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Abstract—The MapReduce parallel programming model is
designed for large-scale data processing, but its benefits, such
as fault tolerance and automatic message routing, are also help-
ful for computationally-intensive algorithms. However, popular
MapReduce frameworks such as Hadoop are slow for many
scientific applications and are inconvenient on supercomputers
and clusters which are common in research institutions.

Mrs is a Python-based MapReduce framework that is well
suited for scientific computing. We present comparisons of
programs and run scripts to argue that Mrs is more convenient
than Hadoop, the most popular MapReduce implementation.
We also demonstrate that Mrs outperforms Hadoop for several
types of problems that are relevant to scientific computing. In
particular, Mrs demonstrates per-iteration overhead of about 0.3
seconds for Particle Swarm Optimization, while Hadoop takes at
least 30 seconds for each MapReduce operation, a difference of
two orders of magnitude.

I. INTRODUCTION

MapReduce [1] has quickly become a popular paradigm
for large scale data intensive analysis and has also been
applied to computationally intensive programs. It has been
used for iterative algorithms such as k-means [2], logistic
regression [3], backpropagation [3], independent component
analysis [3], expectation maximization [3], support vector
machines [3], genetic algorithms [4], and particle swarm
optimization (PSO) [5]. The popularity of MapReduce may
be attributed to its simplicity and availability.

Unfortunately, most current MapReduce frameworks exhibit
poor performance in scientific applications [2]–[5] and are
ill suited to the computational environments that are most
important for scientific computing. Many universities and
research institutions have supercomputers, but these are not
tied to any particular parallel processing technology. Most
popular MapReduce frameworks are designed for large-scale
data processing in datacenters and require a dedicated cluster
and extensive configuration. Such frameworks use technolo-
gies that make MapReduce unnecessarily complex to program
and difficult to run on supercomputers and clusters that are
common in research institutions. Furthermore, performance
is not optimized for computationally intensive applications,
particularly iterative algorithms.

Mrs is a lightweight Python-based MapReduce implemen-
tation. It is designed to make MapReduce programs easy to
write, easy to run, and fast. Python helps make these design
goals possible. Mrs programs are easy to write because of

the convenience and readability of Python. The Mrs API is
also designed to avoid the need for unnecessary boilerplate.
Mrs programs are easy to run because it relies only on the
Python standard library and works with any job scheduler or
filesystem. Mrs programs are fast because Mrs is the product
of multiple significant rewrites to improve efficiency and
reduce overhead, and Python makes such restructuring man-
ageable. Furthermore, Python provides powerful approaches
for accelerating programs without sacrificing simplicity, such
as running in PyPy or integrating with custom C modules.
All of these strengths contribute to making Mrs an effective
platform for scientific computing.

Mrs offers both subjective improvements and performance
improvements over Hadoop, the most popular MapReduce
framework. We evaluate the ease of programming and read-
ability by comparing a Mrs program written in Python with a
functionally equivalent Hadoop program written in Java. We
show the simplicity in running a Mrs job on a supercomputer
with a PBS job scheduler relative to a Hadoop job in the same
environment. We also demonstrate the performance advantages
of Mrs over Hadoop using three applications: WordCount
in Project Gutenberg, a collection of 31,173 documents; a
computationally intensive estimator of π ranging from 1 to
109 samples; and Particle Swarm Optimization, an empirical
function optimization algorithm. In all cases, Hadoop exhibits
significant overhead. Despite the inherent performance ad-
vantage of Java over Python, the Mrs program maintains a
significant performance advantage when task times are less
than around 32 seconds, which is extended to around 40
seconds when using a C module in the innermost loop and
using the PyPy interpreter. This performance advantage is
particularly significant in the context of iterative algorithms,
where overhead is incurred each iteration.

Section II reviews the MapReduce programming model
and other MapReduce implementations. Section III discusses
the context of scientific computing and the specific needs
that it requires of a MapReduce implementation. Section IV
describes the programming model and the design of Mrs,
including the advantages and challenges of using Python to
implement a MapReduce system. Section V presents results
showing the benefits of Mrs over Hadoop.
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Fig. 1: Task dependencies of the map (M) and reduce (R)
operations in a MapReduce program.

II. BACKGROUND AND RELATED WORK

MapReduce is a functional programming model that is well
suited to parallel computation [1]. In the model, a program
consists of a high-level map function and reduce function
which process key-value pairs. If a problem is formulated
in this way, it can be parallelized automatically by the Map-
Reduce framework.

A MapReduce operation takes place in two main stages. In
the first stage, the map function is called once for each input
record. At each call, it may produce any number of output
records. In the second stage, this intermediate output is sorted
and grouped by key, and the reduce function is called once for
each key. The reduce function is given all associated values
for the key and outputs a new list of values (often “reduced”
in length from the original list of values).

A map function is defined as a function that takes a single
key-value pair and outputs a list of new key-value pairs. The
input key may be of a different type than the output keys,
and the input value may be of a different type than the output
values:

map : (K1, V1)→ list((K2, V2))

A reduce function is a function that reads a key and a
corresponding list of values and outputs a new list of values
for that key. The input and output values are of the same type.
Mathematically, this would be written:

reduce : (K2, list(V2))→ list(V2)

Although the formal definition of map and reduce functions
would indicate building up a list of outputs and then returning
the list at the end, it is more convenient in practice to emit one
element of the list at a time and return nothing. Conceptually,
these emitted elements still constitute a list.

Figure 1 shows the task dependencies in a MapReduce
operation. Since the map function only takes a single record,
all map operations are independent of each other and fully
parallelizable. A reduce operation may depend on the output
from any number of map calls, so no reduce operation can
begin until all map operations have completed. However, the
reduce operations are independent of each other and may be
run in parallel. The data given to map and reduce functions
are generally fine-grained to ensure that the implementation
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Fig. 2: Task dependencies of the map (M) and reduce (R)
operations in an iterative MapReduce program.

can split up and distribute tasks. The MapReduce system
consolidates the intermediate output from all of the map tasks.
These records are sorted and grouped by key before being sent
to the reduce tasks.

These map and reduce functions are sometimes decep-
tively simple. Even for applications which are simple on the
surface, it is inherently difficult to implementing a scalable
distributed system with fault-tolerance and load-balancing. In
the MapReduce model all of this complexity is found in the
surrounding MapReduce framework rather than in the map and
reduce functions.

Although not all algorithms can be efficiently formulated
in terms of map and reduce functions, MapReduce provides
benefits over many other popular parallel processing systems.
In this model, a program consists of only a map function and a
reduce function. The infrastructure provided by a MapReduce
implementation manages all of the details of communication,
load balancing, fault tolerance, resource allocation, job startup,
and file distribution. Those who write mappers and reducers
can focus on the problem at hand without worrying about
implementation details.

A more complex program may consist of multiple Map-
Reduce stages combined together. In an iterative MapReduce
program, the output of each reduce task is the input to a
subsequent map task. Figure 2 shows the task dependencies in
an iterative MapReduce operation. Iterative programs are more
sensitive to the overhead of the MapReduce implementation.
The per-iteration overhead is multiplied by the number of
iterations, which can number in the tens or hundreds of
thousands in some applications.

Most MapReduce implementations have targeted large-scale
data processing, though a few systems have focused on im-
proving performance for computationally intensive programs.
Google has described some details of its MapReduce imple-
mentation in published papers and slides, but the system is
private. The Apache Lucene project developed Hadoop, an
Java-based open-source MapReduce framework implementa-
tion. Hadoop is the largest and most well known MapReduce
implementation, and though it is primarily designed for large-
scale data processing, it has also been used for computationally
intensive tasks. HaLoop [6] is an example of a project intended
to improve the performance of Hadoop for iterative programs.
Twister [7] is an alternative MapReduce implementation de-



signed to improve performance of iterative programs with
some sacrifice of fault tolerance. Hadoop remains the most
well known and widely available MapReduce system.

III. MAPREDUCE IN SCIENTIFIC COMPUTING

Most MapReduce systems are designed to operate in racks
of computers dedicated to MapReduce processing, but scien-
tific applications use a wide range of computing resources.
A company such as Google or Yahoo with large datacenters
might have many thousands of MapReduce systems and thou-
sands of jobs per day, and dedicated systems in datacenters
are appropriate in this situation. However, many different
types of clusters are used for scientific computing. Shared
clusters, which are generally large supercomputers, use batch
scheduling systems to coordinate jobs submitted by a wide
variety of users. Private clusters, consisting of a smaller
number of commodity workstations or temporarily provisioned
cloud nodes, are used by a single user at a time and do not
require a scheduler. Shared and private clusters are different
from dedicated MapReduce clusters. A shared cluster has
many users, each of which has unique software requirements.
Supercomputers provide resources that are expected to meet
the needs of the majority of users, and any individual user can-
not expect MapReduce infrastructure to be available. Likewise,
most private clusters have no support staff to set up software.
In many cases on both shared and private clusters, an individ-
ual MapReduce user must perform installation, configuration,
and maintenance of the infrastructure they require.

Since MapReduce systems like Hadoop are designed to
operate on dedicated machines, these frameworks implement
functionality that may duplicate and conflict with the native
equivalents that are provided on a supercomputer, such as
a job scheduler and a custom distributed filesystem. Most
MapReduce frameworks include a job scheduler, but shared
clusters already provide a scheduler such as PBS, and private
clusters may not require a scheduler at all. A redundant or
unnecessary job scheduler does not introduce irreconcilable
conflicts but does add complexity in configuration, mainte-
nance, and running jobs. Likewise, a distributed filesystem is
redundant with a supercomputer’s high-availability centralized
storage. Requiring the use of a particular distributed filesystem
adds great complexity in maintenance and may be less robust
in this context than the existing storage system. After all, a
distributed filesystem expects nodes to be up all the time,
but a supercomputer’s scheduler kills processes as soon as
a job completes. The distributed filesystem may lose all of its
data nodes and all associated data within a few seconds. It is
inappropriate for a MapReduce system on a supercomputer to
use a specialized distributed filesystem or scheduler.

A MapReduce system that is well suited to scientific com-
puting on supercomputers will meet different requirements
than a MapReduce system designed for large-scale corporate
data processing. Such a system should be easy to install and
maintain and should play well with existing infrastructure.
Jobs should be easy to submit to a batch scheduling system.
Programs should require minimal boilerplate to allow for

rapid development. Many scientific programs are dynamic
research code rather than stable production software, so the
system should make it easy to develop and debug programs
on a single workstation or small cluster while scaling up to
supercomputers.

The Python programming language presents both advan-
tages and challenges in the context of scientific MapReduce.
On the one hand, Python is a full-featured and popular
language that maximizes developer productivity. It has a large
scientific community, and it is popular for developing both
prototypes and production code. It has a full-featured standard
library, and most third-party libraries are easy to install in
a home directory. Python interfaces with other languages,
such as C, C++, and Java (through Jython). PyPy is an
alternative Python interpreter that provides high performance,
especially for numerical programs. On the other hand, as a
highly dynamic language, it does not prioritize performance
above all other concerns. However, with careful attention to
the language’s limitations, it is entirely possible to write an
efficient MapReduce implementation in Python.

IV. THE DESIGN AND ARCHITECTURE OF MRS

Mrs is a lightweight MapReduce implementation that works
well for scientific computing. It is designed to be simple for
both programmers and users. The API includes reasonable
but overridable defaults in order to avoid any unnecessary
complexity. Likewise, Mrs makes it easy to run jobs without
requiring a large amount of configuration. It supports both
Python 2 and Python 3 and depends only on the standard
library for maximum portability and ease of installation.
Furthermore, Mrs is designed to easily run in a varienty of en-
viornments and filesystems. Mrs is also compatible with PyPy,
a high-performance Python interpreter with a JIT compiler that
accelerates numerical-intensive programs particularly well.

Mrs does not assume any particular job scheduler and is
convenient to run in a variety of different contexts. Starting
a job requires merely starting one copy of the program as
a master and any number of other copies of the program
as slaves. It does not require any running daemons, any
configuration files, or any particular network ports. When the
master starts, it writes its port to a file (unless a fixed port is
specified). A slave needs only the master’s address and port to
connect. Scripts that automate the startup process are available
both for shared clusters such as university supercomputers with
many users and for private clusters with a small number of
users. The script for shared clusters submits a job to a PBS
queue (and is easily adapted for any other batch scheduler).
The script for private clusters starts the master and uses pssh
(parallel-ssh) to start slaves given a list of hosts. In all cases,
configuration consists only of a short list of command-line
options.

A. Programming Model

As a programming framework, Mrs controls the execution
flow and is invoked by a call to mrs.main. The execution of
Mrs depends on the command-line options and the specified



program class. In its simplest form, a program class has an
__init__ method which takes the arguments opts and
args from command-line parsing and a run method that
takes a job argument. In practice, most program classes
inherit from mrs.MapReduce, which provides a variety of
reasonable but overridable defaults including __init__ and
run methods that are sufficient for many simple programs.
The simplest MapReduce program need only implement a map
and a reduce method.

Mrs provides several features to make writing, testing, and
debugging MapReduce programs easier. First, it can run a pro-
gram in several different execution contexts to help a program-
mer track down bugs. Second, it provides a simple mechanism
for generating independent streams of pseudorandom numbers
to make it easy to ensure that results are deterministic and
repeatable. Third, it includes a specialized programming model
for high-performance iterative MapReduce algorithms.

Mrs defines several different implementations which define
the run-time behavior of a program. The master/slave im-
plementation distributes work across a cluster of processors.
The serial implementation performs all work sequentially on
a single processor and makes all work deterministic. The
mock parallel implementation splits work into the same tasks
as would be run in the master/slave implementation but
performs all computation on a single processor. Intermediate
data between tasks is saved to files which can be helpful for
debugging. The bypass implementation invokes the program
class’s optional bypass method, which is a simple entry
point that avoids almost all of the functionality of Mrs. This
implementation makes it easy to share code between a simple
serial implementation of a program and the corresponding
MapReduce implementation. A program’s master/slave, serial,
mock parallel, and bypass implementations should all produce
identical answers, Differences in behavior between any two
implementations, even in stochastic algorithms, indicate a bug
in the program or possibly in Mrs.

Mrs provides a mechanism for defining independent streams
of pseudorandom numbers. Nondeterministic results funda-
mentally make debugging difficult and testing impossible. In
sequential programs, setting a random seed is a simple way to
make stochastic algorithms deterministic. However, in a Map-
Reduce program, setting a fixed random seed at the beginning
of each map or reduce task would make all tasks use the same
sequence of random numbers. The mrs.MapReduce class
provides a random method that returns a random number
generator. The method takes a variable number of integer
arguments and ensures that the random number generator is
unique for any particular combination of inputs. Because of
the large size of the internal state of the Mersenne Twister,
the random method can accept around 300 arguments that
are each 64-bit integers. Mrs makes it easy to generate a
unique random number generator in each task or even to create
identical random number generators in different tasks that need
to duplicate specific calculations.

Mrs is optimized for high-performance iterative algorithms.
In most MapReduce systems, there is a significant delay

between the end of one iteration and the beginning of the
next. Between iterations, a program must retrieve results,
check for convergence, and submit a new MapReduce job,
which can involve a considerable amount of overhead. Mrs
allows a program to queue up map and reduce operations
so that each is ready to begin as soon as the previous
operation finishes. It can also run operations in parallel if
they do not depend on each other. For example, a convergence
check can run in parallel with the computation of subsequent
iterations. The task scheduler in Mrs also attempts to assign
corresponding tasks to the same processor from one iteration
to the next, which reduces communication between nodes and
latency between iterations. While outside the scope of this
work, Mrs includes several other optimizations to improve the
performance of computationally intensive iterative algorithms.
Support for iterative algorithms allows Mrs to efficiently run
iterative algorithms that would otherwise be inappropriate for
MapReduce.

B. Architecture

Mrs owes much of its efficiency to simple design. Many
choices are driven by concerns such as simplicity and ease of
maintainability. For example, Mrs uses XML-RPC because it
is included in the Python standard library even though other
protocols are more efficient. Profiling has helped to identify
real bottlenecks and to avoid worrying about hypothetical ones.
We include a few details about the architecture of Mrs.

Communication between the master and a slave occurs over
a simple HTTP-based remote procedure call API using XML-
RPC. Intermediate data between slaves uses either direct com-
munication for high performance or storage on a filesystem
for increased fault-tolerance. Mrs can read and write to any
filesystem supported by the Linux kernel or FUSE, including
NFS, Lustre, and the Hadoop Distributed File System (HDFS),
and native support for WebHDFS is in progress. For data
stored to a filesystem, the writer opens and writes a file and
then sends the master the corresponding URL, which is used
for any future reads. For data communicated directly, the writer
opens and writes a file on a local filesystem, and requests from
readers are served by a built-in HTTP server. Though direct
communication writes to a local filesystem, small short-lived
files are rarely written to disk. Rather, they stay in the kernel’s
filesystem buffer and are served and removed without ever
being flushed.

Python requires a bit more attention to detail than some
other languages to properly manage threads. Within each
master and slave, Mrs generally uses processes instead of
threads because of Python’s threading model. The Python lan-
guage specifies a Global Interpreter Lock (GIL) that prevents
multiple threads in a single process from executing at the
same time. Because of the GIL, Mrs uses threads sparingly,
with their use limited to multiplexed I/O threads. Any threads
must be started after all processes have started to avoid any
risk of forking while holding a lock. In general, all child
threads are configured as daemon threads, meaning that they
are automatically terminated by Python when the main thread



completes. This ensures that a straggling thread does not pre-
vent the program from terminating. In each process, the main
thread runs an event loop based on poll. Main threads do
not wait on locks for extended periods of time because wait
is not generally interruptible by signals including keyboard
interrupts. To avoid such problems and to allow threads to
wait on network communication and other threads at the same
time, Mrs makes heavy use of pipes. Writing a single byte
to a pipe wakes up poll in a remote process or thread and
causes it to continue through its event loop. Communication
between the processes of a master or slave uses Python’s
multiprocessing module which is also based on pipes.
Complex Python programs like Mrs are much more robust and
easily designed by making greater use of processes and pipes
and only sparing use of threads and locks.

V. EVALUATION

Our objective in creating Mrs was to make MapReduce
programming fundamentally more accessible. We have sought
to take full advantage of the features and facilities in Python
to make Mrs both fast and easy to use. In this section we
evaluate our results with the Mrs framework in two ways, first
a subjective assessment of programming and running Mrs and
second a quantitative assessment of performance and scala-
bility. In both the subjective evaluation and the performance
measurements, we will compare Mrs with Hadoop, which is
currently the most popular MapReduce framework we know
of.

A. Subjective Assessment

In this subsection we seek to assess how effective Mrs is
for program development and for execution. While a software
engineering-type comparative study (with multiple groups
coding the same application under control circumstances) is
outside of the scope of this paper, we present here what we
feel is compelling subjective evidence that that Mrs is an easier
environment the development of MapReduce programs.

The most well known MapReduce example is WordCount,
a program which counts the number of occurrences of each
word in a document or set of documents. This example
problem comes from the original MapReduce paper [1]. For
this program, the input and output sets, needed for MapReduce
as defined in Section II, are:

K1 : N
V1 : set of all strings
K2 : set of all strings
V2 : N

In WordCount, the input value is a line of text. The input key
is ignored but generally arbitrarily set to be the line number
for the input value. The output key is a word, and the output
value is its count.

Program 1 shows the complete Mrs code for the WordCount
example. The Mrs implementation follows trivially from the
MapReduce approach to the problem described in that paper.

The “map” part of the implementation splits the input line into
individual words and emits one key-value pair for each word
in the input with the word token serving as the key and a
constant string representation of the number 1 as the value. In
this application, this is the so-called “embarrassingly parallel”
part of the program, separate processes can be dispatch to emit
these key value pairs for each file or even parts of files without
concern that they will conflict with each other.

The MapReduce framework groups all messages with
matching keys, via a sort step. The framework passes the key
and a list of all of the values with that key to the reduce
part of the application. The reduce function in the WordCount
example, also shown in Algorithm 1, takes a word (the key)
and the list of counts, performs a sum reduction, and emits
the result. This is the only element emitted, so the output of
the reduce function is a list of size 1.

Although not critical to an understanding of MapReduce
nor this example, the MapReduce architecture allows for
an interesting optimization. If the map tasks emit a large
number of records (as in WordCount), the sort step can take
a long time. MapReduce addresses this potential problem by
introducing the concept of a combiner function. If a combiner
is available, the MapReduce system will locally sort the output
from several map calls on the same machine and perform a
“local reduce” using the combiner function. This reduces the
amount of data that must be sent over the network for the main
sort leading to the reduce phase. In WordCount, the reduce
function can function as a combiner without any modifications.
In our quantitative results included below, we make use of this
optimization in both the Mrs version and the java version.

Program 2 shows the code for the same application but for
the Hadoop framework (without the needed imports, to con-
serve space) taken from the examples included with Hadoop.

The same basic structure is discernible. In this case there is a
class to hold the needed map and reduce functions. Java forces
exception processing to be more visible than it was in the
Python version. Likewise the marshalling of data is verbose.
Some of the complexity of the main function is driven by
the fact that Hadoop makes more of the job structure visible
where as Mrs finds the needed elements through introspection.
Likewise typing in java adds to the complexity of Hadoop
programming. It is certainly the case that Hadoop requires
users to know much about how the systems works. Where as
Mrs really just needs the map and reduce functions which is
the whole point of MapReduce programming.

One might assume that running a Mrs job would be more
complex than running a Hadoop job because Mrs generally
relies on external systems for job management and communi-
cations, Fortunately that is not the case. In the shared cluster
context running a Mrs job is quite easy. Program 3 shows the
basic elements of a PBS script for running a Mrs MapReduce
program. This script and the corresponding Hadoop script
represent have been reduced to show just the minimum script
elements required to start MapReduce jobs. Full scripts include
additional error handling and output specification. Any envi-
ronment variables not defined within the scripts are assumed



Program 1 WordCount in Mrs/Python

import mrs

class WordCount(mrs.MapReduce):
def map(self, key, value):

for word in value.split():
yield (word, 1)

def reduce(self, key, values):
yield sum(values)

if name == ’ main ’:
mrs.main(WordCount)

to be set externally.
The Mrs script (Program 3) has four basic parts: finding the

network address of the master, starting the master, wait for the
master to start, and starting the slaves.

The corresponding Hadoop (program 4) script has more
issues to address because Hadoop was designed to run on
dedicated hardware. When trying to simply run as mapReduce
program, there are many elements that have to be setup
and later shut down. There are 6 major part of this scripts.
As with the mrs scripts, first the network address must me
found. Second, the Hadoop configuration must be setup. Note
that these files are oriented to the operations of a dedicated
infrastructure, thus in some cases (just one in this case, but
it could be worse) configuration files must be edited (see
the “sed” line), not just moved into place. Next the daemon
processes must be started on the master node (step 3) and so
too must the daemons for with the slave nodes (step 4). Now
the Master task for the MapReduce can be run (step 5). Lastly,
in step 6, the daemons on both the master and slaves can be
stopped. Note also that since Hadoop requires that data be
stored in the Hadoop file system (HDFS) it must be created
and formatted as part of this process, which was included
as part of step 3. Furthermore, any data to be processed by
the MapReduce program must be copied into the HDFS, and
likewise data produced, but be copied back out before the
HDFS is deleted. The copying of data in and out of the HDFS
is accounted for in step 5. Again, in the context of a dedicated
system, many of these steps are not needed but on a share
cluster, they are.

B. Performance

In this section we will demonstrate how Mrs performance
compares to that of Hadoop using three example problems
of increasing relevance to scientific computing: WordCount,
Pi, and Particle Swarm Function Optimization (PSO). For the
first two of these experiments we used our private cluster of
21 machines, each with 6 cores. For the last set experiments
involving empirical function optimization, we used the Fulton
Supercomputing Lab at Brigham Young University. For all
experiments using Hadoop we used the Hadoop file system

Program 2 WordCount in Hadoop (imports omitted)

public class WordCount {
public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {

StringTokenizer itr =
new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key,
Iterable<IntWritable> values, Context context
) throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new

GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println(”Usage: wordcount <in> <out>”);
System.exit(2);
}
Job job = new Job(conf, ”word count”);
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job,

new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,

new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}



Program 3 Mrs Startup Script (PBS)

# Step 1: Find the network address.
ADDR=$(/sbin/ip −o −4 addr list ”$INTERFACE”
|sed −e ’s;ˆ.∗inet \(.∗\)/.∗$;\1;’)

# Step 2: Start the master.
PORT FILE=”$JOBDIR/port”
$PYTHON $MRS PROGRAM −−mrs=Master \
−−mrs−runfile=”$PORT FILE” ${ARGS[@]}

# Step 3: Wait for the master to start.
while [[ ! −e $PORT FILE ]]; do sleep 1; done
PORT=$(cat $PORT FILE)

# Step 4: Start the slaves.
pbsdsh bash −i −c ”$PYTHON $MRS PROGRAM
−−mrs=Slave −−mrs−master=’$ADDR:$PORT’”

Program 4 Hadoop Startup Script (PBS)

# Step 1: Find the network address.
ADDR=$(/sbin/ip −o −4 addr list ”$INTERFACE”
|sed −e ’s;ˆ.∗inet \(.∗\)/.∗$;\1;’)

# Step 2: Set up the Hadoop configuration.
export HADOOP LOG DIR=$JOBDIR/log
mkdir $HADOOP LOG DIR
export HADOOP CONF DIR=$JOBDIR/conf
cp −R $HADOOP HOME/conf $HADOOP CONF DIR
sed −e ”s/MASTER IP ADDRESS/$ADDR/g”
−e ”s@HADOOP TMP DIR@$JOBDIR/tmp@g” \
−e ”s/MAP TASKS/$MAP TASKS/g” \
−e ”s/REDUCE TASKS/$REDUCE TASKS/g” \
−e ”s/TASKS PER NODE/$TASKS PER NODE/g” \
<$HADOOP HOME/conf/hadoop−site.xml \
>$HADOOP CONF DIR/hadoop−site.xml

# Step 3: Start daemons on the master.
HADOOP=”$HADOOP HOME/bin/hadoop”
$HADOOP namenode −format # format the hdfs
$HADOOP HOME/bin/hadoop−daemon.sh start namenode
$HADOOP HOME/bin/hadoop−daemon.sh start jobtracker

(HDFS) since it is required. For the data intensive WordCount
application we also used HDFS, but also tried NFS. The NFS
results differ very little (about a second) from those reported.
When using HDFS we dedicated one machine as the HDFS
name node, Hadoop job tacker and Mrs master. We also
assumed that the HDFS was already running for both frame-
works. For Hadoop, we ensured that all Hadoop deamons and
task trackers were already running. In this way, we measured
the performance of the actual MapReduce programs, and not
the infrastructure supporting the MapReduce frameworks.

Our first example uses the WordCount problem, as this task
is common in MapReduce literature. We use all of the text
works from Project Gutenburg, a freely available collection of
public domain ebooks (omitting files such as music or Human
Genome Project data). Our full dataset of the works available
in pure ASCII format includes 31,173 files, for a total of
roughly two billion unique word tokens. We utilize HDFS to
store this data for both Mrs and Hadoop.

Unfortunately for our comparison, the directory structure
from Project Gutenburg is not very amenable to Hadoop. The
input file loader for the Hadoop system expects all of the files
to be located in a single directory, which is not the case with
the Project Gutenburg dataset. With the full dataset, Hadoop
struggles to load the data from so many locations, making
the start up time alone take nearly nine minutes. In contrast,
Mrs is able to perform the entire ReduceMap operation, which
included loading the data, counting the words, and aggregating
the counts, in under nine minutes. We feel that the directory
structure of Project Gutenburg is representative of real world
data and that fundamentally Mrs is more flexible in terms
of loading data. Note that on a smaller subset of the data
with only 8,316 files, Hadoop takes one minute to prepare the
data, with a total time of sixteen minutes to finish, while Mrs
finishes the entire MapReduce operation in just two minutes.

While WordCount is a canonical MapReduce example, the
PiEstimator example in Hadoop is more representative of the
numeric, computationally intensive problems encountered in
most scientific computation. PiEstimator computes the value
of π using a simple Monte Carlo method. While trivial to
implement, this task is computational in nature, with no data
on disk. This method consists of generating a large number of
sample points uniformly distributed on a square with area of
1. An estimation of π / 4 is achieved by multiplying the ratio
of points which fall within unit circle centered at a corner of
the square to the total number of points. Multipling this value
by 4 yields the final approximation of π.

PiEstimator generates random numbers using Halton se-
quences. While these sequences are entirely deterministic, they
are quasi-random. Compared to uniform random numbers,
Halton sequences tend to generate numbers which cover the
sample space more evenly, which can lead to better results
in certain types of Monte Carlo simulations. In all languages,
the implementation of the Halton sequence is optimized to
minimize the number of function calls and the number of
comparison operations.

Figure 3 shows the results using Hadoop, Mrs with Python,
Mrs with PyPy, and Mrs using ctypes to call a C function.
We see two interesting trends. On the left-hand side of the
graph, we see that Mrs significantly outperforms Hadoop,
regardless of the choice of Python interpreter. This can be
attributed to the high overhead inherent in using the Hadoop
framework. For this problem, in human terms, it may not
matter that the task completed in two seconds verses thirty
seconds However, as we will discuss shortly, many scientific
applications are iterative in nature, and this cost in overhead
is multiplied by the number of iterations, making this a strong
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(a) Halton sequence with Mrs using pure Python.
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(b) Mrs with the inner loop implemented in C.

Fig. 3: Run times for estimating the value of π. The left
hand side of the plots indicates that Mrs has significantly
less overhead than Hadoop. The right hand side shows the
performance of the numerical code, which is exponential due
to the log scale. The algorithm is identical in all cases,
so the differences reveal the performance penalty of each
programming language.

advantage of the Mrs framework over Hadoop. As we look to
the right hand side of Figure 3a, we see that the excellent
numeric performance of Java begins to win out over pure
Python. This can be attributed to the static nature of Java and
the high quality of the Java JIT. While not unexpected, this
does highlight a weakness of using pure Python for scientific
computing.

However, Python makes it easy to rework existing code
so that performance critical parts of an application, such as
the inner loop of our map tasks, can be rewritten in C. For
our second experiment approximating the value if π, we use
Python’s ctypes module to call a C function instead of
the the pure Python implementation of the Halton sequence
to uniformly generate random points. In this way we were
able to very easily replace the inner loop of our map task
with optimized C code, while leaving the rest of the loop
unchanged. Figure 3b shows the results. Once again we see
on the left that Mrs has extremely low overhead compared
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Fig. 4: Convergence plots of the Apiary topology for the
Rosenbrock-250 function with respect to function evaluations
and time.

to Hadoop. However, the C function is much faster than
the corresponding Java function, so Mrs is much faster than
Hadoop, despite the vast majority of Mrs code being in Python.

This experiment does show a key advantage of Python
over other languages like Java—Python is designed to easily
interface with other languages. We assert that the speed of
Python will rarely be the true source of performance problems
in the Mrs framework. Instead, thoughtful consideration of
algorithms, coupled with profiling and careful optimization
will yield the most improvement. In essence, Python allows
us to quickly implement scientific application code, and then
easily convert any critical paths to C. Java on the other hand,
suffers somewhat in this respect.

Our final experiment is an optimization technique used
in actual scientific computing. Particle Swarm Optimization
(PSO) is an empirical function optimization algorithm inspired
by simulations of flocking behaviors in birds and insects [8],
[9]. The algorithm simulates the motion of a set of interacting
particles within a multidimensional space. At each iteration, a
particle moves and evaluates the objective function at its new
position. A particle is drawn toward the best value it has seen
and the best value that any of its neighbors has seen. PSO
can be naturally expressed as a MapReduce program, with
the map function performing motion simulation and evaluation
of the objective function and the reduce function calculating
the neighborhood best by combining the updated particle with
messages from its neighbors [5]. For computationally trivial
objective functions, task granularity can be too fine if each map
task operates on a single particle. In this case, a swarm can be
divided into several subswarms or islands, and each map task
operates on several iterations of a subswarm of particles [10]–
[12].

Using the “Apiary” approach for subswarming [12], Fig-
ure 4 shows the results for the well-know Rosenbrock bench-
mark function in 250 dimensions (“Rosenbrock-250”) with
both serial and parallel computation. Performing 100 iterations
on 5 particles requires only 0.2 seconds, and parallel PSO took
about 0.5 seconds per iteration. Note that Mrs took advantage



of the the features for iterative MapReduce that we previously
mentioned. Furthurmore, this figure includes only the overhead
between iterations, and not the start up time for Mrs (which
is about 2 seconds). With any realistically expensive function,
the overhead of 0.3 seconds would be negligible.

While we did not actually run PSO using Hadoop, we can
estimate its performance. From the execution in Mrs, we know
that for the Rosenbrock-250 function PSO took an average of
2471 iterations to reach the target value of 10−5. From our
experiments with calculating π, we know that Hadoop takes
approximately 30 seconds per iteration. Thus Hadoop would
take approximately 2471∗30 seconds or a little longer than 20
hours to achieve the same convergence. While we realized that
this figure is a rough estimate, our experience with Hadoop
suggest that for iterative tasks of this nature, the overhead of
Hadoop often makes it slower than running the same task in
serial on a single machine.

VI. CONCLUSION

The concept of MapReduce has allowed many users to
express their scientific computations in an easily paralleliz-
able way. However, the complexity of existing MapReduce
frameworks often presents a significant programming burden.
Furthermore, most existing MapReduce frameworks such as
Hadoop are optimized for performing high volume data anal-
ysis rather than solve numerically intense problems. We have
presented Mrs as a MapReduce framework which not only
eases the programming barrier to entry, but is highly efficient
in a scientific context.

Mrs is particularly well suited to an academic or research
environment. Many universities and research institutions have
supercomputer clusters, or private clusters but these are often
generic in nature, not tied to any particular problem or parallel
processing technology. Existing frameworks such as Hadoop
which require a dedicated cluster and extensive configuration
are not always suitable for researchers. Mrs on the other hand
has proven exceptionally easy to install and use in a wide
variety of environments, scheduling systems, and filesystems.

The choice of Python as our implementation language also
aids researchers. Python is a language which naturally lends it-
self to readable and maintainable code. The syntax is clear and
powerful, allowing users to quickly develop, test and deploy
scientific applications. Furthermore, Mrs itself takes advantage
of Python to make writing MapReduce programs easier. As we
have demonstrated, Python lends itself to optimization, without
sacrificing code quality by allowing bottleneck portions to be
converted to C without affecting any other Python code.

Furthermore, the performance characteristics of Mrs are
tailored for scientific computing, where overhead can be more
of a significant issue. In particular, the low overhead of Mrs
has improved our ability to tackle iterative evaluations such
as empirical function optimization. While it was beyond the
scope of this paper, future work on Mrs will include additional
features which will further improve iterative MapReduce. We
have developed a model for iterative MapReduce which allows
for efficient implementation. In addition, we have developed

a novel operations, which lower overhead by significantly
reduce the need for communication compared to traditional
MapReduce systems.
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