
 1

The Operating Tool – a framework for monitoring and control of
heterogeneous data and workflows

Christoph Reck, Sven Kröger

German Aerospace Center (DLR)
German Remote Sensing Data Center (DFD)
Oberpfaffenhofen, D-82234 Weßling, Germany

EMail: Christoph.Reck@dlr.de, Sven.Kroeger@dlr.de

ABSTRACT
The Operating Tool (OT) is a graphical user interface to monitor and control
heterogeneous data and workflows in distributed services. It has been designed as a
configurable framework with a flexible set of re-usable views, which can be instantiated
to communicate with the remote services over a wide range of protocols as CORBA,
CIP, SOAP, LDAP, HTTP, and the file system. The implementation profits from an
architecture using parameterised building blocks, based on the Model-View-Controller
paradigm, that are assembled using a very simple but powerful XML configuration file
syntax. Displaying and having access to the interfaces of several services within one tool
enables the user to track the stages in the production process and monitor the status
across service boundaries. In case of an error, the operator can interact with the process
at the location that caused the problem.

Keywords: GUI, HMI, MMI, Java, Framework, DIMS, MMFI

INTRODUCTION
The Operating Tool (OT) is a graphical user interface used to monitor and control the data and
workflows of the distributed services from the Data and Information Management System (DIMS)[2]
services of the national data library at the German Remote Sensing Data Center of DLR and for the
European earth observation Multi-Mission Facilities Infrastructure (MMFI)[3] at several sites of ESA. It
is setup to handle many existing missions including the high throughput of the TerraSAR-X Payload
Ground Segment [13].

Driving idea was to provide a configurable framework to present views onto remote services within one
tool. This is much alike modern tabbed browsers, but with additional support of other protocols than
HTTP and providing rich views beyond HTML capabilities. Complex frameworks like J2EE[6],
Eclipse[12] and Spring[11] covering a similar domain have recently emerged and are widely adopted; in
contrast the OT shines by its power and simplicity as described in this paper.

Use Cases
Typical operational tasks are:
• Monitoring and Control

Examples are status monitoring, startup and shutdown, log view, etc.
• Configuration Management

This includes allowing graphically and centrally to edit external files, as well as viewing and
updating internal momentary state.

• Data Management
Examples are order follow-up, customer data entry and update, accounting data, etc.

These categories of the scenarios condense a large set of possible use cases to be handled by the
Operating Tool. The OT framework is configurable with plug-ins and views to achieve these scenarios.

Requirements
The major characteristics needed for the Operating Tool are:
• Unify the regular operational tasks into one tool.

This avoids having to keep multiple tools running in parallel, and eases the learning curve to operate
the system.

• Provide a similar look-and-feel to the common tasks of different subsystems.
Common functions used in all or at least several areas shall be provided as reusable components.
This reduces complexity for extension developers, it increases uniformity for the operational phase,
and it reduces costs by reuse of software components for current and future missions.

• Support different users, groups and roles.
The responsibility of operation and administration of the different services span several departments
and each working group shall be able to view and operate strictly within its area.
Diverse groups will view the same subsystems, but will act on them with different roles. The
operating tool shall allow restricting the actions that the operators are allowed to perform within the
views.

• Easy of configuration and extension.
Operators will change and production systems will be added in the future; the operating tool shall be
able to grow with the system with new instances, interfaces, views and requirements.

• Provide support in the framework for:
• Selection handling and communication across views
• Geographic coordinate projections into a map view
• Image viewer

• Remote operating of the distributed system and platform independence.
The operating tool allows remote operating of the services from a desktop machine.

Architecture
The operator tasks are characterized by a common flow: the operator interacts with the views; the views
obtain the data from the model; the model from the interface adapters.

The building blocks of the Operating Tool are the views, the models, the interface adapters, and the
configuration that binds them together.

Services

CORBA, HTTP, File System Interfaces, etc.

Operating Tool

Configuration

View 1

ServiceIfc

View 2

QueueIfc

Table Tree

View 3 View 4 View 5

Figure 1: DIMS Operating Tool Components and Interfaces

The above figure depicts the components and interfaces as building blocks of the Operating Tool. It
demonstrates how the components are assembled to construct the application. The configuration can be
accessed from every layer. The views are loaded to display the data accessible via a model. The model
adapter layer is not required by Operating Tool specific views (View 2). Some views can directly access
external data or interfaces (View 1) - the framework does not impose any restrictions on the building
blocks.

 2

Implementation
Java has established itself as a powerful cross-platform language for implementing rich clients.

The OT profits from many Java-Language and API features:
• Swing API – a rich set of graphical elements for building graphical user interfaces (GUIs)
• Reflection API – used to configure the views and interfaces to instantiate and to access

configured fields for display
• Java WebStart – for deploying java applications, the client will download, cache and run the

application with the inherent security of the Java platform

Additional Java packages for XML parsing, security, CORBA and other protocols, image decoders
increase the capabilities of the OT. A notable package is the SwiXML[10] library that enables Graphical
User Interfaces to be described in XML, which are rendered into javax.swing objects at runtime.

Figure 2: The DIMS Operating Tool

Figure 2 depicts the functional DIMS Operating Tool showing the Product Library [2] query view and the
map view showing footprints of the query results. The icon list on the left allows the selection of the
target service to be displayed on the right.

Components
The user-interface views are composed from combinations of tables, trees, buttons, text-fields,
checkboxes, etc. Configurable context sensitive pop-up menus enable fine grained control of the views
and services. Many parameterized views, as the table-entry view, already exist for setting up standard
interfaces. Modern techniques for user-interface UI design as the XML User-interface Language (XUL)
are used to simplify and decouple the view design.

 3

object sensitive
pop-up menu

Views can be
detached and
re-embedded
via a pop-up
menu command

table view

pop-up menu

status message view

tree view

table + entry view

tree + entry view

query controls

tab view

custom edit view

map view

main application

queue view

Figure 3: Views of the DIMS Operating Tool

The tool setup used for DIMS and the MMFI offers a list of icons as a handle to the target services on
different computers, partially on remote sites. Selecting a target from this list will load and present the
views to monitor and control the service. This approach, instead of using an own control interface for
each component, integrates the views to all the services relevant to the specific user in a single
application.

CONFIGURATION
An important aspect of the OT is the configuration potential. This allows the administrator of the system
to reconfigure the OT in an easy way without the necessity of changing and compilation of java classes.

The first section will give a short overview of the configuration hierarchy of the OT and how it is used
in practice. The second section will show the advantage of parameterized views.

The configuration hierarchy of the OT
For configuration, the OT uses a hierarchy of XML files based on a very simple but powerful schema.
The following code snippet is an example for the user "tsxuser" (modified for this paper).

<CONFIGURATION>

 <INCLUDE NAME="/etc/common.conf.xml" />

 <INCLUDE NAME="/etc/target/pl-dfd-op.conf.xml" />
 <INCLUDE NAME="/etc/target/pl-dfd-nz.conf.xml" />
 <INCLUDE NAME="/etc/target/psm-tsx-tsc.conf.xml" />

 <STRING ID="group" VALUE="tsxuser" />
 <STRING ID="pl-dfd-op.ROLE" VALUE="user" />
 <STRING ID="pl-dfd-nz.ROLE" VALUE="user" />

</CONFIGURATION>

 4

 5

The entrance point of a configuration is normally the user- or group-configuration file as the example
above, hosted on the instance site of the OT. This file defines which service instances will be displayed
for the user. Also, this is the place of user specific settings.

The element "INCLUDE" directs the configuration reader to include four configuration files; a first one
with common settings then three service targets. Next, the group membership is set to "tsxuser" – this
is a global definition.

Last, the "pl-dfd-op" and "pl-dfd-nz" package specific roles of the user at the two product libraries
are defined. These definitions override the defaults from the included target configuration template. The
advantage of using templates is the possibility to narrow the settings for this user, without duplicating
the target configuration files for other users and therefore avoiding the need to maintain repeated code.

The configured values are accessible within the application by the name specified in the ID field.

The next example shows the configuration file for the service target "pl-dfd-op".

<CONFIGURATION>

 <INCLUDE NAME="/etc/target/pl2/PL2_common.conf.xml" />

 <PACKAGE ID="pl-dfd-op">

 <INCLUDE NAME="/etc/target/pl2/PL2_instance.conf.xml" />

 <STRING ID="TITLE" VALUE="Product Library OP" />
 <STRING ID="SITE">op</STRING><!-- Oberpfaffenhofen -->
 <STRING ID="NAME">dfd2</STRING>

 <STRING ID="COLLECTIONS.ROOTS" VALUE="DFD,Missions" />
 ...

Instances are typically configured with the service specific common definitions and the service
configuration template, followed by the instance specific information like its name and the site.
Thereafter, the service specific configuration parameters are supplied, here for example the root
collections to display in the collection browser.

Summarizing the above pattern, the Operating Tool configuration is structured as follows:

• user configuration file including the group configuration, possibly narrowing the operator role

• group file including the target configuration files and defining the default role for the group and
setting some values

• target configuration files with the service specific definitions

Administering this structure requires minimal effort in defining new users, groups or targets.

Extending the Operating Tool with additional views is outlined next. These configuration files are
typically part of the OT core software and define the appearance of the views. Assembling of the OT
views is done with the "OBJECT" configuration element and the desired parameters. Objects may be
simple values like a string (e.g. a label) or complex like a pop-up menu of a view. These changes or
extensions are achieved without the necessity of a recompilation.

Using Parameterized Views via Configuration
The advantage of using parameterized views is reusability of code and ease of customization by
configuration, therefore fast development of new applications. The next code snippet shows how the
“Processing” tabbed view is assembled, followed by the example showing the differences in the
configuration of the “Production Requests” and “Steps” views.

 <OBJECT ID="PROCESSING" CLASS="de.dlr.dfd.dims.ot.view.TabbedView">
 <CONSTRUCTOR>
 <STRING REF="..CONTENTS" />
 </CONSTRUCTOR>
 <METHOD NAME="setName">Processing</METHOD>
 <HASH ID="CONTENTS">
 <STRING NAME="Production Requests" REF="*.PdR.VIEW" />
 <STRING NAME="Steps" REF="*.StepQueue.VIEW" />
 </HASH>
 </OBJECT>

The next two figures show the rendered views in this "TabbedView".

Figure 4: Example of the "Production Request" queue entry view with its pop-up menu

Figure 5: Example of the "Steps" queue entry view

The code snippets below highlight the differences in the configurations:

 6

 7

Production Requests Steps

<OBJECT ID="PdR">
 <INCLUDE NAME="QueueEntryView.conf.xml" />

 <STRING ID="QUEUE_NAME" VALUE="RequestQueue" />
 <STRING ID="ENTRY_NAME" VALUE="Request" />
 <STRING ID="ENTRY_CLASS"
 VALUE="de.dlr.dfd.dims.pi.idl.PdRIdl" />
 <OBJECT ID="ONLINE" REF="TRUE" />
 ...
 <MAP ID="COLUMNS">
 <STRING NAME=" No. " >#</STRING>
 <STRING NAME=" ID ">id</STRING>
 <STRING NAME=" Type ">type</STRING>
 ...
 </MAP>
 <OBJECT ID="EDITVIEW"
 CLASS="de.dlr.dfd.dims.ot.targets.pi.PdREditView">
 ...
</OBJECT><!-- PdR -->

<OBJECT ID="StepQueue">
 <INCLUDE NAME="QueueEntryView.conf.xml" />

 <STRING ID="QUEUE_NAME" VALUE="StepQueue" />
 <STRING ID="ENTRY_NAME" VALUE="Step" />
 <STRING ID="ENTRY_CLASS"
 VALUE="de.dlr.dfd.dims.gen2.idl.StepIdl" />
 <OBJECT ID="ONLINE" REF="FALSE" />
 ...
 <MAP ID="COLUMNS">
 <STRING NAME=" No. " >#</STRING>
 <STRING NAME=" ID " >id</STRING>
 <STRING NAME=" Operation ">Operation</STRING>
 ...
 </MAP>
 <OBJECT ID="EDITVIEW"
 CLASS="de.dlr.dfd.dims.ot.targets.pc.StepsEditView">
 ...
</OBJECT><!-- StepQueue -->

The included "QueueEntryView" template instantiates the appropriate class implementing the view and
defines the required default values. The instance specific values are configured after the inclusion of the
template. You can observe the differences that control the appearance:

• The object "QUEUE_NAME" tells the class queue entry view, which queue is accessed for the input.
The example shows "RequestQueue" and "StepQueue"

• Further, their input objects are of different classes – this is defined in the object "ENTRY_CLASS"
• Setting the "ONLINE" state to "FALSE", tells the view to work in a “unsubscribed” mode, as

shown on the top left of the queue view
• The object "COLUMNS" defines the order, the title and the value of the columns. The third column

of the Production Requests view is "Type", but in the view Steps it is "Operation".
• The entry view to be used is defined by the "EDITVIEW" parameter.

These parameters are sufficient to customize the class which implements the queue entry view.
Additional parameters allow configuring items like filters or pop-up menus.

The advantages of this approach are:
• The developer can setup new views in a very fast way
• Rearranging or renaming of the columns or adding of further columns is very simple
• Specific groups of users can override column definitions to fit their requirements, e.g. hide fields

or show additional parameters.

Navigation between Views
Displaying and having access to the interfaces of several services within one tool enables cross-service
navigability. This permits the user to track the stages in the production process and monitor the status
across service boundaries. In case of an error, the operator can interact with the process at the location
that caused the problem.

Figure 4 depicts the pop-up menu of the “Production Requests” queue entry view. The configuration
allows defining menu commands and actions[9]. The OT framework has a navigation action class that
can be attached via configuration to tables and forward the selection to a class that implements the
NavigationTarget interface. The menu of the above example is configured as follows:

 <MAP ID="MENU">
 <OBJECT NAME="Predecessor" REF="...NAVIGATE_PREDECESSOR_ACTION" />
 <OBJECT NAME="Step" REF="...NAVIGATE_Step_ACTION" />
 <OBJECT NAME="Successor" REF="...NAVIGATE_SUCCESSOR_ACTION" />
 <OBJECT NAME="AssocName" REF="...NAVIGATE_AssocName_ACTION" />
 <STRING NAME="separator1" />
 <STRING NAME="Suspend Request" >queueCommand:suspendOrder</STRING>
 ...
 </MAP>
 ...

 8

 <OBJECT ID="NAVIGATE_Step_ACTION" CLASS="de.dlr.dfd.dims.ot.control.NavigationHandler">
 <CONSTRUCTOR>
 <STRING>Navigate to Step Queue</STRING><!-- label -->
 <STRING REF="...NAVIGATION_SOURCE" /><!-- defined below -->
 <STRING REF="*.StepQueue.NAVIGATION_TARGET_PdO" />
 </CONSTRUCTOR>
 </OBJECT>

 <OBJECT ID="NAVIGATION_SOURCE"
 CLASS="de.dlr.dfd.dims.ot.targets.gen2.QueueNavigationSource">
 <CONSTRUCTOR>
 <OBJECT REF="...TABLEVIEW" /><!-- defined in QueueEntryView.conf.xml -->
 <STRING REF="id" /><!-- ID field of the table object -->
 </CONSTRUCTOR>
 </OBJECT>
 ...

The above example demonstrates how menus and actions are defined. The 4 entries on the top are the
navigation actions, referencing the definitions below. The other menu commands are handled by the
queue view controller.

The "Navigate to Step Queue" action is created after the menu definition using the configuration
object creation syntax. It instantiates a "NavigationHandler" with the parameters: label, navigation
source, and navigation target. The "NAVIGATION_SOURCE" definition uses a reference to the table from
the included QueueEntryView.conf.xml template. The step "NAVIGATION_TARGET" definition is part of
the step queue entry view.

The navigation menus work as follows:
1. When the operator clicks the "Navigate to Step Queue" menu item, the "NavigationHandler"

action is activated,
2. "NavigationHandler" obtains the selections from the "NAVIGATION_SOURCE" and passes them to

the "NAVIGATION_TARGET" (which is part of the controller of the queue behind the Step queue view),
3. The "NAVIGATION_TARGET" queries the Step queue for the entries that have the specified request IDs

and displays the results
4. The "NAVIGATION_TARGET" also instructs the Step view to be placed upfront.
5. The operator can now perform actions on the steps belonging to this request (see an example of the

"StepQueue" menu in Figure 3).

Navigations can be configured to cross service boundaries, "Navigate by Associative Name to ..."
in Figure 4 being an example. Navigation targets are registered in lookup tables and can therefore be
discovered and addressed automatically.

CONCLUSION
The Operating Tool is a flexible application framework with a rich set of features.

Common operating tasks as monitoring and control, including startup and shutdown, viewing logs,
handling data lists and queues, etc. are accomplished without having to code new programs.

New services can be made accessible with few lines in a configuration file. This enables prototyping and
assembling of operating applications. Tasks spanning multiple distributed services can be operated
centrally from within one tool.

DIMS demonstrates the successful use of Java, XML, and CORBA in a large production quality system
that can be efficiently administered via a homogenous operating tool.

 9

REFERENCES
[1] Kiemle S., Mikusch E., Göhmann M., The Product Library – A Scalable Long-Term Storage Repository for

Earth Observation Products, DASIA 2001, Nice, 2001.

[2] S. Kiemle, E. Mikusch, C. Bilinski, B. Buckl, D. Dietrich, S. Kröger, C. Reck, A.-K. Schroeder-Lanz, M.
Wolfmüller, Data Information and Management System for the DFD Multi-Mission Earth Observation Data.
Ensuring Long-term Preservation and Adding Value to Scientific and Technical Data, PV 2005, Edinburgh
UK, 21.-23.11.2005, Digital Curation Center Conference Proceedings, The Royal Society Edinburgh, (2005)

[3] Pinna, G-P., Mikusch, E., Bollner, M., Puin, B., Earth Observation Payload Data Long Term Archiving - the
ESA's Mulit-Mission Facility Infrastructure. Ensuring Long-term Preservation and Adding Value to Scientific
and Technical Data, PV 2005, Edinburgh UK, 21.-23.11.2005, Digital Curation Center Conference
Proceedings, The Royal Society Edinburgh, (2005)

[4] S. Kiemle, E. Mikusch, C. Bilinski, B. Buckl, D. Dietrich, S. Kröger, C. Reck, A.-K. Schroeder-Lanz, M.
Wolfmüller, Data Information and Management System for the DFD Multi-Mission Earth Observation Data.
Ensuring Long-term Preservation and Adding Value to Scientific and Technical Data, PV 2005, Edinburgh
UK, 21.-23.11.2005, Digital Curation Center Conference Proceedings, The Royal Society Edinburgh, (2005)

[5] Jason Cai, Ranjit Kapila, and Gaurav Pal, HMVC: The layered pattern for developing strong client tiers,
JavaWorld, July 2000: http://www.javaworld.com/javaworld/jw-07-2000/jw-0721-hmvc_p.html

[6] J2EE Design Patterns > Model-View-Controller Architecture, Sun Microsystems, 2001,
http://java.sun.com/blueprints/patterns/j2ee_patterns/model_view_controller

[7] Introducing Swing Architecture, Sun Microsystems, 2001,
http://java.sun.com/products/jfc/tsc/articles/getting_started/getting_started2.html

[8] Java Web Start 1.0.1, Sun Microsystems, 2001, http://java.sun.com/products/javawebstart/index.html

[9] How to Use Actions, Sun Microsystems, 2007,
http://java.sun.com/docs/books/tutorial/uiswing/misc/action.html

[10] The SwiXML software http://www.swixml.org/

[11] Spring Framework, http://www.springframework.org/

[12] Eclipse - an open development platform, http://www.eclipse.org/

[13] German TerraSAR-X Radar Satellite Mission homepage at the German Aerospace Center
http://www.dlr.de/tsx/start_en.htm

Chirstoph Reck
Christoph graduated from the Technical University in Munich, Germany in 1988 with a Diploma in electrical
engineering. His work at DLR involved hardware and software design for the D-2 Space Shuttle experiments,
ERS1&2 ground segment data decoding, MarsExpress onboard compression for the HRSC camera and the data
decoding in the ground segment, as well as other missions. Operator and user interfaces were always a key issue of
the designs. This was followed by software analysis, design and implementation for the ISIS, INFEO and DIMS
user and operator interfaces. Throughout his career Christoph based his work on standards and design patterns to
achieve a large scale of reusability and efficiency. The current work as a senior system engineer involves the
evolution of the tools for operations of the DLR National Remote Sensing Data Library and contributions to user
services of DLR and ESA Multi-mission Facility Infrastructure and EO User Services including HPC and Grid
computing.

Sven Kröger
Sven graduated from the University of Hamburg, Germany in 2002 with a Diploma in computer science with a
major in qualitative spatial knowledge. During his time as research assistant at the University of Konstanz,
Germany (2003-2005) he was engaged in knowledge management and collaborative e-learning. Since 2005 Sven
works at the German Remote Sensing Data Center of DLR. Among the evolution of the Operating Tool Sven is
DIMS system engineer of the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) project.

http://www.javaworld.com/javaworld/jw-07-2000/jw-0721-hmvc_p.html
http://java.sun.com/blueprints/patterns/j2ee_patterns/model_view_controller
http://java.sun.com/products/jfc/tsc/articles/getting_started/getting_started2.html
http://java.sun.com/products/javawebstart/index.html
http://java.sun.com/docs/books/tutorial/uiswing/misc/action.html
http://www.swixml.org/
http://www.springframework.org/
http://www.eclipse.org/
http://www.dlr.de/tsx/start_en.htm

	INTRODUCTION
	Use Cases
	Requirements
	Architecture
	Implementation
	Components

	CONFIGURATION
	The configuration hierarchy of the OT
	Using Parameterized Views via Configuration
	Navigation between Views

	CONCLUSION

