross-pol phase
	differences
replica_*.rat +.png	Chirp replica
replica_*.rat + .png	Quicklook of the chirp replica
slantdem_*.rat	DEM in slant range geometry
tc_vector_*.rat	vector to transform from beam-center to zero Doppler geometry
tiepoint_eval*.png	Tiepoint evaluation plots
tiepoints_*.sav	Tiepoint coordinates, orientation, image positions and evaluated performance
*.log	log-files of the processing
*.pbs	pbs-files of the processing

3.2 GTC Product

For geocoded data in the RAT + ENVI hdr format, the layout of binary geocoded data on disk follows the GeoTiff convention. When binary geocoded data or lookup tables are read directly from disk (i.e. without using proper GIS software/libraries), it is therefore important to note that:

- The *last* row of data corresponds to the *minimum* northing coordinate and the northing increases towards the first row.
- The *first* column corresponds to the *minimum* easting coordinate and easting increases towards the last column.

GTC-IMG

ampgeo_*[.rat +.hdr .tif]	geocoded amplitudes
maskgeo_*[.rat +.hdr .tif]	geocoded binary valid sample mask
incidencegeo_*[.rat +.hdr .tif]	geocoded local incidence angle
mlookgeo_*[.rat +.hdr .tif]	geocoded multilooked amplitude (optional)
mlookgeo_*.png	high resolution geocoded multi-look image (optional)

GTC-DEM

demgeo_*[.rat +.hdr | .tif]geocoded DSM from InSAR processing ([m] over the WGS84 Ellipsoid)hemgeo_*[.rat +.hdr | .tif]geocoded height error map ([m], height standard deviation)

GTC-LUT

grid, see ENVI .hdr file for projection parameters)

grid, see ENVI .hdr file for projection parameters)

projection parameters)

sr2geo_az_*[.rat +.hdr | .tif]

sr2geo_rg_*[.rat +.hdr | .tif]

sr2latlon_az_*.rat +.hdr

sr2latlon_rg_*.rat +.hdr

geocoded range index into the SLC (Lat/Lon grid, see ENVI .hdr file for projection parameters)
"inverse" LUT with the easting pixel index for each sample of the slant-range grid. Used for mapping raster data from the UTM grid to slant-range.

geocoded azimuth index into the SLC (Lat/Lon grid, see ENVI .hdr file for

geocoded azimuth index into the SLC, denoted lut_{az} in the example above (UTM

geocoded range index into the SLC, denoted lut_{rg} in the example above (UTM

geo2sr_east_*[.rat +.hdr | .tif]

Doc. : DL	R-FSAR-PROD	DLR's Airborne SAR	Λ
Version:	3.3	F-SAR Product	
Date:	27.08.2024	Description	
Page:	16 of 23		DER
geo2sr_no	orth_*[.rat +.hdr .tif]	"inverse" LUT with the northing pixel index for each sam grid. Used for mapping raster data from the UTM grid to	ple of the slant-range slant-range.
geozsi_cu			
		Curvature correction to be applied when converting ellip	soidal height (WGS84)

to a height in the Cartesian local coordinate system (e.g. used by slantdem).

GTC-LUT: Optional files for "3D Geocoding"

sr2geo3d_rg_o[12] *[.rat +.hdr	.tif]
	polynomial coefficients for updating the range lookup table to reflect a different DEM height
sr2geo3d_az_o[12] *[.rat +.hdr	.tif]
	polynomial coefficients for updating the azimuth lookup table to reflect a different DEM height
sr2geo3d_h0*[.rat +.hdr .tif]	ellipsoidal heights used to compute the original lookup tables in sr2geo*rat

These files are provided to allow users to geocode data onto arbitrary DEMs by computing corrections to the lookup tables held in the sr2geo*rat files. All of the files above contain 2D matrices defined on the same geographic grid as the lookup tables and other geocoded data.

The sr2geo3d_h0*rat file holds the input DEM heights used for geocoding. The range and azimuth lookup tables for a height offset δ_h relative to this DEM can be obtained from the coefficient matrices as follows:

$$\begin{split} sr2geo_{rg}^{new} &= sr2geo_{rg} + \delta_h sr2geo3d_{rg}^{o1} + (\delta_h)^2 sr2geo3d_{rg}^{o2} \\ sr2geo_{az}^{new} &= sr2geo_{az} + \delta_h sr2geo3d_{az}^{o1} + (\delta_h)^2 sr2geo3d_{az}^{o2} \end{split}$$

Computing lookup tables for a given absolute ellipsoidal height h_{new} is accomplished by defining

$$\begin{aligned} & \delta_h = h_{new} - sr2geo3d_{h0} \\ \\ \textbf{GTC-RDP} \\ & pp_*.xml & \text{RGI processing parameters (see RGI-RDP)} \\ & pgeo_*.xml & geocoding processing parameters \\ & step.xsl & xml style file to display XML parameters in a tabular format (see the following example) \\ \end{aligned}$$

Parameter	Value	Units	Remark
processor	STEP-trunk	string	The name of the processor
build	4325:4338M	string	The processor build (SVN version)
ident	AFRISR0812	string	Campaign, flight and pass of the channel
coding	T1P1H0_R5P1H0	string	Coding of the channel transmit and receive paths
site	Nkok	string	Site of the image acquisition
date	12-Feb-2016 10:35:59	date	Date and time of the acquisition (DD/MM/YYYY)
band	Р	string	Frequency Band (S/X/L etc.)
polarisation	HH	string	Transmit and receive polarisation (H or V for each)
campaign	16afrisr	string	Name of the campaign
flight	08	string	Flight (sensor continuously airborne)
pass	12	string	Pass (individual acquisition)
prockernel	BACKGEOCODING	string	The processing kernel used
utm_step_east	2.0000000	m	UTM grid sampling east
utm_step_north	2.0000000	m	UTM grid sampling north
utm_file	•••	string	DEM file used as input
ellipsoid	WGS84	string	The ellipsoid used for geocoding (default WGS84)

ell_major_axis	6378137.0	m	ellipsoid major axis
ell_minor_axis	6356752.3	m	ellipsoid minor axis
long0_scl	0.99960000	1	Scaling factor at central meridian
long0_step	6	deg	difference of central meridians of adjacent UTM zones
flag_datum_change_track	0	1	flag to perform datum shift for reference track
track_ax	0.0000000	m	translation in X-axis
track_ay	0.0000000	m	translation in Y-axis
track_az	0.0000000	m	translation in Z-axis
track_rx	0.0000000	rad	rotation around X-axis
track_ry	0.0000000	rad	rotation around Y-axis
track_rz	0.0000000	rad	rotation around Z-axis
track_scale	1.0000000	1	scaling factor
flag_presum	0	1	flag to perform presumming/averaging to adjust resolution to UTM grid
file2geocode	Pointer	string	Array of slant range files to be geocoded

GTC-QL

ampgeo_*.png + .kml polgeo_pres_*.png + .kml demgeo_*.png + .kml geocoded amplitude quicklooks (.kml for Google Earth display) geocoded PolSAR colour composite (.kml for Google Earth display) quicklook of DEM from interferometric processing (optional)

3.3 INF Product

INF-SR	
coh_*[.rat +.hdr .tif]	interferometric coherence
kz_*.rat	vertical wavenumber [rad/m]
pha *[.rat +.hdr .tif]	residual or <i>flattened</i> interferometric phase (after flat earth and DEM compensation)
pha_dem_*[.rat +.hdr .tif]	the phase that needs to be subtracted from the master – slave interferogram to <i>flatten</i> it (i.e. to remove the flat earth and topographic phase components)
slc_coreg_*[.rat +.hdr .tif]	slave SLC image (see RGI-SR), coregistered to master geometry
INF-SR: Optional files (output	t during InSAR DEM generation)
insardom *[rat + hdr tif]	DEM from InSAR processing (slant-range)

Insardem_*[.rat +.hdr | .tif]DEM from InSAR processing (slant-range)pha_cal_*[.rat +.hdr | .tif]interferometric phase after baseline calibrationpha_uw_*[.rat +.hdr | .tif]unwrapped Phase (optional)

INF-TRACK

The contents of this component largely correspond to the RGI-TRACK component of the slave acquisition (see section 3.1 for details). In addition, the INF-TRACK component may include residual baseline errors which are estimated as part of the repeat-pass interferometric processing chain. These baseline errors are in the SAR coordinate system.

Row	Description	Units
0	+ In flight direction	[m]
1	+ to the left	[m]
2	+ upwards	[m]

Track information in RAT format

baseline_error_*.rat

residual baseline errors estimated during interferometric processing, stored in a three dimensional array [n_iterations, track_length, axis]. The total estimated residual baseline error is given by summing over the first axis. The result is in the SAR coordinate system (see table above)

Track information in NetCDF4 format

tracks*.nc / baseline_error_<master id>

residual baseline errors estimated during interferometric processing stored in the SAR coordinate system (see table above). <master id> is of the form <campaign><flight><pass> (e.g. 23gabonx0702).

INF-RDP	
pp_*.xml	processing parameters of master SLC
ppinsar_*.xml	parameters for InSAR processing
step.xsl	xml style file to display XML parameters in a tabular format (see example below)

Parameter	Value	Units	Remark
processor	STEP-trunk	string	The name of the processor
build	4325:4338M	string	The processor build (SVN version)
ident	AFRISR0812	string	Campaign, flight and pass of the channel
coding	T1P1V0_R6P1V0	string	Coding of the channel transmit and receive paths
site	Nkok	string	Site of the image acquisition
date	12-Feb-2016 10:35:59	date	Date and time of the acquisition (DD/MM/YYYY)

band	Р	string	tring Frequency Band (S/X/L etc.)		
polarisation	VV	string	Transmit and receive polarisation (H or V for each)		
	16afrisr	string	campaign name of the master pass		
master_flight	01	string	flight ID of the master pass		
master_pass	07	string	pass ID of the master pass		
prockernel	FUSAR	string	The processing kernel used		
baseline	[0.347289,62.3161,0.00000]	m	Baseline [horizontal, vertical]		
topo	1	1	Take into account the slant-range-DEM in InSAR Processing		
coreg	2	1	Coregistration mode. 1: geometry w/o DEM; 2: geometry with DEM; 3: geometry+offset from data		
rgfilter	0	1	Perform spectral range filtering; 0: no filter; 1: band-pass; 2: range adaptive		
phasetype	3	1	Type of phase computed.1: unmodified; 2: flat-earth removed; 3: DEM removed (residual)		
presumming	[1,1]	1	Presumming factor in [range,azimuth] for coherence and phase		
complexcoh	0	1	Derive phase from complex coherence (otherwise only presumming, no filter)		
cohalgo	1	1	Type of coherence filter. 0: moving average; 1: Gauss		
kz	2	Compute KZ; 0: do not compute; 1: with flat-earth; 2: with topography			
uwalgo	0	1	Unwrapping algorithm. 0: no phase unwrapping; 1: region growing; 2: SNAPHU; 3: graph-cuts		
bcalalgo	0	1	Type of baseline calibration. 0: do not calibrate; 1: with reflectors; 2: with reference DEM; 3: from data (SD)		
p2halgo	0	1	Phase to height conversion. 0: no phase 2 height; 1: 2D using KZ; 2: 3D Newton		
Structure ms					
Parameters for residual baseline error estimation					
Structure geogrid					
Parameters for InSAR DEM geocoding (see ppgeo in GTC-RDP)					

INF-QL

baseline_*.pngplot of the real interferometric baselinebaseline_error*.pngplot of the estimated (and corrected) residual baseline errorcoh_*.pngpresummed coherence quicklookpha_*.pngquicklook of the residual phase (after subtracting flat earth and DEM)

INF-QL: Optional files (output during InSAR DEM generation)

insardem_*[.rat +.hdr .tif]	DEM from InSAR processing (slant-range)
pha_cal_*[.rat +.hdr .tif]	interferometric phase after baseline calibration
pha_uw_*[.rat +.hdr .tif]	unwrapped Phase (optional)
insardem_*.png	the corrections applied to the input DEM by interferometric processing
kz_*.png	quicklook of the vertical wavenumber
pha_uw_*.png	quicklook of the unwrapped interferometric phase

INF-AUX (for internal use only)	
INSAR_*.log	log-file of Insar-processing
INSAR_*.pbs	pbs-File of insar-processing
tiepoint_bcal_*.png	evaluation of the baseline calibration using tiepoints (e.g. corner reflectors)
tiepoint_height_*.png	tiepoint height error

3.4 Mosaic Product

Mosaic products are generated by combining several GTC products and follow the conventions of standard GTC product (see section **GTC** above) with following omissions:

- There are no lookup tables (GTC-LUT) since there is no slant range product in this case
- Only geocoded amplitudes (gamma-0 corrected) and a valid sample mask are provided

Appendix 1: Radiometric Calibration

SAR images are commonly radiometrically corrected in one of three fashions: beta-0, sigma-0 and gamma-0. Which type of correction is appropriate depends on the application at hand. The aim of this appendix is therefore to summarise how F-SAR data can be converted from one type of radiometric calibration to another.

In general, the formula for converting F-SAR imagery to dB values corresponding to any one of the three calibration types is as follows:

$$I_{dB} = 10 log(\langle f | I |^2 \rangle)$$

where I denotes the input image, f denotes a scale factor and <...> denotes spatial averaging or multi-looking. The scale factor f depends on the input image and the desired type of radiometric calibration in the output. The following table summarises the factors used for different conversions:

Input	Product	Factor <i>f</i> to achieve desired output				
	Component	Beta-0	Sigma-0	Gamma-0		
slc	RGI-SR, INF-SR	1	$sin(\theta_{inc})$	$tan(\theta_{inc})$		
amp	RGI-SR, GTC-IMG	$1/tan(\theta_{inc})$	$cos(\theta_{inc})$	1		

The angle θ_{inc} in the table above refers to the local incidence angle, which is given, for each sample of the image grid, in the **incidence** files that are provided as part of the RGI-SR (see section 3.1) and GTC-IMG (see section 3.2) product components for slant range and geocoded data, respectively.

Appendix 2: Rat Format

The following table indicates the binary structure of RAT (version 2) files on disk. All floating point and complex data follow IEEE standards and are stored with little endian byte ordering.

Format description:

Group	Tagname	Length [byte]	Туре	Example	Description
	MagicLong	4	1 x long	844382546	Magic number for recognizing RAT
	Version	4	1 x float	2.0	RAT Version number
	NDIM	4	1 x long	2	Number of dimensions of data matrix
	NCHANNEL	4	1 x long	1	Number of channels
RAT (100 bytes)	DIM	32	8 x long	1000,2000,0,0,0,0,0,0	Number of samples per dimension
	VAR	4	1 x long	4	IDL variable type (1- byte, 2-integer, 4 –float, 6 – complex)
	SUB	8	2 x long	5, 8	Subsampling factors
	RATTYPE	4	1x long	100	RAT type
	RESERVED	36	9 x long	9x0	<empty></empty>
INFO	INFO	100	string		Description of file content
(100 bytes)					
	PROJECTION	2	1 x int	1	Projection Type (0=Lat/Long, 1 = UTM, 2 = Gauss-Krüger)
	PS_EAST	8	1 x double	1.0	Sampling in Easting ([deg] or [m])
	PS_NORTH	8	1 x double	1.0	Sampling in Northing ([deg] or [m])
	MIN_EAST	8	1 x double	436041.00	Minimum easting (lower left corner)
GEO (100 bytes)	MIN_NORTH	8	1 x double	5921365.0	Minimum northing (lower left corner)
	ZONE	2		32	Projection zone
	HEMISPHERE	2		1	Hemisphere (1 – north, 2 - south
	LONG0SCL	8	1 x double	0.99996	Scaling factor at central meridian
	MAX_AXIS_ELL	8	1 x double	6378137.0	Ellipsoid major axis
	MIN_AXIS_ELL	8	1 x double	6356752.3	Ellipsoid minor axis

	DATUM_SHIFT	100	7 x double + 64 byte		Datum Shift Parameters (3x translation, 3x Rotation, 1x Scaling) in case other than WGS-84 ellipsoid is used.
	RESERVED	18	18 x byte		<empty></empty>
STAT (100bytes)	STAT	100	25 x long	0	Reserved for statistical values of data matrix.
DATE	START_TIME	19	string	2012-11-14 T18:20:06	Start time of data acquisiton
(100bytes)	STOP_TIME	19	string	2012-11-14 T18:21:29	Stop time of data acquisiton
	RESERVED	62	62 x byte		<empty></empty>
RESERVED1	RESERVED	100	25 x long		<empty></empty>
RESERVED2	RESERVED	100	25 x long		<empty></empty>
RESERVED3	RESERVED	100	25 x long		<empty></empty>
RESERVED4	RESERVED	100	25 x long		<empty></empty>

Functions for reading and writing the RAT format are available for IDL and python upon request.