
Efficient Dynamic Derived Field Generation on
Many-Core Architectures Using Python

Cyrus Harrison∗, Paul Navrátil†, Maysam Moussalem‡, Ming Jiang∗, and Hank Childs§
∗ Lawrence Livermore National Laboratory, [cyrush, jiang4] @ llnl.gov

† Texas Advanced Computing Center, University of Texas at Austin, pnav@tacc.utexas.edu
‡ Department of Computer Science, University of Texas at Austin, maysam@cs.utexas.edu

§ Lawrence Berkeley National Laboratory, hchilds@lbl.gov

Abstract—Derived field generation is a critical aspect of many
visualization and analysis systems. This capability is frequently
implemented by providing users with a language to create new
fields and then translating their “programs” into a pipeline of
filters that are combined in sequential fashion. Although this
design is highly extensible and practical for development, the
runtime characteristics of the typical implementation are poor,
since it iterates over large arrays many times. As we reconsider
visualization and analysis systems for many-core architectures,
we must re-think the best way to implement derived fields while
being cognizant of data movement. In this paper, we describe a
flexible Python-based framework that realizes efficient derived
field generation on many-core architectures using OpenCL. Our
framework supports the development of different execution
strategies for composing operations using a common library of
building blocks. We present an evaluation of our framework by
testing three execution strategies to explore tradeoffs between
runtime performance and memory constraints. We successfully
demonstrate our framework in an HPC environment using the
vortex detection application on a large-scale simulation.

I. INTRODUCTION

Derived field generation refers to creating new fields from
existing fields in the simulation data. This capability is a
critical aspect of the exploration process that occurs with
scientific visualization and analysis. Typically, simulations are
limited in memory size and file size, which restricts the
number of fields that can be generated during each run, and
users often want to derive fields that are beyond what the
simulation considers. As the increasing power cost of data
movement will force visualization and analysis to occur in
situ [5], there is a growing need for a more flexible and
efficient approach to generate derived fields that can exploit
emerging many-core architectures.

There are three keys areas to derived field generation: 1)
the primitives that create new fields, 2) the interface that
allows users to dynamically compose these primitives, and 3)
the mechanism that transforms and executes the composed
primitives. In VisIt [13], this capability comes through its
“expression” language, and in EnSight [14] and ParaView [7],
through a calculator interface. In all cases, the user is presented
with primitives ranging from simple arithmetic functions (e.g.,
+,−, ∗, /) to complex mathematical operators (e.g., ·,×,∇) as
well as conditionals. The following is a string-based example
of composing primitives, which resembles VisIt’s expression

language, where a new scalar field a is created from scalar
fields b and c:

a = if (norm(grad(b)) > 10) then (c ∗ c) else (−c ∗ c)

One of the issues with derived field generation is the lack of
flexibility to exploit emerging many-core architectures (many-
core CPUs and GPUs) that offer unprecedented potential for
energy efficient HPC. Due to the diversity of capabilities of
many-core architectures, it is imperative to develop different
mechanisms, or execution strategies, that can transform and
execute the composed primitives. When developing these
execution strategies, one must consider both runtime perfor-
mance and memory constraints. The ability to design and test
different execution strategies for derived field generation on
many-core architectures will be a prerequisite for success on
supercomputers in the coming years.

Another ongoing issue with derived field generation is
inefficiency. For example, in VisIt’s expression language a
syntax is defined to enable user composition. VisIt employs
a traditional parser that breaks the composed expressions into
their atomic form and then constructs a dataflow network that
applies filters in one-to-one correspondence with its opera-
tions. A shortcoming of this design is that each filter operates
on a data array in its entirety before moving on to the next
one. This means that the data arrays are iterated over multiple
times, which is not only contrary to the in situ approach but
can also lead to cache thrashing for large data sets.

In this paper, we present a flexible and efficient framework
for dynamic derived field generation on many-core archi-
tectures through the use of Python and OpenCL [38]. We
build upon the previous design, which provides primitives that
can be composed dynamically, and focus on the challenge
of providing a framework that enables designing and testing
efficient execution strategies for derived field generation on
many-core architectures. Our framework includes a Python-
based parser for user composed expressions, a Python dataflow
network that uses PyOpenCL [24] to execute kernels on
many-core devices, and a host interface that enables a host
application to use our framework in situ.

We developed three execution strategies using our frame-
work and use the application of vortex detection in a Rayleigh-
Taylor instability simulation to evaluate our strategies. The

evaluation explores runtime performance and memory con-
straints.

At a high level, the contribution of this paper is illuminating
the path for moving a key component of visualization tools to
many-core architectures. Specifically, the contributions of this
paper are:

• A first-ever development of derived field generation sys-
tem that works on many-core architectures.

• A flexible Python-based framework for designing and
testing efficient execution strategies.

• An evaluation of our framework, exploring memory
constraints and the runtime efficiency tradeoffs of our
execution strategies.

The rest of the paper is organized as follows: Section II
describes related work; Section III describes our framework
in detail; Section IV describes our evaluation methodology;
in Section V we present our results and then conclude in
Section VI.

II. RELATED WORK

Python adoption by the scientific community is growing
for simulation and analysis tasks due to the broad set of
capabilities provided by popular packages such as NumPy [32]
and SciPy [23]. Popular end user visualization tools for large
data, such as EnSight [14], ParaView [7] and VisIt [13], use
Python to provide client interfaces and interfaces for data
manipulation. Many third-party Python modules provide the
foundational software used in our framework. We use PLY [9]
to build a parser for expression inputs. NumPy and VTK’s [37]
Python wrappers enable efficient handling of mesh coordinates
and field arrays. We use PyOpenCL to access and manage
OpenCL devices. PyOpenCL provides interfaces for kernel
compilation, kernel dispatch and data array transfer.

Python is well suited for parsing user expressions. In this
work, we use PLY, which has been closely modeled on the
original Lex and Yacc tools. It uses Look-Ahead LR(1) pars-
ing [6], which is fast, memory-efficient and well-suited for pro-
cessing our expression grammar. There are many other Python-
based parser generators available, including ANTLR [33],
SimpleParse [18], PyParsing [28], SPARK [8], Yapps [34] and
Plex [17].

The Python community has several active projects that
focus on using Python to create high performance code.
Cython [10] uses extensions to the Python syntax to introduce
type information. This information is used to generate fast
compiled code and to create an easy bridge for calling C-
functions. Numba [31] translates NumPy based Python into
high performance code using LLVM [25] via llvmpy [1].
PyPy [36] uses an aggressive Just-in-Time compiler to provide
a fast Python runtime.

A subset of Python performance efforts focus on targeting
many-core devices. Theano [11] allows users to generate
CUDA and C++ code from NumPy-based Python expressions.
Clyther [20] uses a similar strategy to Cython, but creates
code that targets OpenCL devices. Our work differs from these
efforts in that we provide a derived field generation framework

Python Dataflow Network

Host
Application

Data

User
Expressions

Expression Parser

PLY

Target
Device

Execution
Strategies

PyOpenCL

H
o

st
 In

te
rf

ac
e

Fig. 1. The system architecture for our derived field generation framework:
the expression parser, the Python dataflow network and the host interface.
Note that the target device can be a multi-core CPU or a GPU.

that computes a user’s expression leveraging a set of existing
OpenCL kernels. The framework allows developers to easily
deploy primitives and lets users to dynamically compose them
in a host application.

Currently, there are many low-level programming frame-
works that expose parallelism for multi- and many-core
CPUs and accelerators, including GPUs. Frameworks targeting
multi- and many-core CPUs include PThreads, OpenMP [15]
compiler directives, OpenCL and Intel’s Thread Building
Blocks [35]. Frameworks targeting GPUs include CUDA [2],
OpenCL kernel programming languages and runtimes and
OpenACC [3] compiler directives.

There are several emerging efforts focused on producing
new programming and data models that can efficiently utilize
massive on-node parallelism for visualization and analysis
across a diverse set of hardware architectures. These efforts
include DAX [30], PISTON [26], EAVL [29] and Hyper-
Flow [39]. Domain specific languages, such as SCOUT [27]
and Liszt [16] are also an attractive option, because they
provide high-level data and programming abstractions to de-
velopers. Our work differs from these efforts in that it focuses
on the area of derived field generation: exploring efficient
execution strategies and a framework that allows for operations
to be implemented independent of execution strategies.

III. SYSTEM ARCHITECTURE

This section describes the three-part architecture of our ex-
pression framework: the expression parser, the Python dataflow
network, and the host interface. Using this framework, we
provide three execution strategies, each with different data
movement and kernel invocation characteristics. The interac-
tion between the architecture components is shown in Fig-
ure 1. The host interface accepts user-generated expressions
and incorporates them into the Python dataflow network by
parsing them with a PLY-based parser. The dataflow network is
executed using one or more OpenCL kernels, as determined by
the execution strategy. The resulting derived field is returned
via the host interface. Below, we describe each of these
components in greater detail.

A. Expression Parser

At the front-end of our framework is a PLY-based parser [9],
which takes a user defined input expression and produces a
dataflow network specification. An expression is a statement,
or set of statements, that compose a more complex calculation.
The parser constructs a parse tree using the rules specified
by a limited expression grammar. Statements can either be
“simple”, (i.e. consisting of a constant value, a variable, or a
single filter invocation along with a set of inputs), or they can
be “nested”, (i.e. filter invocations calls with sub-expressions
as arguments).

In the resulting parse tree, the root of each sub-tree cor-
responds to an assignment statement or a filter invocation.
Assignment statements are used to associate a specific name
with the filter invocation defined in its child node. For filter
invocation sub-trees, child nodes are the filter’s inputs, each
of which may be one of two types. In the first case, the child
node is a leaf and is therefore a final type, such as a constant
value or an identifier mapping to the output of another filter. In
the second case, the child node is the root of another sub-tree
and is therefore defines a nested filter invocation.

We traverse the parse tree to generate a dataflow network
specification. Filter invocations are given a generic name when
encountered. Assignment statements map generic names to
those provided by user. Throughout the traversal, each filter
invocation, with the the names of its immediate inputs, is
added to a Python list.

Basic operations, such as binary math operations are trans-
lated into the equivalent dataflow filter names as required to
generate the network specification. For some expressions, ac-
cessing the components of a multi-dimensional variable is re-
quired (see vorticity magnitude and Q-criterion in Section IV).
To capture this, the parser supports a bracket syntax similar
to C/C++ arrays, which it translates into a “decompose” filter
in the dataflow network specification.

Using the list of all filter invocations, common constants
are reduced to single instances of source filters. We also
use a limited common sub-expression elimination strategy to
avoid computing unnecessary intermediate results. After these
transformations, the list of filter invocations is fed into the
Python dataflow network.

B. Python Dataflow Network

Dataflow networks create “pipelines” made up of “sources”,
“sinks” and “filters” to carry out a desired operation [4],
[22], [37]. Our framework employs this design to create user
defined derived fields. Filters correspond to the primitives that
generate new fields, while sources and sinks get data in to
and out of the target device (i.e. host-to-device and device-
to-host memory exchanges). The dataflow network approach
is very flexible, as its modules can be dynamically connected
in unforeseen ways by the user. Our Python-based approach
enhances the flexibility of this design by enabling multiple
execution strategies; this aspect is described in Section III-C.

Here, we discuss how the user can define a network, how
that network is constructed and initialized, and what filters are

supported within our dataflow module. In our discussion, we
will make a logical distinction between the OpenCL “host” and
target “device”: host will refer to system CPU and memory;
device will refer to the component executing OpenCL kernels
and its associated memory, whether the component is a GPU
or the system CPU.

1) Network Definition: Our system provides a network
definition API that reflects the “create and connect” modality
of the dataflow paradigm. Our front-end parser uses this API
to construct a dataflow network specification that realizes the
user’s expression. The process optionally creates a Python
script that outlines all API calls, which can be inspected by
the user. The API can also be used directly from Python, by
a user or by a host application.

2) Network Initialization: Executing a dataflow network
requires understanding the dependencies between filters. Our
dataflow network module uses a topological sort to ensure
proper precedence. It provides reference counting and reuses
intermediate results multiple times to avoid unnecessary com-
putation and reduce memory overhead. NumPy arrays are
the primary data representation used in PyOpenCL and thus
the form of input/output data adopted. PyOpenCL is used to
transfer NumPy arrays between the OpenCL host and target
device.

3) Supported Primitives: To support the dataflow construct,
we implemented a set of basic primitives that act as flexible
building blocks that can be combined to express more com-
plex calculations. These building blocks are small OpenCL
source functions that are written once and shared by all
execution strategies. Each function contains minimal metadata
to describe global memory requirements and the return type.
The subset of operations necessary to support the expressions
explored in this paper include: addition, subtraction, multipli-
cation, square root, vector decomposition, and a 3D rectilinear
mesh field gradient. This subset of operations is sufficient to
demonstrate a capability that supports complex derived fields.

C. Execution Strategies

Our Python-based framework is able to support different
execution strategies that control data movement and how
the OpenCL kernels for each of the derived field primitives
are composed to compute the final result. For this study
we implemented three strategies: roundtrip, staged and fu-
sion, which are described below. Our system could easily
be extended to generate other execution strategies as well.
This extension would involve modifying only the Python-
based transformations – the OpenCL kernels for each primitive
would not need to be modified.

1) Roundtrip: This execution strategy dispatches a distinct
OpenCL kernel for each derived field primitive used in the
user’s expression. Further, at the end of each operation,
the resulting array is transferred back to the host. From
a performance perspective, this is a poor choice, since the
back-and-forth traffic is often unnecessary. The advantage of
this strategy is that it can utilize the host memory to hold
intermediate results, allowing it to compute derived quantities

that may be constrained by faster strategies that require more
global memory on a target device. Explicitly, if a derived field
requires inputs F1, F2, ... Fn, then the target device may not
be able to store all of the Fi’s (see Figure 2 for an example).

2) Staged: For this execution strategy, like the roundtrip
strategy, one kernel is executed for each derived field primitive
used in the user’s expression. It contrasts with roundtrip in that
data holding intermediate results is not transferred between
host and target device. Instead, the data is staged in the
device’s global memory between kernel invocations.

3) Fusion: For this execution strategy, a dynamic kernel
generator employs kernel fusion to construct and execute a
single OpenCL kernel that implements all of the operations.
This execution strategy contrasts with staged in that it uses a
single kernel invocation and the fused kernel stores the inter-
mediate results computed using the derived field primitives in
local device registers. This minimizes the number of accesses
to global memory, as long as the generated kernel program
can fit on the device and avoid spilling results intended for
local registers into the global memory.

The dynamic kernel generator used by this strategy is flex-
ible enough to incorporate derived field primitives for simple
one-line math functions, as well as more complex multi-line
operations, e.g., the 3D rectilinear mesh field gradient requires
over 50 lines of OpenCL source code. In addition, to efficiently
support complex dataflow networks, the generator provides the
following features:

• Per-element function calls for simple primitives (e.g. add,
subtract, etc).

• Direct access to device global memory arrays for op-
erations with more complex memory requirements (e.g.
gradient).

• Source-code level insertion of constants.
• Operations that return multiple values per element are

represented using built-in OpenCL vector types (e.g.
float2, float4, ...).

• Source-code level implementation of array-decompose
operations to select the proper OpenCL vector sub-
component (e.g. val.s0, val.s1).

Although the fusion strategy appears at first glance to
be a clear-cut winner, the path to many-core success will
require exploring many different strategies. Especially in an
in situ setting, visualization applications will be subject to
practices that are optimal for the simulation code, possibly
preventing strategies such as creating new data decompositions
or streaming data. While roundtrip in particular would appear
to be a poor use of resources (because of its excessive memory
bandwidth requirements), it is able to use CPU memory to
store intermediate results, allowing it to consider data sets
bigger than fusion. Figure 2 gives an example showing the
different memory constraints required to execute the same
dataflow using our three strategies. This example shows the
constraints depend on the relationships of the filters in the
dataflow network. Our system was designed with such sub-
tleties in mind, allowing primitives to be written one time and

3	
 3	

3	

(a) Roundtrip

3	
 4	

3	

(b) Staged

5	

(c) Fusion

Fig. 2. This figure presents a simple example dataflow network and shows
the varying global device memory constraints required to execute this network
with each of our three strategies. The circles indicate data arrays and the boxes
indicate filters, annotated with the amount of memory required to execute.
Roundtrip (left) is the least constrained, at 3 problem sized arrays, because it
stores all intermediate results in the host memory. Staged (center) requires 4
arrays due to the need to keep an intermediate data array in device memory
while the second filter is executing. Fusion (right) requires 5 arrays, since all
filters are combined into a single kernel.

then used as part of multiple execution strategies as required
by target device constraints.

D. Host Interface

The parser front-end and dataflow network are implemented
as Python modules and ran using Python from within a host
application. This allows the framework to efficiently operate
on existing data arrays in situ. The host application provides
both the user’s expression and NumPy objects for the input
data arrays. Our framework processes the expression, executes
the operations, and returns the resulting data array with the
field representing the user’s expression. Due to their wide use
and the integration into PyOpenCL, NumPy arrays are the
input/output data interface adopted for our framework.

Our framework executes in a standard Python interpreter
with dependent modules (PLY, NumPy, PyOpenCL) installed.
As stated above, the module can be used in situ for codes that
provide a NumPy interface to their mesh data fields. For this
paper, we use VisIt as an example host application. To call our
framework from within VisIt, we wrote a custom VisIt Python
Expression. This capability allowed us to create a Python filter
that processes Python-wrapped instances of VTK data sets
from a VisIt pipeline to create a new mesh field. For input
data, VTK Python wrappers provide access to NumPy objects
for existing VTK data arrays. These NumPy objects provide
an efficient way to access existing raw data arrays and are
compatible with PyOpenCL. The VisIt engine executes Python
Expressions using a Python interpreter per MPI task.

Once the pipeline is constructed and our framework com-
putes the user’s expression, each subsequent rendering step
reuses the resulting mesh. The pipeline is executed only once
per time step for all rendering operations, such as changing
the viewpoint, and it is executed again if the data set changes,
such as when a different time step is loaded.

IV. EVALUATION METHODOLOGY

In this section, we describe the methodology used to eval-
uate our framework and execution strategies. We first present

the application expressions and the simulation data sets used
in our evaluation. We then describe the HPC cluster where we
ran our experiments and the three studies we performed.

A. Application Expressions

To test our framework, we selected three derived quantities
that are useful in vortex detection and analysis. Detecting
vortices in complex flow fields is a problem of interest for
many scientific applications. For a comprehensive overview
of existing vortex detection algorithms see [21]. These ex-
pressions represent a range of computational complexity and
memory usage, from the near-trivial vector magnitude to the
expensive Q-criterion.

The first expression is vector magnitude, which is a common
measure of the flow intensity across a vector field. We apply
this expression to both velocity vectors and vorticity vectors.
The input expression for velocity magnitude is shown in
Figure 3A.

The second expression is vorticity magnitude, which is a
measure of local spin in the vector field and is often used as
a simple vortex detection method. The vorticity vector is the
curl of the velocity vector and can be computed as follows:

ω = ∇× υ =
(

∂w
∂y −

∂v
∂z

∂u
∂z −

∂w
∂x

∂v
∂x −

∂u
∂y

)
(1)

The input expression for vorticity magnitude is shown in
Figure 3B.

The third expression is Q-criterion, developed by Hunt et
al. [19]. It is based on the observation that, in regions where
Q = 1

2

(
||Ω||2 − ||S||2

)
> 0, rotation exceeds strain and, in

conjunction with a pressure minimum, indicates the presence
of a vortex. S is the symmetric rate of strain tensor and Ω is
the antisymmetric rate of rotation tensor, which are defined in
terms of the velocity gradient tensor J = ∇υ as:

S = 1
2

(
J + JT

)
, Ω = 1

2

(
J − JT

)
(2)

Note that ||A|| is the Frobenius (matrix) norm defined as:

||A|| =
√
Tr(AAT) =

√√√√ m∑
i=1

n∑
j=1

|aij |2 (3)

See Figure 3C for the input expression for Q-criterion.
The corresponding dataflow network specification for the Q-
criterion is shown in Figure 4. This is the most complex
expression used in our evaluation.

B. Data Sets

To test the performance of our execution strategies on these
expressions, we use sub-grids of a single time step of a
30723 DNS Raleigh-Taylor (RT) instability simulation run
from Lawrence Livermore National Laboratory (LLNL) [12].
This large-scale simulation contains vortical features and the
simulation data files provide a velocity vector field that can be
used as input to our application expressions. To study single
device performance as data per device grows, we selected
twelve sub-grids of the RT data set that vary from 9.4 to
113.3 million cells. Each sub-grid contains cell-centered values

A: Velocity Magnitude

v_mag = sqrt(u*u + v*v + w*w)

B: Vorticity Magnitude

du = grad3d(u,dims,x,y,z)
dv = grad3d(v,dims,x,y,z)
dw = grad3d(w,dims,x,y,z)
w_x = dw[1] - dv[2]
w_y = du[2] - dw[0]
w_z = dv[0] - du[1]
w_mag = sqrt(w_x*w_x + w_y*w_y + w_z*w_z)

C: Q-criterion

du = grad3d(u,dims,x,y,z)
dv = grad3d(v,dims,x,y,z)
dw = grad3d(w,dims,x,y,z)
s_1 = 0.5 * (du[1] + dv[0])
s_2 = 0.5 * (du[2] + dw[0])
s_3 = 0.5 * (dv[0] + du[1])
s_5 = 0.5 * (dv[2] + dw[1])
s_6 = 0.5 * (dw[0] + du[2])
s_7 = 0.5 * (dw[1] + dv[2])
w_1 = 0.5 * (du[1] - dv[0])
w_2 = 0.5 * (du[2] - dw[0])
w_3 = 0.5 * (dv[0] - du[1])
w_5 = 0.5 * (dv[2] - dw[1])
w_6 = 0.5 * (dw[0] - du[2])
w_7 = 0.5 * (dw[1] - dv[2])
s_norm = du[0]*du[0] + s_1*s_1 + s_2*s_2 +

s_3*s_3 + dv[1]*dv[1] + s_5*s_5 +
s_6*s_6 + s_7*s_7 + dw[2]*dw[2]

w_norm = w_1*w_1 + w_2*w_2 + w_3*w_3 +
w_5*w_5 + w_6*w_6 + w_7*w_7

q_crit = 0.5 * (w_norm - s_norm)

Fig. 3. Expressions for vortex detection algorithms used in our tests: (A)
velocity magnitude, (B) vorticity magnitude and (C) Q-criterion.

f4

f6 f16 f36 f46

s_1 s_3 w_1 w_3

f5

f66

w_norm

f98

q_crit

f9

f11 f26f41f56

s_2 s_6w_2w_6

f88

f90

f92

dv

f19f72

f21f31f51 f61f74

f87f93

f94

f89

f20

s_5s_7w_5 w_7

f80f91f86

f81

s_norm

f82

f84

f76f78

f69

f71

f75

f68

f67

f65

f63

f95

VAR_FETCH_x

du dw

f10

VAR_FETCH_y VAR_FETCH_z

c3

f70

f77

f79

VAR_FETCH_dims VAR_FETCH_vzVAR_FETCH_vyVAR_FETCH_vx

Fig. 4. An illustration of the dataflow network corresponding to the Q-
criterion input expression.

Sub-grid Dimensions # of Cells Data Size
192× 192× 0256 9,437,184 218 MB
192× 192× 0512 18,874,368 435 MB
192× 192× 0768 28,311,552 652 MB
192× 192× 1024 37,748,736 869 MB
192× 192× 1280 47,185,920 1.1 GB
192× 192× 1536 56,623,104 1.3 GB
192× 192× 1792 66,060,288 1.5 GB
192× 192× 2048 75,497,472 1.7 GB
192× 192× 2304 84,934,656 2.0 GB
192× 192× 2560 94,371,840 2.2 GB
192× 192× 2816 103,809,024 2.4 GB
192× 192× 3072 113,246,208 2.6 GB

TABLE I
SUB-GRIDS OF 30723 RT SIMULATION TIME STEP USED FOR SINGLE

DEVICE EVALUATION.

for the velocity vector (u, v, w) and point coordinate values
(x, y, z). Table I provides a summary of the data sets used for
our single device evaluation runs.

For distributed-memory parallel evaluation, we use the full
27 billion cell solution from the selected time step of the RT
simulation. The 30723 rectilinear mesh contains the same cell
and point field arrays and is decomposed into 3072 smaller
sub-grids of size 192 × 192 × 256. From this data set, the
velocity magnitude calculation requires 3 input field arrays
(u, v, w) and 1 output array. For the vorticity magnitude and
Q-criterion calculations, an additional 3 input field arrays
(x, y, z) are also required.

C. Test Environment

We chose LLNL’s Edge GPU cluster to evaluate our
framework. Edge is located in Livermore Computing’s Open
Computing Facility (LC-OCF). The system is a 216 node
Linux cluster with each node containing two 2.8 GHz six-
core Intel X5660 “Westmere” processors, 96 GB RAM, and
two NVIDIA Tesla M2050 GPUs with 3 GB GDDR5 each.
The GPUs each have a dedicated x16 PCIe gen 2 slot on the
node motherboard, and the nodes are connected via a Mellanox
QDR InfiniBand interconnect.

Edge’s batch nodes support both Intel and NVIDIA OpenCL
runtime platforms. This is an important feature for our evalu-
ation, allowing us to test two different target architectures: the
Intel CPUs and the NVIDIA Tesla M2050 GPUs. Both run-
time platforms support the OpenCL 1.1 specification and the
NVIDIA OpenCL platform leverages the CUDA 4.2 toolkit.

D. Evaluation Studies

We conducted three studies to evaluate our framework.
The first was a study investigating runtime performance.
The second was an evaluation of the memory usage of our
strategies during execution. The third was a demonstration of
integrating our framework into a larger pipeline, executing in
a distributed-memory parallel context. For all of our studies
we used VisIt as a host application for our framework. VisIt
handles reading the data sets from disk, passing expression
definitions and mesh data fields to our framework via the host

interface, and rendering the derived field result returned by
our framework.

1) Single Device Runtime Performance: The first compo-
nent of our evaluation is a timing study of our execution
strategies applied to the three selected application expressions.
We test the single device runtime performance of both the
Intel CPU and the NVIDIA M2050 GPU. Test cases probe
the effects of increasing data size using the twelve sub-grids
of an RT simulation time step, as outlined in Table I. The
purpose of this study is to explore the runtime performance of
our execution strategies.

To conduct this study, a device event timing infrastructure is
necessary. Our framework provides an OpenCL environment
interface built on top of PyOpenCL that records and catego-
rizes timing events. The timings results in our performance
study were obtained using the standard OpenCL device profil-
ing API. Timings include all host-to-device transfers (transfers
of input data), kernel executions, and device-to-host transfers
(transfers of output data). For each test case we ran seven
identical tests, removed the fastest and slowest results, and
averaged the remaining five runtimes.

For our runtime performance study, we also compared our
roundtrip, staged and fusion execution strategies to reference
OpenCL kernels written for each of the three vortex detection
expressions. The reference kernels have the same input and
output global device memory constraints as our fusion strategy.
They were written to directly compute the desired expression
and hence are able to execute the expressions using less mem-
ory fetches and floating point operations than our strategies.
The reference kernels are also executed using VisIt as a host
application, and results were recorded using the same timing
measurement methodology.

2) Single Device Memory Usage: The second component
of our evaluation is a memory-centric study that explores
the maximum amount of global device memory allocated to
OpenCL buffers during the execution of the test cases used in
the runtime performance study. The purpose of this study is to
identify the memory constraints of our execution strategies on
each target device as data sizes grow. The results of this study
will show the memory constraints of our strategies and will be
used to guide the development of future streaming strategies.

This study requires accurate recording of the global memory
usage of the target device. This is also provided by our
framework’s OpenCL environment interface. In addition to
recording timing events, the interface manages requests for
device buffers. The amount of memory reserved for each
device buffer is tracked. This information is used to calculate
the amount of global device memory available at any time, as
well as the high-water mark of device memory allocated.

3) Distributed-Memory Parallel Evaluation: The final com-
ponent of our evaluation is a test of our framework processing
a large data set on a HPC cluster in a realistic distributed-
memory parallel context. The goal is to use multiple cluster
nodes and multiple OpenCL target devices per node.

For this test, we selected the Q-criterion expression, the
most complex of our test expressions, and the fusion execution

strategy. For test data, we use the full time step of the RT
simulation described in Section IV-B. Using the original de-
composition, the 27 billion cells of this 30723 rectilinear data
set are grouped into 3072 sub-grids of size 192× 192× 256.

For this test, we again run our framework in situ using
VisIt as the host application. Although our kernel calculations
are all embarrassingly parallel, we felt that evaluating our
framework’s use in the context of the larger HPC setting
was important to demonstrate the validity of the design. To
show integration in this context and to accurately compute the
correct Q-criterion across the entire mesh, our framework ex-
plicitly requests ghost data generation from VisIt. To fulfill this
request for our framework, VisIt will duplicate and exchange
a stencil of cells around each sub-grid (i.e. “ghost data”). The
data passed to our framework will be the sub-grids with these
ghost cells, allowing the gradient primitives to compute the
proper values on the boundaries of all sub-grids.

V. EVALUATION RESULTS

This section outlines the results from the three studies of
our evaluation and provides a discussion of the implications
of these results.

A. Single Device Runtime Performance

The first component of our evaluation studied the runtime
performance of executing our three test expressions on data
sets of increasing size using a single OpenCL target device.
The study evaluated our three execution strategies and the
OpenCL reference kernel, executing on both the Intel CPU
and NVIDIA M2050 GPU.

The runtime performance results were acquired from these
runs as outlined in Section IV-D. The results for each of the
three test expressions are shown in the three graphs in Figure 5.
In these graphs, the x-axes show the sizes of data sets used for
each test case. The y-axes report the device execution runtimes
in seconds, which include all host-to-device data transfers,
kernel executions, and device-to-host data transfers. The CPU
results are indicated by the blue series and GPU results by
the red series. The gray series identifies test cases where the
GPU failed. Results for each test case of the three execution
strategies and the OpenCL reference kernel are indicted by a
unique symbol.

As expected, increased computational complexity and data
set sizes yield higher runtimes. This trend reflects both the
increased data transfer and kernel execution times required to
process larger data sizes. The CPU completed all test cases,
while the GPU was able to complete 106 of the 144 test cases
(73%). A discussion of the GPU test cases failures is provided
in Section V-D. The GPU ran faster or on-par with the CPU
for all test cases that the GPU executed successfully.

The fusion strategy yielded the best runtime performance,
followed by the staged and finally the roundtrip strategy. The
runtime study results confirm that the fusion strategy is com-
petitive with the OpenCL reference kernel. For the vorticity
magnitude and Q-criterion expressions, the fusion strategy and
the OpenCL reference kernel transfer the same amount of

Expression Strategy Dev-W Dev-R K-Exe
Roundtrip 11 6 6

VelMag Staged 3 1 6
Fusion 3 1 1
Roundtrip 32 12 12

VortMag Staged 7 1 18
Fusion 7 1 1
Roundtrip 123 57 57

Q-Crit Staged 7 1 67
Fusion 7 1 1

TABLE II
NUMBER OF HOST-TO-DEVICE TRANSFERS (Dev-W), DEVICE-TO-HOST

TRANSFERS (Dev-R), AND KERNEL EXECUTIONS (K-Exe) FOR OUR TEST
EXPRESSIONS DERIVING VELOCITY MAGNITUDE (VelMag), VORTICITY

MAGNITUDE (VortMag), AND Q-CRITERION (Q-Crit) USING OUR
EXECUTION STRATEGIES.

data to and from the target device. Differences in runtimes
of the two are a direct indication of the increased amount of
computational work between the vorticity magnitude and Q-
criterion expressions.

Through our OpenCL environment interface, we have access
to the number of occurrences of each type of device event.
Table II shows a break down of the device events recorded
during the execution of the test expressions using our three
strategies. The results in this table match the expected data
movement and kernel dispatch characteristics of our strategies.
For all expressions, roundtrip used the most host-to-device
and device-to-host data transfers. The amount of host-device
data transfers was equal for staged and fusion. For the vor-
ticity magnitude and Q-criterion test cases, staged used more
kernel dispatches than roundtrip, because it implements the
decomposition primitive using a kernel to move intermediate
results on the OpenCL target device. In all cases, fusion used
the lowest total number of target device requests.

B. Single Device Memory Usage

The second component of our evaluation focused on the
device memory usage of the same runs used to measure
runtime performance in Section V-A. The memory levels were
acquired as outlined in Section IV-D. The memory usage
results for each of the three test expressions are shown in
the three graphs in Figure 6. In these graphs, the x-axes again
show the sizes of data sets used for each test case. The y-axes
report the maximum amount of global device memory reserved
for OpenCL buffers during execution. The same color scheme
is used: CPU results are indicated by the blue series and GPU
results by the red series. The gray series identifies test cases
where the GPU failed. For the successful GPU test cases, the
GPU results are identical to the CPU results, and the red series
overlays the blue. Thus, the blue series is shown only where
the GPU test cases failed. Results for each test case of the
three execution strategies and the OpenCL reference kernel
are indicted by a unique symbol.

As expected, the reserved memory grows linearly as the
input data size grows and the memory usage of our three strate-
gies show unique slopes. staged required the most memory,

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

9.4 28.2 47 65.8 84.6 103.4
Data Size (millions of cells)

R
un

tim
e

(s
ec

on
ds

)

●

●

GPU−Roundtrip
GPU−Staged
GPU−Fusion
GPU−Reference
CPU−Roundtrip
CPU−Staged
CPU−Fusion
CPU−Reference
(GPU−Failed)

(a) Velocity Magnitude

0
2

4
6

8
10

12

9.4 28.2 47 65.8 84.6 103.4
Data Size (millions of cells)

R
un

tim
e

(s
ec

on
ds

)

●

●

GPU−Roundtrip
GPU−Staged
GPU−Fusion
GPU−Reference
CPU−Roundtrip
CPU−Staged
CPU−Fusion
CPU−Reference
(GPU−Failed)

(b) Vorticity Magnitude

0
5

10
15

20
25

30

9.4 28.2 47 65.8 84.6 103.4
Data Size (millions of cells)

R
un

tim
e

(s
ec

on
ds

)

●

●

GPU−Roundtrip
GPU−Staged
GPU−Fusion
GPU−Reference
CPU−Roundtrip
CPU−Staged
CPU−Fusion
CPU−Reference
(GPU−Failed)

(c) Q-criterion

Fig. 5. Runtime performance for single device execution of our three test expressions on two OpenCL target devices: an Intel Xeon CPU and a NVIDIA
M2050 Tesla GPU. The blue series provides the timing results from the CPU tests and red series provides results from the GPU tests. The gray series
represents GPU test cases that failed to run due to memory constraints. Our three execution strategies and the OpenCL reference kernel are represented with
unique symbols.

0
1

2
3

9.4 28.2 47 65.8 84.6 103.4
Data Size (millions of cells)

M
ax

 R
es

er
ve

d
M

em
 (

G
B

)

●

●

GPU−Roundtrip
GPU−Staged
GPU−Fusion
GPU−Reference
CPU−Roundtrip
CPU−Staged
CPU−Fusion
CPU−Reference
(GPU−MemRef)
(GPU−Failed)

(a) Velocity Magnitude

0
2

4
6

8
10

12

9.4 28.2 47 65.8 84.6 103.4
Data Size (millions of cells)

M
ax

 R
es

er
ve

d
M

em
 (

G
B

)

●

●

GPU−Roundtrip
GPU−Staged
GPU−Fusion
GPU−Reference
CPU−Roundtrip
CPU−Staged
CPU−Fusion
CPU−Reference
(GPU−MemRef)
(GPU−Failed)

(b) Vorticity Magnitude

0
5

10
15

20
25

30
9.4 28.2 47 65.8 84.6 103.4

Data Size (millions of cells)

M
ax

 R
es

er
ve

d
M

em
 (

G
B

)

●

●

GPU−Roundtrip
GPU−Staged
GPU−Fusion
GPU−Reference
CPU−Roundtrip
CPU−Staged
CPU−Fusion
CPU−Reference
(GPU−MemRef)
(GPU−Failed)

(c) Q-criterion

Fig. 6. Memory evaluation results for single device execution of our three test expressions on two OpenCL target devices: an Intel Xeon CPU and a NVIDIA
M2050 Tesla GPU. The blue series provides the measured memory high-water mark from the CPU tests and the red series provides results from the GPU
tests. The gray series represents GPU test cases that failed to run due to memory constraints. The green line serves as a reference for the total global device
memory available on the NVIDIA 2050 GPU. Our three execution strategies and the OpenCL reference kernel are represented with unique symbols.

because all intermediate results are kept in the global memory
of the device. Due to the number of inputs, roundtrip used
less memory for the velocity magnitude test cases than the
other two strategies and the OpenCL reference kernel. For the
vorticity magnitude and Q-criterion cases, roundtrip used more
memory than fusion due to buffers required for constant values,
which are compiled into the kernels generated as part of fusion.
Both fusion and the OpenCL reference kernel showed the same
the memory usage.

These results verify that memory constraints were the cause
of the failed GPU test cases in our runtime performance study.
The maximum available global device memory of the NVIDIA
M2050 GPU is indicated on these graphs by a green line.
When the memory requirements of an execution strategy or
the OpenCL reference kernel exceeded this line, the test case
failed on the GPU. The CPU successfully ran all test cases.
The CPU memory results provide a reference for the amount
of memory required for a device to succeed on the test cases

that the M2050 GPU failed on.

C. Distributed-Memory Parallel Test

The final component of our evaluation was to test our
framework using a large data set on a HPC cluster in a realistic
distributed-memory parallel context. We used our framework
to successfully calculate the Q-criterion expression on the
27 billion cell data set with the fusion execution strategy. A
pseudo-color rendering of the full Q-criterion result with an
inset zoom of one sub-grid is shown in Figure 7. This test used
256 GPUs and 128 nodes of LLNL’s Edge cluster. On each
node, our framework used two GPUs in two independent MPI
tasks. To obtain ghost data, our framework explicitly requested
ghost stencil generation as part of the VisIt pipeline execution.
Each GPU processed twelve sub-grids of the full data set, sized
192× 192× 256 plus the necessary ghost cells.

Fig. 7. This figure shows a successful rendering from the distributed-memory
parallel test of our framework. For this test, the Q-criterion expression was
executed using the fusion execution strategy on 256 GPUs using 128 nodes
of LLNL’s Edge cluster. The inset shows a zoomed-in rendering of one of the
3072 sub-grids, sized 192× 192× 256, that make up the 30723, 27 billion
cell rectilinear mesh. The full data set is shown with an outline of the sub-grid
decomposition.

D. Discussion

Our evaluation confirmed the need for a flexible framework,
capable of targeting different types of devices and selecting
different execution strategies. The runtime performance study
results show that in general the GPU runtimes were faster than
the CPU. However, only the CPU was able to meet the global
device memory requirements to run all test cases. The vorticity
magnitude and Q-criterion results show test case instances
where the GPU using staged failed to run, and the CPU using
staged was faster than the available GPU roundtrip option.
This result highlights the benefit of being able to select from
multiple execution strategies and target devices with different
hardware architectures.

The runtime performance and memory evaluation results
highlight benefits and constraints of the two device architec-
tures we tested. The GPU provides the best runtime perfor-
mance for our expressions, assuming the data set can fit onto
the device (or can be efficiently streamed to the device). The
CPU is appropriate when large data sizes are expensive to
decompose or difficult to stream to the GPU.

Our evaluation also provided insight into our three execution
strategies. Roundtrip was the slowest of our three strategies.
As expected, its runtime was dominated by host-to-device
and device-to-host memory transfers. Staged performed much
faster than roundtrip; however, it was the most constrained
by device memory for our test expressions. Fusion was the
fastest of our three strategies, and approached the speed of
the reference OpenCL kernels. Using our framework, we are
able to show that this execution strategy can provide efficiency
that approaches a custom or one-off solution.

Each of the three strategies provide different benefits and
constraints. Fusion is the fastest and preferred when possible.

Though not demonstrated by the expressions tested in our
study, there are cases where staged can be used, while memory
constraints would prevent fusion from executing (recall the
discussion of Figure 2). In these cases, staged would provide
a performance boost over roundtrip, which has the least global
device memory constraints, at the expense of the slowest
runtime performance.

Our evaluation also showed that we can embed our frame-
work in a host application and execute on a HPC cluster in a
distributed-memory parallel context. The successful evaluation
highlighted three important aspects not tested in our runtime
performance test cases:

• The ability to use multiple OpenCL target devices per
node.

• The ability to process multiple sub-grid chunks per target
device.

• The ability to embed our framework into a larger analysis
pipeline.

VI. CONCLUSION

In this paper, we presented a flexible Python-based frame-
work for efficient derived field generation on many-core ar-
chitectures using OpenCL. A key feature of our framework is
the ability to support multiple execution strategies for com-
posing operations using a common library of building blocks.
We designed and tested three execution strategies: roundtrip,
staged and fusion, using the vortex detection application to
evaluate their runtime performance and memory constraints.
We also demonstrated the use of our framework as part of
a larger visualization and analysis pipeline embedded in VisIt
using the Raleigh-Taylor instability simulation. Our evaluation
confirmed the need for a flexible and efficient framework,
capable of designing and testing different execution strategies
on many-core architectures.

For future work, we plan to investigate the runtime per-
formance of our execution strategies in a streaming context.
We also plan to explore new execution strategies, including
strategies that use multiple target devices on a single node.
Finally, we plan to conduct a comprehensive performance
study of our framework in a distributed-memory parallel
setting.

ACKNOWLEDGMENTS

We would like to thank Bill Cabot, Andy Cook, and Paul
Miller at LLNL for access to the Rayleigh-Taylor DNS data
set. This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. This work
was also supported in part by the U.S. National Science
Foundation grant OCI-0906379. This work was also supported
by the Director, Office of Advanced Scientific Computing
Research, and Office of Science, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] llvmpy: Python wrapper around the llvm c++ library.
http://www.llvmpy.org/.

[2] NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide, 2007.

[3] The OpenACC application programming interface., 2011.
”http://www.openacc-standard.org/Downloads/OpenACC.1.0.pdf”.

[4] G. Abram and L. A. Treinish. An extended data-flow architecture for
data analysis and visualization. Research report RC 20001 (88338), IBM
T. J. Watson Research Center, Yorktown Heights, NY, USA, Feb. 1995.

[5] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow, S. Klasky,
V. Pascucci, J. Ahrens, E. W. Bethel, H. Childs, J. Huang, K. I.
Joy, Q. Koziol, J. Lofstead, J. Meredith, K. Moreland, G. Ostrouchov,
M. Papka, V. Vishwanath, M. Wold, N. Wright, and K. J. Wu. Scientific
Discovery at the Exascale. Technical report, Report for the DOE
ASCR 2011 Workshop on Exascale Data Management, Analysis, and
Visualization, 2011.

[6] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison—Wesley, 1986.

[7] J. Ahrens, B. Geveci, and C. Law. Visualization in the paraview
framework. In C. Hansen and C. Johnson, editors, The Visualization
Handbook, pages 162–170, 2005.

[8] J. Aycock. Compiling little languages in Python:
http://pages.cpsc.ucalgary.ca/ aycock/spark/.

[9] D. Beazley. PLY (Python Lex-Yacc) 3.4: http://www.dabeaz.com/ply/.
[10] S. Behnel, R. W. Bradshaw, and D. S. Seljebotn. Cython tutorial. In

Proceedings of the 8th Python in Science Conference, pages 4 – 14,
2009.

[11] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A CPU and
GPU math compiler in Python. In Proceedings of 9th Python in Science
Conference (SCIPY). 2010.

[12] W. H. Cabot and A. W. Cook. Reynolds number effects on rayleightaylor
instability with possible implications for type ia supernovae. 2006.

[13] H. Childs, E. Brugger, K. Bonnell, J. Meredith, M. Miller, B. Whitlock,
and N. Max. A contract based system for large data visualization. In
VIS ’05: Proceedings of the conference on Visualization ’05, 2005.

[14] Computational Engineering International, Inc. EnSight User Manual,
2009.

[15] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science and Engineering,
5:46–55, 1998.

[16] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,
E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: a domain specific language for building portable
mesh-based pde solvers. SC Conference, 0:1–12, 2011.

[17] G. Ewing. Plex - a lexical analysis module for Python:
http://www.cosc.canterbury.ac.nz/greg.ewing/python/plex/1.1.1/doc/.

[18] M. Fletcher. Simpleparse: http://simpleparse.sourceforge.net/.
[19] J. Hunt, A. Wray, and P. Moin. Eddies, Stream, and Convergence Zones

in Turbulent Flows. Technical Report CTR-S88, Center for Turbulence
Research, Stanford University, 1988.

[20] G. Inc. CLyther: A just-in-time specialization engine for opencl., 2010.
http://srossross.github.com/Clyther/.

[21] M. Jiang, R. Machiraju, and D. S. Thompson. Detection and Visualiza-
tion of Vortices. In Visualization Handbook, pages 287–301. Academic
Press, 2005.

[22] C. Johnson, S. Parker, and D. Weinstein. Large-scale computational
science applications using the SCIRun problem solving environment.
In Proceedings of the 2000 ACM/IEEE conference on Supercomputing,
2000.

[23] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, 2001. http://www.scipy.org/.

[24] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.
PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-
Time Code Generation. Parallel Computing, 38(3):157–174, 2012.

[25] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and
runtime optimization, pages 75–, 2004.

[26] L. Lo, C. Sewell, and J. Ahrens. PISTON: A portable cross-platform
framework for data-parallel visualization operators. In Eurographics
Symposium on Parallel Graphics and Visualization, 2012.

[27] P. McCormick, J. Inman, J. Ahrens, J. Mohd-Yusof, G. Roth, and
S. Cummins. Scout: a data-parallel programming language for graphics
processors. Parallel Computing, 33(1011):648 – 662, 2007.

[28] P. McGuire. Introduction to pyparsing: An object-oriented easy-to-use
toolkit for building recursive descent parsers. PyCon, 2006.

[29] J. S. Meredith, R. Sisneros, D. Pugmire, and S. Ahern. A distributed
data-parallel framework for analysis and visualization algorithm devel-
opment. In Proceedings of the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units, pages 11–19, 2012.

[30] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma. Dax toolkit: A
proposed framework for data analysis and visualization at extreme scale.
In IEEE Symposium on Large-Scale Data Analysis and Visualization
(LDAV), 2011.

[31] T. Oliphant et al. Numba: Numpy aware dynamic compiler for Python,
2012. http://numba.pydata.org/.

[32] T. E. Oliphant. Guide to NumPy. Provo, UT, Mar. 2006.
http://www.tramy.us/.

[33] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[34] A. Patel. Yapps: http://theory.stanford.edu/ amitp/yapps/.
[35] C. Pheatt. Intel threading building blocks. J. Comput. Sci. Coll.,

23(4):298–298, 2008.
[36] A. Rigo and S. Pedroni. JIT compiler architecture. Technical Report

D08.2, 2007. http://codespeak.net/pypy/dist/pypy/doc/index-report.html.
[37] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The design

and implementation of an object-oriented toolkit for 3d graphics and
visualization. In Proceedings of the 7th conference on Visualization ’96,
VIS ’96, pages 93–ff., Los Alamitos, CA, USA, 1996. IEEE Computer
Society Press.

[38] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. Computing in Science
& Engineering, 12(3):66–73, 2010.

[39] H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva. Hyperflow:
A heterogeneous dataflow architecture. In Eurographics Symposium on
Parallel Graphics and Visualization (EGPGV), 2012.

