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Determination of the Measurement Errors for the HALO Basic Data System BAHAMAS by 
Means of Error Propagation  
 

Der Forschungsbericht beschreibt die Bestimmung der Messfehler für die meteorologischen 
Basisdaten des Atmosphären-Forschungsflugzeugs HALO. Diese Daten werden von der vom 
DLR entwickelten Basismessanlage BAHAMAS erfasst.  

Die Fehleranalyse basiert auf einer Fehlerfortpflanzungs-Methode, bei der auf die originalen 
Messdaten ein künstliches weißes Rauschsignal aufsetzt wird, das auf diese Weise die gesamte 
Datenverarbeitung durchläuft. Die Fehlerrechnung umfasst sowohl statistische Messfehler in den 
originalen Rohdaten als auch systematischen Fehlerbeiträge in der Datenprozessierung, die 
durch Sensorkalibrierung, ungenaue Parametrisierungen von physikalischen Zusammenhängen 
oder Unsicherheiten aus Laborergebnissen herrühren. Die präsentierte Methode stellt eine echte 
Fehlerfortpflanzung da und basiert nicht auf Vereinfachungen oder Linearisierungs-Ansätzen wie 
bei einer klassischen Fehlerfortpflanzungsbetrachtung.  

Das Dokument präsentiert und diskutiert alle bekannten Fehlerquellen für Basismessdaten auf 
HALO. Abschließend werden Ergebnisse dieser Fehleranalyse für typische Flugszenarien 
dargestellt und mögliche Ansatzpunkte für eine weitere Minimierung dieser Fehler diskutiert.     
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Determination of the Measurement Errors for the HALO Basic Data System BAHAMAS by 
Means of Error Propagation 

 

The document determines the measurement errors of basic meteorological data from the German 
atmospheric research aircraft HALO. The presented results are based on an error propagation 
method that uses artificial white noise which is added to the original data and which propagates 
through the complete air data calculation scheme. The error calculation covers statistical noise 
of the original raw data as well as all possible systematic error sources from sensor calibration, 
inaccurate parameterizations of physical relations and the uncertainties from laboratory 
investigations. The method represents a true error propagation which is not based on linearization 
or approximations in the data calculation scheme.  

The document finally presents and analyses all known error sources for HALO aircraft data. It 
also provides a complete error analysis for typical HALO flight conditions and discusses the 
potential for further improvements of the data quality. 
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Abstract 

The document determines the measurement errors of basic meteorological data 

from the German atmospheric research aircraft HALO. The presented results are 

based on an error propagation method that uses artificial white noise which is 

added to the original data and which propagates through the complete air data 

calculation scheme. The error calculation covers statistical noise of the original raw 

data as well as all possible systematic error sources from sensor calibration, 

inaccurate parameterizations of physical relations and the uncertainties from 

laboratory investigations. The method represents a true error propagation which 

is not based on linearization or approximations in the data calculation scheme.  

The document finally presents and analyses all known error sources for HALO 

aircraft data. It also provides a complete error analysis for typical HALO flight 

conditions and discusses the potential for further improvements of the data 

quality.  
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Introduction 

Research aircraft represent an important contributor to the “toolbox” of 

atmospheric research. Their ability to access a large portion of the atmosphere in 

a very controlled manner which allows to precisely determine the exact location, 

time and in some cases even the desired meteorological conditions for a planned 

scientific investigation make the aircraft a first choice for many experiments in this 

field of research. Aircraft platforms allow for “in situ” measurements of 

atmospheric parameters or specific species with high spatial resolution when 

compared to a satellite. The possibility to access instruments inside the aircraft 

cabin during a measurement make the aircraft an ideal platform for testing new 

technologies and prototype instrumentation.   

However, the calculation of air data for the free atmosphere from instrument data 

which is acquired inside the aircraft requires precise information about the 

thermodynamic parameters of the free atmosphere. The data processing typically 

needs temperature, pressure and air density data of the undisturbed air in the 

vicinity of the aircraft. Furthermore, the interpretation of the acquired data is 

greatly simplified by information about the associated air motion i.e. speed and 

direction of the wind with a high temporal resolution. Wind data is also needed 

to determine transport parameters like the flux of trace gases or kinetic energy.  

 

None of these thermodynamic parameters can be measured directly on an aircraft 

because aerodynamic effects change air pressure, temperature and the flow field 

in the vicinity of the fuselage. Therefore, any measurement requires significant 

corrections in order to determine the desired parameters with an acceptable 

accuracy [6], [7].  

Basic meteorological data is typically provided by the aircraft operator who is 

therefore also responsible to determine the necessary air data corrections. It is 

obvious that the quality of this basic data is critical to almost any unit which is 

measured by other instruments. In other words: the quality of basic meteorological 

data on a research aircraft limits the accuracy of almost every measurement taken 
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by the scientific instrument payload inside the cabin. This also means that 

information about the error of these parameters is an essential input for any 

instrument onboard.  

However, due to the complex data processing scheme of basic meteorological 

data on an aircraft there is typically no precise (calculated) error data available and 

the provided information is usually based on rough estimations and major 

simplifications.   
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The Atmospheric Research Aircraft HALO 

 

 
Figure 1: The German atmospheric research aircraft HALO 

This investigation concerns the German atmospheric research aircraft HALO (High 

Altitude and LOng range research aircraft) which is shown in Figure 1. The aircraft 

and its instrumentation are described in detail in [11], [6] and [7]. 

HALO is operated by the German Aerospace Center (Deutsches Zentrum für Luft- 

und Raumfahrt, DLR) in the Flight Experiments Facility (FX). HALO home base is 

the research flight facility in Oberpfaffenhofen (Bavaria), one of two flight facilities 

(Oberpfaffenhofen and Braunschweig) inside FX. Part of this department is the 

“Instrumentation and Data Science Group” which is responsible for the basic 

scientific instrumentation, data acquisition and data processing on this aircraft. 

The basic aircraft and atmospheric data is measured by the Basic HALO 

Measurement and Data System (BAHAMAS), which was developed by this group. 
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Processing of DLR Research Aircraft Data:  RAMSES 
Software 

 

 
Figure 2: Processing scheme for a general RAMSES software module which 
is used for all aircraft: Wind vector calculation (from [7]).   

HALO aircraft data is processed with a software package called RAMSES (Research 

Aircraft Meteorological Sensor data Evaluation Software) which is based on the 

programming software IDL (Interactive Data Language).  

RAMSES uses data bases, is highly modular and has been developed by FX since 

1996. Today, the software is used for all atmospheric research aircraft which are 

operated by FX in Oberpfaffenhofen.  

The data evaluation of a single flight with RAMSES starts with unscaled raw data 

and uses a calibration data base and a large library of meteorological and 

thermodynamic routines.  

The key processing parameters for each flight are also stored in a data base in 

order guarantee an identical processing even a long time after the first data 

evaluation. The data processing always follows a general workflow with specific 
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modules for each aircraft which consider individual aerodynamic corrections, 

different sensors or specific instrument configurations.   

 

 
Figure 3:  RAMSES workflow for the calculation of static air temperature. 
The blue modules represent aircraft specific routines.  
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Figure 2 shows the workflow of a general RAMSES module which is used to 

calculate the atmospheric wind vector and which applies to all DLR aircraft. In 

contrast the calculation of static air temperature requires aircraft specific 

corrections in the pressure determination. Figure 3 shows where these modules 

appear in the processing of temperature data on HALO.   
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Time Series Data 

 

 
Figure 4: Static air temperature 𝑻𝑺 and indicated static air temperature 𝑻𝑺,𝒊 
time series from a HALO test flight on May 16th 2019. The offset of 𝑻𝑺,𝒊 
accounts for the temperature increase caused by the adiabatic heating in 
the Total Air Temperature (TAT) housing of the sensor.  

As an example, Figure 4 shows a time series of static air temperature 𝑇𝑆 over a 

time interval of 15 minutes as calculated by RAMSES for a HALO test flight which 

took place on May 16th 2019 over Germany. The data is taken at a flight altitude 

(pressure height) of 7934m (359 hPa) and a mean True Air Speed of 163m/s 

(MC=0.53). The time series has a time resolution of 10Hz.  

From the shown time series it becomes immediately clear that it is impossible to 

distinguish between real atmospheric variation, statistical noise or the influence of 

changing flight parameters like aircraft altitude, attitude or speed on the data. The 

key to this analysis is the quantification of these contributions which requires a 

proper error analysis and the application of certain statistical tools.   

Raw, Primary and Secondary Data 

During the acquisition and processing of sensor signals on HALO the respective 

data is available at different processing levels. Therefore, it is common to use the 

following classification:  
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Raw Data 

Raw data is the original sensor data, as collected by the data acquisition system. 

Raw data is not processed or even scaled in any way. Therefore, the unit of raw 

data in an analog system like BAHAMAS is typically “voltage”. In case of the 

BAHAMAS temperature measurement the raw signal is the output of the analog 

signal conditioner which converts the resistance of a Platinium resistance 

temperature element (Pt100) into a DC voltage between 0 and 5 Volts. For digital 

sensors raw data might not be available at all.  

 

Primary Data   

Primary data is raw data which has been converted into physical units using a 

conversion scheme which was determined by means of a calibration. During the 

calibration of a temperature sensor the sensing element itself is exposed to an 

extremely well defined (i.e. homogeneous and very accurately controlled) 

temperature reference bath. The sensor signal is recorded and then used to 

generate a precise relation between sensor output and real temperature.  

In an analogue system a complete calibration must include the data acquisition 

(i.e. the analogue to digital conversion). As a consequence, the calibration is very 

often a two-step process: HALO temperature calibration consists of (1) a 

temperature versus resistance calibration in the laboratory and (2) a resistance 

versus voltage calibration on the aircraft which includes the data acquisition 

system.  

Primary data always describes the physical unit as measured directly by the sensor 

during flight. It represents the “local” or “indicated” value of this unit at the 

sensor. The indicated static temperature 𝑇𝑆,𝑖 can also be seen in the example of 

Figure 4. 𝑇𝑆,𝑖 is subject to the data processing scheme shown in Figure 3 which 

determines the 𝑇𝑆 for the free atmosphere in the vicinity of the aircraft from the 

indicated values.   
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Secondary Data  

All data which has been subject to data processing is called secondary data. An 

example is the static air temperature of the free atmosphere (𝑇𝑆). It is calculated 

by RAMSES from the BAHAMAS raw data according to the processing scheme 

shown in Figure 3. Besides the scaling of raw data this process accounts for the 

aerodynamic and thermal properties of the sensor housing (Total Air Temperature 

Housing). It is obvious that every unit which is generated throughout the data 

processing is also classified as secondary data. Please note that the variance of 𝑇𝑆,𝑖 

in Figure 4 is larger than the variance of the real temperature 𝑇𝑆. This is due to the 

fact that some of the observed variations of 𝑇𝑆,𝑖 are caused by changing flight 

parameters (mainly aircraft speed). This dependency is removed in the data 

processing. 

The Undesired Contributions: Random Error and 
Systematic Errors 

Different factors shape a secondary data time series like the one displayed in 

Figure 4. The final curve is the result of several inputs:   

• The physical signal from the sensor itself is typically the dominant 

contribution to the final secondary data time series. In case of temperature 

the sensor raw data represents the real temperature variation as measured 

directly at the sensing element. It is important to note that raw data does 

not exclusively describe the atmospheric variance only, but also the 

influence of external parameters on the indicated unit such as aircraft 

speed, aircraft altitude or the anti-ice status of the temperature sensor 

housing. The data processing will later account for theses influences in 

order to determine the real temperature. Additionally, the raw signal can 

also be influenced by changes of instrument properties (like electronic drift 

effects) during the measurement.  

• Any physical measurement is subject to statistical effects and a 

measurement signal always contains electronic random noise. If this noise 

contribution is in the same order of magnitude as the original raw data 
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variations the respective contribution will become visible in the data. 

Therefore, white noise is always part of real data, it only depends on the 

strength of the atmospheric variability whether it becomes visible or not.  

• The raw data time series is subject to a significant data processing effort 

(as shown in Figure 3) which is necessary to determine the desired 

secondary data. It is clear that every unit and every formula which is used 

throughout this calculation will leave its “footprint” in the data and will 

also have an impact on the final secondary data time series.  

 

The goal of any measurement is “realistic” secondary data i.e. data with minimum 

deviations from the undisturbed atmospheric values. However, from the above 

one can see that there are many factors which potentially generate deviations 

from the desired result.  

The total error of secondary data can be divided into two categories which will be 

analyzed in detail in the following chapters: 

 

Random error 

The random error (“rn”) is completely uncorrelated and caused by statistical 

effects. Therefore, this contribution is often referred to as “white noise” or 

“random noise”. For random noise no relation between adjacent data points can 

be detected. 

 

Systematic error 

All other errors are referred to as “systematic errors” because they result from 

physical effects and can in principle be measured and parameterized. Systematic 

errors occur along the complete workflow of a measurement and the following 

data processing. Possible contributions result from changing sensor properties 

during a measurement caused by drift effects or due to the impact of 

environmental conditions on sensor sensitivity, from inaccurate scaling of raw data 

caused by a “bad” calibration, from error contributions during the data processing 

by other units which are used in the calculation or from inaccurate formulas or 
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wrong parameterizations of physical effects. Since most of these contributions 

cannot be precisely parameterized there remains an uncertainty in the final data 

which leads to systematic deviations of the secondary data from reality.  

 

The total error of a unit is the sum of statistical and systematic errors.  

Accuracy and Precision 

 
Figure 5: Accuracy and precision  

Imagine an aircraft flying in an airmass with an absolute homogeneous 

temperature. How does in this case the time series of the processed static 

temperature 𝑇𝑆 look like? Figure 5 shows the expected result: The secondary data 

𝑇𝑆 will not only show a time dependent variability but also a potential systematic 

difference from the real atmospheric temperature 𝑇𝑎𝑡𝑚𝑜𝑠.   

The ability to exactly reproduce data which was acquired under identical 

conditions is described by the “precision” of a data system for the respective unit. 

As can be seen from Figure 5 precision is the random “scatter” of data around 

the mean value. The parameter obviously quantifies the total statistical noise in 

the system caused by white noise contributions from the original data as well as 

from all parameters which get involved in the data processing. Visible variability in 
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the data which exceeds this noise level can be attributed to real atmospheric 

structures.  

The offset of the mean processed data from the real atmospheric value is known 

as the “accuracy” of a measurement system. As an example, the usage of a bad 

reference sensor in the sensor calibration will result in an erroneous scaling of the 

raw data which then leads to an error (offset) in the secondary data.  

A measurement system with a good precision and bad accuracy can still be used 

to detect atmospheric structures or to determine statistical units like fluxes or 

variances from time series.  

On the other hand, the calculation of secondary data like the relative humidity 

requires a very accurate static temperature 𝑇𝑆. This unit is used to determine the 

saturation water vapor pressure which has an exponential dependence on 𝑇𝑆. 

Therefore, systematic errors in the temperature can lead to large errors in this 

humidity unit. For this reason, the measurement of relative humidity requires a 

very accurate system.  

Figure 6 shows an example from [7] which demonstrates the precision of HALO 

air data. The plot shows the variation of static pressure (secondary data!) during 

pitch oscillation maneuvers. The pressure data is compared to a reference value 

which was determined outside (before/after) the -oscillations.  

The pressure data shown had to be corrected for variations caused by aircraft 

altitude changes during the maneuver. This correction requires information about 

the air density and the changes of aircraft altitude during the oscillations. The 

altitude data is determined by an inertial reference system (IRS). Therefore, the 

data contains uncertainties not only from the static pressure itself (which has 

already been corrected for static source error) but also from the angle of attack 

measurement (as calculated from differential -pressure, dynamic pressure, static 

pressure), from the air density (temperature, pressure) and from the aircraft 

altitude (aircraft altitude and attitude). As one can see from Figure 6 the standard 

deviation of the data with respect to the mean value (i.e. the fit into the data) is 

less than 1Pa which is significantly better than the absolute accuracy of the static 

pressure sensor calibration which is shown in Figure 30.  
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Figure 6: Dependence of static pressure on dynamic angle of attack 
variations associated with harmonic pitch maneuvers (from [7]). The plot 
shows 10Hz data from a maneuver with 9 oscillations.  
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White Noise 

As mentioned above white noise is present in every kind of data system. The 

following sections will show how this noise contribution can be detected and 

quantified for a specific unit and how this error propagates through the data 

processing.  

 

 
Figure 7: Test signal for the investigation of the white noise effects on real 
data. The data index n in the formulas below is scaled according to the 
10Hz HALO standard data acquisition rate in order to achieve a realistic 
delay time dt in the autocovariance function. The signal consists of a sine 
signal with an amplitude of 2 and a frequency of 0.16Hz (𝝎 = 𝟏). The 
artificial random noise was calculated from a Gaussian distribution with a 
standard deviation of 𝝈𝒓𝒏,𝒔 = 𝟎. 𝟖  . The length of the data series used for 
the calculations is 600 s (6000 values).   
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Properties of Random Noise 

In order to demonstrate the properties of this error contribution we use an artificial 

data (“s”) time series. As one can see in Figure 7 the test data consists of a sine 

signal which represents the atmospheric signal and a noise contribution which is 

generated with the IDL RANDOMN function.  

The most important property of the random signal results from the fact that the 

single data points are completely independent from each other. This means that 

there is absolutely no correlation between adjacent data points and that no 

structure can be detected in the data. This property can be visualized by 

mathematical tools like the autocovariance function or the power spectrum of the 

respective time series.   

Random Error Investigation: Autocorrelation and Power 
Spectrum 

Every data time series 𝑠(𝑡) can be represented as the sum of the mean value 𝑠̅ of 

the data and a temporal variability 𝑠′(𝑡) around this value:  

𝑠(t) =  𝑠̅ + 𝑠′(𝑡) Equation 1 

In our case a time series consists of discrete values according to the sampling 

process inside a real data acquisition. Equation 1 can then be written as  

𝑠(𝑖) =  𝑠̅ + 𝑠′(𝑖),         i = 1, . . m Equation 2 

The mean value of the time series is calculated according to  

𝑠(𝑖)̅̅ ̅̅ ̅ =  
1

𝑚
∑𝑠(𝑖)

𝑚

𝑖=1

= 𝑠̅    𝑠𝑖𝑛𝑐𝑒    𝑠′̅ =  
1

𝑚
 ∑𝑠′(𝑖)

𝑚

𝑖=1

= 0 Equation 3 

The variability of 𝑠′(𝑖) is described by two units: The variance 𝜎𝑠
2 represents the 

average squared deviations of a time series from the mean value of the data, while 
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the standard deviation 𝜎𝑠 is the square root of that number and can be seen as 

the mean width of the data “scatter” around the mean value.  

𝜎𝑠
2 = 

1

𝑚
∑ 𝑠′2(𝑖)𝑚

𝑖=1   Equation 4 

For the test data in Figure 7 the standard deviation of the random noise 

contribution is 𝜎𝑟𝑛,𝑠 = 0.8 which corresponds to a variance of 𝜎𝑟𝑛,𝑠
2 = 0.64. 

In case of random noise there is absolutely no correlation between single data 

points and no systematic structures can be observed in the time series. This can 

be checked by multiplying the time series 𝑠(𝑖) with a copy of itself which has been 

shifted by one index, i.e. 𝑠(𝑖 − 1). For a sine signal it is obvious that this product 

will be almost identical to 𝑠𝑖𝑛2(𝑖) because 𝑠𝑖𝑛(𝑖) and 𝑠𝑖𝑛(𝑖 + 1) are always very 

close to each other. In other words: two adjacent data points are always strongly 

correlated due to the sine function.  

This is completely different for the random noise where such a correlation does 

not exist. Therefore, the product 𝑠(𝑖) ∙ 𝑠(𝑖 + 1) must also be completely random: 

a single data point has absolutely no relation to its neighbour. As a consequence, 

the mean of the product of the 2 shifted time series must be zero.  

For of the random noise contribution to the above test data we find that 𝑠2(𝑖)̅̅ ̅̅ ̅̅ ̅ =

0.625 and 𝑠(𝑖) ∙ 𝑠(𝑖 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −0.016 . In case of the “clean” sine signal these values 

are 2.000 and 1.990 respectively.  

The autocovariance function (ACV) is used to systematically investigate this 

behaviour. It is defined as    

 

𝐴𝐶𝑉𝑠(𝑛) =  s′(𝑖) ∙ 𝑠′(𝑖 + 𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  
1

𝑚
∑𝑠′(𝑖)

𝑚

𝑖=1

∙ 𝑠′(𝑖 + 𝑛) Equation 5 

 

From Equation 5 it is obvious that 𝐴𝐶𝑉𝑠(0) is identical to the variance  𝜎𝑠
2:  
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𝐴𝐶𝑉𝑠(0) =  s′(𝑖) ∙ 𝑠′(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑚
∑𝑠′2(𝑖)

𝑚

𝑖=1

= 𝜎𝑠
2 Equation 6 

 

The ACV helps to find out whether the data points of a time series are correlated 

between each other. It can quantify: 

• How strong this correlation is (by comparing it to the variance of the 

original time series at n=0) 

• Over which typical time the data is correlated with itself   

 

 
Figure 8: Autocovariance of the test signal. The plot shows the strong 
correlation in the time series caused by the artificial sine signal. This 
correlation is still completely visible in the presence of white noise. At 
dt=0 one can see the “white noise peak” which results from the 
uncorrelated error contribution in the signal at dt=0.   
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Figure 8 shows the ACV for the test signal and compares it with the (noise free) 

original sine data. From the plot we see that:  

 

• A systematic correlation is given over a very long delay time dt which 

extends far beyond the shown plot window. This is clear, because the main 

signal follows an exact sine shape. 

• The correlation changes between 2 (perfectly correlated signals: 𝑠𝑖𝑛2(𝑡)) 

and -2 (anti-correlated signals: −𝑠𝑖𝑛2(𝑡)). The correlation depends on the 

value of dt, which can be seen as a phase shift of the second sine function 

in Equation 5.   

• The ACVs of the original data and the “noisy” signal are almost identical 

with an exception at dt=0 

• The ACV of the noisy signal shows a sharp peak at 𝑑𝑡 = 0. It is immediately 

clear, that this additional peak must represent the white noise contribution 

which vanishes otherwise i.e. for 𝑑𝑡 ≠ 0. 
 

Assuming that the signal variability s′(𝑖) contains contributions from the “real” 

(physical) data ( s𝑑𝑎𝑡𝑎
′(𝑖) ) as well as from random noise ( s𝑟𝑛

′(𝑖) ), i.e.  

 

 s′(𝑖) = s′
𝑑𝑎𝑡𝑎(𝑖) + s′

𝑟𝑛(𝑖) Equation 7 

 

the total variance of the time series 𝜎𝑠
2 can be calculated as  
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 𝜎𝑠
2 

= s′2(𝑖)̅̅ ̅̅ ̅̅ ̅ 

= (s′
𝑑𝑎𝑡𝑎(𝑖) + s′

𝑟𝑛(𝑖))2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

= s′𝑑𝑎𝑡𝑎
2
(𝑖) + 2 ∙ s′𝑑𝑎𝑡𝑎(𝑖) ∙ s′𝑟𝑛(𝑖) + s′𝑟𝑛

2
(𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

= s′𝑑𝑎𝑡𝑎
2
(𝑖) + s′𝑟𝑛

2
(𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
        (𝑠𝑖𝑛𝑐𝑒  s′

𝑑𝑎𝑡𝑎(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = s′
𝑟𝑛(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0) 

= 𝜎𝑟𝑛,𝑠
2 + 𝜎𝑑𝑎𝑡𝑎,𝑠

2  

= 𝐴𝐶𝑉𝑠(0) 

Equation 8 

Equation 8 proves that the value of 𝐴𝐶𝑉𝑠(0) which corresponds to the overall data 

variance 𝜎𝑠
2 is the sum of the variances of the true signal 𝜎𝑑𝑎𝑡𝑎,𝑠

2  and the random 

noise 𝜎𝑟𝑛,𝑠
2 . Therefore, the ACV can be used to determine these two units by 

interpolating the ACV at 𝑑𝑡 = 0. However, in most cases it is sufficient to 

determine the difference between 𝐴𝐶𝑉𝑠(0) and 𝐴𝐶𝑉𝑠(1):  

 

𝜎𝑟𝑛,𝑠
2     = 𝐴𝐶𝑉𝑠(0) − 𝐴𝐶𝑉𝑠(1) 

𝜎𝑑𝑎𝑡𝑎,𝑠
2 = 𝐴𝐶𝑉𝑠(1) 

Equation 9 

In case of the test function we find 𝐴𝐶𝑉𝑠(0) = 2.637 and 𝐴𝐶𝑉𝑠(1) = 1.986 which 

corresponds to 𝜎𝑑𝑎𝑡𝑎,𝑠 = 1.41 and 𝜎𝑟𝑛,𝑠 = 0.81.  
 

The ACV can be normalized with the data signal variance 𝜎𝑑𝑎𝑡𝑎,𝑠
2  of the time series. 

The result is called the autocorrelation function (ACF).  

 

𝐴𝐶𝐹𝑠(𝑛) =  
1

𝜎𝑑𝑎𝑡𝑎,𝑠
2 ∙ s′(𝑖) ∙ 𝑠′(𝑖 + 𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Equation 10 

With the exception of the white noise peak the ACF has a data range between 1 

(perfectly correlated at dt=0) to -1 (anticorrelated) which makes this function a 

useful tool for correlation analyses.  
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Figure 9: Autocovariance Function of the random noise used for the 
generation of the test signal. With the exception of the white noise peak 
at dt=0 the ACV is zero. The height of the peak is identical to the random 
noise variance of 0.64.  

Figure 9 shows the ACV of the noise contribution to the test signal. As expected 

the function is zero with the exception of the white noise peak at dt=0. The height 

of this peak represents the variance of the white noise.   

Another tool to investigate the properties of time series is the power spectrum 

which can be calculated from the data by means of a Fast Fourier Transform (FFT). 

Figure 10 shows the result for the test signal.  

As already mentioned above random noise does not show any systematic structure 

in the time series. Therefore, no specific frequency contributions to the signal can 

be detected. As a consequence, the noise power spectrum is represented by a 

horizontal line. The contribution from all frequencies are equal, the spectrum is 

white.  
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Figure 10: Power spectra for the test signal, the original signal and the 
white noise contribution. Please note that both axes show a logarithmic 
scaling. Therefore, the plot shows some minor effects caused by the 
limited length of the test signal.   

The level of this horizontal line is a measure for the amount of noise and the 

integral over the noise power spectrum yields the white noise variance 𝜎𝑟𝑛,𝑠
2 . For 

the combination of data signal and noise in the test data this noise level is 

maintained and still visible in the spectrum. However, the frequency of the sine 

signal peaks out of the spectrum by several orders of magnitude. In this case the 

integral over the spectrum (i.e. the area under the curve in Figure 10) stands for 

the overall signal variance 𝜎𝑠
2 = 𝜎𝑟𝑛,𝑠

2 + 𝜎𝑑𝑎𝑡𝑎,𝑠
2 . 

It turns out that it is much more convenient to use the ACV than the spectrum if 

one wants to determine the signal variance and to distinguish between the main 

contributions to this value. On the other hand, the power spectrum helps to 
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understand the structure of a signal and to identify the dimension (frequency) of 

dominant features in the time series.  

Example: Real Aircraft Data 

 

 
Figure 11: Autocovariance Function of the aircraft data shown in Figure 4. 
The right plot shows the white noise peaks in the data.  

Figure 11 shows the Autocovariance function for the time series of Figure 4. As 

one can see the white noise peak in the primary and secondary data is rather 

small, the standard deviation which was calculated according to Equation 9 yields 

𝜎𝑟𝑛,𝑇𝑆,𝑖,𝑜𝑟𝑖𝑔 = 0.022𝐾 and 𝜎𝑟𝑛,𝑇𝑆 ,𝑜𝑟𝑖𝑔 = 0.022𝐾. We can therefore state that the 

precision of the BAHAMAS Temperature measurement is very good.  

This is also proved by the fact that no other primary data time series from this data 

set shows a detectable white noise peak on this flight leg.   

From Figure 11 it becomes obvious that the random noise signal in the raw data 

propagated almost unchanged through the complete data processing and that no 

significant impact of the data processing on the white noise amplitude can be 

observed.   

The different shape of the ACV functions in Figure 11 is due to the impact of the 

above mentioned aerodynamic parameters on the measurement: The shape of the 

ACV for 𝑇𝑆,𝑖  is almost identical to the ACV for the aircraft True Air Speed (TAS) as 

one can see from Figure 19. As pointed out above these features are completely 

removed during the calculation of 𝑇𝑆.  
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Effect of Additional Input Errors on Secondary Data 

In order to visualize the random error propagation for more complicated 

calculations artificial white noise with an amplitude of 𝜎𝑟𝑛,𝑃𝑆,𝑖
=100Pa is added to 

the primary data time series of the indicated static Pressure 𝑝𝑆,𝑖. The noise was 

generated with the IDL RANDOMN function and added to the original 𝑝𝑆,𝑖 time 

series. The result is shown in Figure 12 

 

 
Figure 12: Static pressure primary data before/after artificial white noise 
is added to the time series. The random noise amplitude is 100Pa.   

 
Figure 13: Autocovariance Function of the indicated static pressure 𝒑𝑺,𝒊 

(primary data) before/after artificial white noise is added to the time 
series. 
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Figure 14: Power spectrum of the indicated static pressure 𝒑𝑺,𝒊 before/after 
artificial white noise is added to the time series. 

The artificial white noise leads to a significant white noise peak in the ACV of 𝑝𝑆,𝑖 

as one can see from Figure 13.  

The height of the white noise peak is found to be 9750 Pa2 which gives 𝜎𝑟𝑛,𝑃𝑆,𝑖
= 

98.7 Pa. This value corresponds well with the white noise amplitude which was 

chosen in the noise generation. The comparison of the power spectra in Figure 14 

clearly shows the flat (white) noise contribution which exceeds/eliminates the 

structure from the original time series at higher frequencies.  

White Noise Propagation in Data Processing 

In order to investigate the impact of the increased white noise level of 𝑝𝑆,𝑖 on 

secondary data a complete data processing run is performed with RAMSES using 

the modified 𝑝𝑆,𝑖 data. Figure 15 shows the comparison between the time series 

of the static air temperature 𝑇𝑆 which were calculated with and without the 

artificial noise contribution.  
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Figure 15: Time series of static air temperature 𝑻𝑺 before/after artificial 
white noise was added to the indicated static pressure 𝒑𝑺,𝒊 . 

It is obvious that the 𝑇𝑆 noise level increases as there is more random noise in the 

𝑇𝑆 data processing. Figure 3 shows where 𝑝𝑆,𝑖  is used in the processing of 

temperature data.  

 

 
Figure 16: Autocovariance function of static air temperature 𝑻𝑺 
before/after artificial white noise was added to the indicated static 
pressure 𝒑𝑺,𝒊 
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The ACV analysis helps to quantify the increase of  𝜎𝑟𝑛,𝑇𝑆
. Figure 16 shows the 

comparison of the ACV for 𝑇𝑆 with/without the artificial random noise 

contribution. From the plot we find the total white noise error of 𝑇𝑠 for the 

modified data set to be 

   

𝜎𝑟𝑛,𝑇𝑆,𝑚𝑜𝑑 = √𝐴𝐶𝑉𝑇𝑆 ,𝑚𝑜𝑑(0) − 𝐴𝐶𝑉𝑇𝑆,𝑚𝑜𝑑(1) = 0.039𝐾    

 

 
Figure 17: Power spectrum of static air temperature 𝑻𝑺 before/after 
artificial white noise was added to the indicated static pressure 𝒑𝑺,𝒊  . 

This value is significantly larger than the standard deviation of 𝜎𝑟𝑛,𝑇𝑆,𝑜𝑟𝑖𝑔 = 0.022𝐾 

which was determined above from the original time series. The power spectrum 

of the 𝑇𝑆 data with the different noise contributions can be seen in Figure 17. One 

can see that the additional white noise contribution in 𝑝𝑆,𝑖  results in an increased 

level of white noise in the spectrum. 

 Since RAMSES processes the data point by point and since no averaging or 

“temporal smearing” of data takes place by any processing step it is immediately 

clear that every white noise contribution to a BAHAMAS raw data time series will 
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remain “random” during the complete data processing. This means that the noise 

contribution to a single data point of any secondary data time series will always 

be completely uncorrelated with any other noise value from this time series.  

According to Equation 8 this means that the total white noise variance of a 

secondary unit (S) will always represent the sum of random error variances which 

can be attributed to the different raw data inputs (i) which get involved in the 

calculation of S:  

𝜎𝑟𝑛,𝑆,𝑡𝑜𝑡𝑎𝑙
2 = ∑ 𝜎𝑟𝑛,𝑆,𝑖

2

𝑖 (𝑎𝑙𝑙 𝑝𝑟𝑖𝑚.  𝑑𝑎𝑡𝑎 𝑠𝑜𝑢𝑟𝑐𝑒𝑠)

 
Equation 11 

For the above case we can therefore write 

 

𝜎𝑟𝑛,𝑇𝑆,𝑡𝑜𝑡𝑎𝑙
2 = 𝜎𝑟𝑛,𝑇𝑆,𝑇𝑆,𝑖

2 + 𝜎𝑟𝑛,𝑇𝑆,𝑝𝑆,𝑖

2     

 

which allows for the determination of the impact of the additional white noise in 

𝑝𝑆,𝑖 on the calculated static pressure 𝑇𝑆: 

 

𝜎𝑟𝑛,𝑇𝑆,𝑝𝑆,𝑖
= √𝜎𝑟𝑛,𝑇𝑆 ,𝑡𝑜𝑡𝑎𝑙

2 − 𝜎𝑟𝑛,𝑇𝑆,𝑇𝑆,𝑖

2 = √𝜎𝑟𝑛,𝑇𝑆 ,𝑚𝑜𝑑
2 − 𝜎𝑟𝑛,𝑇𝑆 ,𝑜𝑟𝑖𝑔

2 = 0.032𝐾 

 

This means that a 100Pa white noise contribution to 𝑝𝑆,𝑖 results in a 0.032K 

random error in the final  𝑇𝑆 data time series during this flight leg   

A second example shows impact of white noise on a unit which is subject to a 

more complicated data processing.  

 

The True Air Speed (TAS) is the aircraft speed relatively to the air at rest. It is 

calculated from secondary pressure and temperature data (𝑝𝑆 , 𝑞𝑐 and 𝑇𝑆) 

according to   
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TAS =  √𝐶2 ∙ 𝑇𝑠 ∙ [(1 +
qc

𝑝𝑠
)
C1

− 1] Equation 12 

where 

𝐶1 =
κ−1

κ
 ,  𝐶2 = 2 ∙

R

C1
  

𝑝𝑠 is the static pressure 

𝑞𝑐 is the dynamic (impact) pressure 

 is the adiabatic index 

R the universal gas constant 

𝑇𝑆 is the static air temperature 

 

Please note that 𝑝𝑠 and 𝑞𝑐 in Equation 12 represent data that was subject to major 

aerodynamic corrections which concern the static source error and flow angle 

dependencies.   

 

 
Figure 18: Time series of True Air Speed (TAS) before/after artificial white 
noise was added to the indicated static pressure 𝒑𝑺,𝒊 . 

Figure 18 shows the TAS time series for the same time interval as Figure 4 and 

Figure 15. One can see, that the additional white noise in 𝑝𝑠,𝑖 results in increased 

random noise in TAS. The question whether the original (“real”) random noise in 

𝑇𝑆,𝑖 also has an impact on TAS is answered by the comparison of the ACVs 
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before/after the artificial white noise was added to the data. This comparison is 

shown in Figure 19. The plot on the left side shows the same specific shape as the 

ACV of 𝑇𝑆,𝑖 in Figure 11, which proves the strong dependency of 𝑇𝑆,𝑖 on TAS 

caused by the aerodynamic properties of the temperature sensor housing.  

 

 
Figure 19: Autocovariance function of True Air Speed (TAS) before/after 
artificial white noise was added to the indicated static pressure 𝒑𝑺,𝒊   

On the right-hand side of Figure 19 one can see that the original ACV of TAS 

shows only a very small white noise peak which corresponds to  

 

𝜎𝑟𝑛,𝑇𝐴𝑆,𝑇𝑆,𝑖
   = √𝐴𝐶𝑉𝑇𝐴𝑆,𝑜𝑟𝑖𝑔(0) − 𝐴𝐶𝑉𝑇𝐴𝑆,𝑜𝑟𝑖𝑔(1) = 0.065 m/s   

 

The modified random error of 𝑝𝑆,𝑖 results in a total TAS white noise of 

 

𝜎𝑟𝑛,𝑇𝐴𝑆,𝑚𝑜𝑑 = √𝐴𝐶𝑉𝑇𝐴𝑆,𝑚𝑜𝑑(0) − 𝐴𝐶𝑉𝑇𝐴𝑆,𝑚𝑜𝑑(1) =  0.209 𝑚/𝑠 

 

This means that the effect of a 100Pa noise contribution in 𝑝𝑆,𝑖 on TAS can be 

determined to be  

 

𝜎𝑟𝑛,𝑇𝐴𝑆,𝑝𝑆,𝑖
= √𝜎𝑟𝑛,𝑇𝐴𝑆,𝑚𝑜𝑑

2 − 𝜎𝑟𝑛,𝑇𝐴𝑆,𝑇𝑆,𝑖

2 = 0.199 𝑚/𝑠 
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Figure 20 shows the TAS power spectra before/after the artificial white noise was 

added to the 𝑝𝑆,𝑖 data time series 

 

 
Figure 20: Power spectrum of True Air Speed (TAS) before/after artificial 
white noise was added to the indicated static pressure 𝒑𝑺,𝒊 

This analysis demonstrates how random error contributions from the primary/raw 

data propagate through the data processing and lead to respective white noise in 

the final secondary units where it can be determined by means of ACV. The last 

example also shows that the error propagation is influenced by the data 

processing scheme. The influence of 𝑇𝑆,𝑖 on TAS is very small because Equation 12 

uses the absolute Temperature. In this case a random error contribution of 0.022K 

will not show a significant impact on the result. On the other hand, the white 

noise of 𝑇𝑆,𝑖 is found in the same order of magnitude in 𝑇𝑆, since these units are 

directly correlated with each other.  
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Systematic Errors  

The second error contribution to experimental data concerns systematic deviations 

of measurement data from reality due to “errors” in  

• the sensors 

• the data acquisition  

• the data processing 

These errors are not random but a result of systematic effects which can in 

principle be explained, parameterized and corrected for.  

However, in most cases such a correction is not possible, because the necessary 

input for an error determination/correction does not exist. Furthermore, the 

respective deviations from the “real” data cannot be detected directly in the data 

and - depending on the unit - they are very difficult to determine.  

 

A very simple but only qualitative way to detect major systematic errors in the data 

is the check whether a measurement result is “plausible”: a direct correlation of 

wind data with aircraft flight parameters like speed or attitude is very unlikely and 

a mean vertical wind speed other than zero over a longer time interval indicates 

problems with this measurement. Very “uncommon” humidity values for a 

specific region of the atmosphere or a relative humidity far above 100% indicate 

that the determination of this unit might be erroneous.  

However, it is usually not clear which step of the measurement chain is concerned: 

a malfunction at the sensor itself, a drift effect of an electronic component, an 

erroneous calibration (scaling) in the laboratory or a wrong secondary data 

parameter which was used in the data processing? 

The only way to determine systematic errors directly from the flight data is to 

compare the measurement with independent reference data. However, for 

aircraft measurements of meteorological parameters it is sometimes very difficult 

to obtain an independent and accurate reference from another source.  
 

Possible methods to detect systematic errors in the data are:   
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• cross checks with data from other airborne platforms, instruments or 

independent evaluation methods and data sources:  

o in flight:  

▪ comparison of aircraft data with model calculations [5], 

[10] 

▪ comparison of aircraft data with radiosonde data 

▪ comparison of data which was determined by different 

data evaluation methods: wind triangle <-> exact wind 

calculation, vertical velocity from meteorological data <-> 

from GPS 

▪ comparison of data from redundant instrumentation. This 

requires multiple humidity, pressure and temperature 

sensors as part of the original data system 

▪ comparison of data with the aircraft avionic system, i.e. the 

aircraft Air Data System (ADS) 

▪ application of inflight calibration routines based on 

maneuvers or special flight patterns 

▪ tower fly-by experiments for comparison with ground-

based measurements 

▪ intercomparison flights with other (research) aircraft [13] 

o on ground:  

▪ calibration cross checks between different organizations or 

laboratories using a common test sensor 

▪ comparison of software algorithms and parameterizations 

with other aircraft operators  

• periodic calibration of aircraft sensors in order to detect drift effects, aging 

and other changes of sensor properties 

• periodic calibration of the reference sensors from the calibration testbeds 

which are used for the aircraft instrumentation. This calibration must be 

performed by an external calibration laboratory which is traceable to 

national standards 
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• laboratory testing of sensors for environmental dependencies using an 

environmental simulation chamber 

Some possible error sources are explained in the following sections.  

Sensor  

The measurement of any unit is always based on a physical principle. Some 

examples:   

• a pressure measurement usually monitors the deformation of a membrane 

which is exposed to different air pressure on each side 

• temperature is based on the change of resistivity of a thin Platinum wire 

which is exposed to the air flow 

• humidity measures the loss of laser light intensity by absorption or the 

change of the dielectric constant of a thin film of polymer  

These physical effects have to be converted into an electronic signal which is 

forwarded to the data acquisition.  

Some of these measurement principles show dependencies to other parameters 

or are sensitive to external factors: the elasticity coefficient of the pressure 

membrane is temperature dependent, the Platinum wire of a temperature sensor 

collects dirt on its surface or is deformed by the air flow leading to a changed 

resistance, lasers are subject to aging effects concerning their spectral properties 

or output power, laser mirrors degrade over time and humidity can condense and 

evaporate inside the measurement cell. All these factors will cause measurement 

errors, drift effects or a dependence of the sensor output on environmental 

conditions. Furthermore, the sensor signal conditioning will always generate 

additional uncertainties caused by temperature effects in the electronics or aging 

of electronic components. It is difficult to quantify these error sources separately, 

but periodic calibration of a sensor and testing in an environmental simulation 

chamber helps to determine the sum of these effects.   

An experienced sensor operator is sometimes able to detect some of these effects 

during data processing and to trigger a respective calibration or investigation.   
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Calibration  

Calibration is necessary to correlate the sensor output to a real physical unit by 

comparing the output signal of an instrument with a precise reference 

measurement of the respective unit. Frequent calibration is the key to achieve 

optimum accuracy beyond the specified values for a specific sensor because it can 

compensate effects like non-linearity or offset in the sensor output. Periodic 

calibrations will also help to detect and eliminate long term drift effects of an 

instrument.  

The accuracy of a calibration is mainly determined by the reference sensor which 

itself requires a primary calibration from an official calibration laboratory (in 

Germany: Deutscher Kalibrierdienst, DKD) that can be traced to national standards 

from the national metrology institute (like the “Physikalisch Technische 

Bundesanstalt, PTB” in Brunswick, Germany).  

The experimental setup which is used for the calibration causes additional 

uncertainties in the result: spatial inhomogeneities of the probe volume of a 

temperature calibration (liquid bath) in which temperature sensors are calibrated, 

the accuracy of the multimeter which is used for the resistance measurement of 

temperature sensors, the precision in the determination of the height difference 

between a sensor and the reference instrument in a pressure calibration or the 

quality of the pressure measurement which is used to determine water vapor 

mixing ratio from the dewpoint which is determined by the humidity reference 

sensor. Therefore, any calibration requires a detailed and precise analysis of the 

total accuracy which must include all possible error sources that have an impact 

on this result.  

The complete calibration of an analogue sensor must include the data acquisition 

i.e. the accuracy of the analog to digital conversion (ADC) inside the data system.  
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Figure 21:  Different calibration procedures for sensors on HALO. For all 
analogue sensors the process has to include the data acquisition. In some 
cases, the calibration is performed as a two-step process.  
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Therefore, if the calibration of a sensor cannot be performed directly at the aircraft 

the complete sensor calibration becomes sometimes a two-step process as shown 

in Figure 21. 

However, if the sensor is an autonomous instrument which includes the 

digitization of the data the calibration can be performed completely in the 

laboratory. This is the case for the HALO water vapor sensor SHARC.  

Data Processing 

The stored raw data from the data acquisition is subject to an excessive data 

processing in order to determine the desired secondary data for scientific 

applications. The processing contains physical and mathematical formulas as well 

as parameterizations which were obtained from experimental data like wind 

tunnel testing or aircraft inflight calibrations. These dependencies are never error 

free as can be seen in the scatter of the experimental data which was used for 

these parameterizations. Examples are the inflight flow angle and pressure 

calibrations of the aircraft air data sensor [6], [7], [1] or the correction terms for 

recovery factor and anti-ice effects of the Total Air Temperature (TAT) housing 

which is used for the temperature measurement [8].  

Other uncertainties are caused by the error contribution from the humidity data 

in the air density calculation and by the question how this calculation is performed 

if no humidity measurement is available. It is also important to decide which 

formula is used in the calculation of the water vapor saturation pressure and 

whether this value is related to water or ice.  

Error Investigation: Error Propagation Calculation  

As pointed out above systematic errors cannot be determined directly from the 

data of a measurement. An error analysis requires knowledge about all input 

errors for a measurement in order to determine their impact on the final result. 

The determination of this impact is called “error propagation calculation”.  

If we assume that the result “S” of a measurement depends on a number of n 

input parameters x𝑖 ( 𝑖 = 0,1, . . 𝑛): 
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S = S(x1, x2, x3, … , 𝑥𝑛) Equation 13 

and that an input parameter 𝑥𝑖 is subject to a systematic error of σ𝑥𝑖
 a classical 

error propagation calculation estimates the impact of this error on the final result 

according to:  

 

σ𝑆 = √∑((
𝜕 𝑆

𝜕 𝑥𝑖
)
𝑥1,𝑥2,..,𝑥𝑛

)

2

∙ 𝜎𝑥𝑖
2

𝑖 

 Equation 14 

 

Where 
𝜕 𝑆

𝜕 𝑥𝑖
 is the partial derivative of 𝑆 with respect to  𝑥𝑖. According to Equation 

14 the dependency of 𝑆 on  𝑥𝑖 is approximated by a linear relation which is then 

used to propagate the original error of  𝑥𝑖 into 𝑆. This method is well established 

and robust. It works as long as the derivative of 𝑆 with respect to any input 

parameter  𝑥𝑖 can be determined.  

However, the processing of aircraft data is rather complex. From Figure 2 and 

Figure 3 one can see that it consists of many processing steps including several 

matrix operations and complex formulas.  

For this reason, a complete “traditional” error propagation calculation is usually 

not possible and error analyses of aircraft meteorological data typically represent 

rough estimations only. These estimates are usually based on significant 

simplifications of the data processing and ignore large portions of the real 

workflow.  

In this work we propose a new method which applies true error propagation to 

the data. The method considers the complete data processing scheme and 

includes all known error sources.  
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True Error Propagation: White Noise Method 

Basic Idea 

In the above chapter on white noise we have learned that this kind of error 

propagates through the complete data processing scheme without losing its 

random character as long as no “temporal smearing” of data takes place. All 

original data processing steps are applied to the random error contributions of a 

specific unit. As long as there is no direct correlation between the different error 

input signals these white noise time series will contribute independently to the 

total random error of a secondary data unit according to  Equation 11.  

Therefore, the resulting white noise peak in the secondary data represents the 

superposition of the independent random error input signals from all raw data 

sources - properly scaled by the standard aircraft data processing.  

 

The idea behind the new error propagation method is to use artificial white 

noise as a “carrier” to propagate the amplitudes of systematic errors 

through the complete data processing into the secondary units. This 

procedure ensures that the error values are handled like the real data and that 

they can be found properly scaled in the result of the data processing. The method 

was subject to a German patent in 2005 [4].  

 

The procedure is similar to the above example where we used artificial white noise 

to demonstrate the impact of static pressure random noise on TAS:  

1. An artificial random signal is generated at the exact location in the data 

processing where systematic errors get into the data. Examples are the 

scaling of raw data with the coefficients from the calibration at the 

beginning of the processing or the application of aerodynamic 

parameterizations in the calculation of flow parameters in the wind vector 

calculation.  
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2. The random signal amplitude is scaled with the standard deviation of the 

respective error. 

3. The result is added to the original time series and the standard data 

processing continues.  

4. At the end of the data processing an ACV analysis performed for the 

secondary units of interest. The white noise peak will deliver a total error 

which represents the superposition of all systematic errors which were 

added during the data processing.  

 

Figure 22 visualizes the complete procedure. Due to the random character of the 

noise signal the method shows some similarities to a traditional Monte-Carlo 

simulation. The main difference is that the random data is applied “on the fly” 

directly to time series of experimental data.  

 

 
Figure 22: Functional principle of the white noise error propagation 
method.  
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The proposed error propagation method is based on some assumptions 

• The error which is detected in the secondary data always represents the 

sum of the original random noise in the data and the contribution from 

systematic error sources. In principle it is possible to separate these two 

errors by comparing the data processing results before/after the 

application of the artificial random signal. However, this total error 

describes best the overall uncertainty of the final data.  

• The method will not work properly when the data processing includes any 

kind of averaging or smoothing of data. In this case the white noise peak 

in the ACV will vanish and appear as a broadened maximum.   

• The random signal contributions to the data must be completely 

independent from each other. The input to the IDL RANDOMN function 

contains a SEED value. This value allows (if chosen identically) to exactly 

reproduce a random signal. Different SEED values lead to completely 

independent random number arrays. Therefore, each error contribution 

has to use a separate SEED value. There is one exception in the HALO data 

from this rule which is explained below.  

• The determination of the total error for a certain unit by means of the ACV 

requires data from a time interval of an adequate length. The error 

specification always refers to this interval. In order to get representative 

values for specific flight conditions, it is desirable that this interval is chosen 

for a time where the flight parameters do not change too much.  



 

BAHAMAS Measurement Errors 

 

Titel: BAHAMAS Measurement Errors 

Version: 1.0 

Seite: 44  

Datum: 21.06.2022 

 

Possible Error Parameterizations 

 
Figure 23: Data time series used to demonstrate the different error models  

The amplitude of the artificial white noise which is added to the original signal 

represents the error of this specific unit. The determination of this scaling 

parameter depends on the kind of error which is considered. Based on the two 

test time series shown in Figure 23 we want to present the different error models 

which are used in the HALO error propagation calculation.   

Absolute Error 

 
Figure 24: Data1 + white noise contribution based on a constant error 
amplitude.  
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If the error of a time series 𝑠𝑖 is described by an absolute number 𝐴𝑠𝑖0
 the random 

noise signal has to be scaled with a fixed amplitude 𝐴𝑠𝑖0
 which is constant over 

the complete length of the time series.     

 

𝑠𝑖,𝑟𝑛 = 𝑠𝑖 + 𝐴𝑠𝑖0
∙ 𝑅𝐴𝑁𝐷𝑂𝑀𝑁(𝑆𝑒𝑒𝑑𝑖, 𝑚) 

 

The resulting signal for the test data1 is shown  Figure 24. An example for this 

kind of error on HALO is the result of a temperature calibration. In this case the 

error is mainly defined by the accuracy of the reference thermometer as 

determined by the DKD calibration which is a fixed value.  

Relative Error 

Sometimes the error is expressed as a fraction of the measured value. In this case 

the error is a relative error and the random signal has to be scaled with the original 

signal 𝑠𝑖 and the relative error Amplitude 𝐴𝑠𝑖
 

 

𝑠𝑖,𝑟𝑛 = 𝑠𝑖 + 𝐴𝑠𝑖
∙ 𝑠𝑖 ∙ 𝑅𝐴𝑁𝐷𝑂𝑀𝑁(𝑆𝑒𝑒𝑑𝑖, 𝑚) 

 

 
Figure 25: Data1 + white noise contribution based on a variable error 
amplitude which is proportional to the original data (relative error).  

Figure 25 shows how the resulting signal. In case of the calibration of the SHARC 

humidity sensor on HALO the error is mainly given by the accuracy of the 
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calibration testbed HYGROSTAR which is expressed in a percentage of the 

measured value.  

Error Dependence on Other Parameters 

Sometimes the error of a measurement 𝑠𝑖 is expressed as a function of another 

parameter 𝑓(𝑠𝑘).  

In this case the random error signal must be scaled with this function:  

 

𝑠𝑖,𝑟𝑛 = 𝑠𝑖 + 𝐴𝑠𝑖𝑠𝑘
∙ 𝑓(𝑠𝑘) ∙ 𝑅𝐴𝑁𝐷𝑂𝑀𝑁(𝑆𝑒𝑒𝑑𝑖, 𝑚) 

 

Figure 26 shows for the above test signals how the random error amplitude is 

determined in this case.  

 

 
Figure 26: Data1 + white noise contribution based on an error amplitude 
which is a function of another parameter (data2). The upper plot shows 
the white noise contribution only.  
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An example for this kind of error is the uncertainty of the anti-ice correction for a 

temperature sensor which is located in a TAT housing. The required correction 

term was determined by wind tunnel tests and parameterized as a function of the 

Mach Number 𝑀𝐶. The respective uncertainty for this correction is also a function 

of 𝑀𝐶.  

Correlated Errors 

 
Figure 27: Data1 and data2 + white noise contributions which are (anti-) 
correlated (same value but opposite sign).   

Sometimes a certain error source directly influences two different units in a 

correlated fashion. An example is the static source error correction of the HALO 

pressure measurement.  This correction is added to the indicated dynamic 

pressure as measured by the nose boom but subtracted from the indicated static 

pressure [6].  Therefore, any error in this unit will always act in a correlated way 

on these two units. For a proper error analysis this relation must be considered: 

   

𝑠𝑖,𝑟𝑛  =  𝑠𝑖  + 𝐴𝑠𝑖,𝑘
∙ 𝑅𝐴𝑁𝐷𝑂𝑀𝑁(𝑆𝑒𝑒𝑑𝑖,𝑘 ,𝑚) 

𝑠𝑘,𝑟𝑛 = 𝑠𝑘 − 𝐴𝑠𝑖,𝑘
∙ 𝑅𝐴𝑁𝐷𝑂𝑀𝑁(𝑆𝑒𝑒𝑑𝑖,𝑘 ,𝑚) 

 

Figure 27 shows how the random error time series look like for this case.  
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Implementation in RAMSES-II 

The error propagation method was implemented in RAMSES-II by additional 

software modules in the standard processing algorithm which are activated when 

the program is operated in the “error mode” as one can see in Figure 28. This 

status is indicated by a global parameter which is checked by every routine. The 

random time series generation takes place at the locations in the program where 

the error occurs, the required error amplitude parameter is provided by a global 

structure which contains the different error contributions (amplitude, seed value, 

sign).  

 

 
 

Figure 28: Implementation of error propagation in RAMSES-II. In the “error 
propagation mode” the program adds random noise contributions 
throughout the data processing and finishes with an ACV analysis of the 
secondary data time series for a selected time interval of the flight. 

The final determination of the total error from the result of the data processing is 

achieved by means of the ACV. The desired total error value was determined 
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similar to Equation 9  i.e. by the simple difference of 𝐴𝐶𝑉𝑠(0) and 𝐴𝐶𝑉𝑠(2) (which 

turns out to be more representative/stable than 𝐴𝐶𝑉𝑠(1) ). The error evaluation 

starts with an overview plot of the flight in which the program operator can mark 

the time interval of interest by a simple mouse click.  

  

By changing the input error configuration file is also possible to separately switch 

different error sources on and off. This allows to analyze the impact of a single 

error source on the final result.  
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Error Sources for HALO Aircraft Data   

Before the determination of errors with the new method can be performed it is 

necessary to determine realistic inputs for the different error sources. The 

following chapter evaluates the respective data. All errors which are listed in the 

following represent 1 𝝈 values.  

Sensor/Instrument Errors 

Pressure Sensors 

Unit concerned:   

Primary data:  

• indicated static pressure (𝑝𝑆,𝑖) 

• indicated dynamic pressure (𝑞𝑐𝑖) 
• indicated 𝛼 and 𝛽 differential pressures (𝑑𝑝𝛼,𝑖, 𝑑𝑝𝛽,𝑖) 

• pressure at capacitive humidity measurement (𝑝ℎ𝑢𝑚) 

• pressure inside SHARC measurement volume (𝑝𝑆𝐻𝐴𝑅𝐶) 

 

Error determined by:   

Pressure calibration. The accuracy is mainly limited by the reference instrument, a 

Ruska 7750i Air Data Test Set (ADTS) [12] which shown in Figure 29. The accuracy 

of this transfer standard can be seen in Figure 30.  

 
Figure 29: The pressure transfer standard Ruska 7750i which is used for all 

pressure calibrations of the HALO nose boom sensors.  
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Additional minor contributions to this error concern changing environmental 

conditions during the calibration, the precision of the pressure control during 

readout, pressure sensor random output and the accuracy of the “zeroing 

procedure” during the initialisation of the ADTS.  

  

 
Figure 30: Accuracy of the pressure transfer standard Ruska 7750i from 
[12]. The plot shows the 1 combined uncertainty of linearity, hysteresis, 
repeatability, thermal effects one-year drift stability and the uncertainty 
in the primary standard, which includes the uncertainty from the national 
standard. 

 

A complete calibration of all pressure sensor of the nose boom is performed 

before every HALO campaign directly at the aircraft as a one step process which 

includes the complete BAHAMAS data acquisition.  

The result of a nose boom static pressure calibration on HALO can be seen in [6] 

while [7] shows the result from a calibration of the angle of attack differential 

pressure sensor.  

 

The temperature sensitivity of the pressure sensors was tested in an environmental 

simulation chamber in the Flight Experiment Facility which is shown in Figure 31.   

The Test Facility covers a temperature range between -70°C and +180°C and a  

pressure between 1 hPa and 1000 hPa for a test volume of 0.8 x 0.8 x 0.75 m3 

which corresponds to approx. 500 l.  
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Figure 31: Environmental simulation chamber.   

 

Error value 

The accuracy of the pressure calibration and the influence of temperature on the 

pressure sensor is estimated as an absolute error with an amplitude of   

• 8 Pa for the indicated static pressure (𝑝𝑆,𝑖) 

• 6 Pa for the indicated dynamic pressure (𝑞𝑐𝑖) 

• 5 Pa for the indicated 𝛼 and 𝛽 differential pressures (𝑑𝑝𝛼,𝑖, 𝑑𝑝𝛽,𝑖) 

• 10 Pa for the pressure at the capacitive humidity measurement (𝑝ℎ𝑢𝑚) 

• 8 Pa for the pressure inside the SHARC measurement volume (𝑝𝑆𝐻𝐴𝑅𝐶) 

 

Error Application:  

The error contribution from the sensor calibration is added to the time series 

directly after the scaling of data before the actual data processing starts 

(Procedure init_noise in tools.pro) 
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Temperature Sensors 

Unit concerned:   

Primary data:  

• indicated temperature of PT100 temperature sensors in TAT housings 

(𝑇𝑠,𝑖) 

• Temperature at capacitive humidity measurement (𝑇ℎ𝑢𝑚) 

• Temperature inside SHARC measurement volume (𝑇𝑆𝐻𝐴𝑅𝐶) 

 

Error determined by:   

Temperature calibration. A temperature sensor calibration is performed before 

every HALO campaign.  

 

 
Figure 32: Temperature calibration testbed THERMOSTAR. 
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Temperature calibration is performed as a 2-step process with a laboratory 

calibration of the sensor itself (temperature vs. resistance) and a signal path 

calibration on the aircraft (resistance vs. voltage) which covers the Pt100 signal 

conditioner and the BAHAMAS data system (ADC) according to Figure 21. The 

laboratory calibration uses the THERMOSTAR calibration bench which was 

developed by DLR Flight Experiments. It is shown Figure 32. Figure 33 shows the 

principle of operation.  

 

 
Figure 33: Temperature calibration testbed THERMOSTAR: principle of 
operation  

 

The laboratory calibration of the sensors is based on a stirred immersion bath with 

a high precision quartz PT100 sensor as reference (Heraeus PW-EZ 100). The 

Heraeus PW-EZ 100 is a high precision ultra-stable secondary standard PRT that is 

calibrated against primary standards on a regular base. The resistance of the 

device under test (DUT) and the PW-EZ 100 are measured with an 81/2 digits 
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multimeter HP 3455A and compared to a programmable high precision resistance 

decade Burster 1427. The decade is again calibrated on a regular base against 

national standards and is also used as the reference for the signal path calibration 

on the aircraft. The temperature of the calibration bath is controlled by a Huber 

Unistat 815w from -80°C to +50°C with a stability of a few mK. The system is 

fully automated and computer controlled. 

The overall accuracy of the whole measurement chain from sensor to the data 

acquisition system includes temporal and spatial stability of the bath, accuracy and 

aging of the reference PRT, accuracy of the decade, contact voltages, variance and 

accuracy of DUT reading as well as the accuracy of the data fit. The two-step 

temperature calibration on HALO achieves a typical accuracy of 40 mK for the 

sensor calibration (first step) and about 30 mK for the data acquisition calibration 

(second step). 

 

Error value 

The total accuracy of the temperature calibration is estimated as an absolute error 

with an amplitude of 0.1K. This value contains the temperature sensitivity of the 

sensor signal conditioner on the aircraft. This error specification is the same for all 

temperature sensors on HALO. 

 

Error Application:  

The error contribution from the sensor calibration is added to the data directly 

after the scaling of data before the actual data processing starts. (Procedure 

init_noise in tools.pro) 
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Humidity Sensors 

Unit concerned:   

Primary data:  

• SHARC mixing ratio 

 

Error determined by:   

Humidity calibration. A complete humidity sensor calibration is performed before 

every HALO campaign in the laboratory as a one step process which includes the 

complete SHARC data acquisition.   

 

 
Figure 34: Humidity calibration testbed HYGROSTAR. 
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Figure 35: Humidity calibration testbed HYGROSTAR: principle of 
operation.  

 

The humidity calibration uses the HGROSTAR calibration bench which is also a 

complete DLR-FX development. The calibration setup is shown in Figure 34. Figure 

35 visualizes the principle of operation.  

The humidity calibration is based on the mixing of a wet and a dry air flow by 

electronic flow controllers (FC1 – FC4 in Figure 35) and the simultaneous 

measurement of the resulting humidity with a reference dew point hygrometer 

(MBW 373 LX) as the transfer standard with an accuracy of 2-3% in mixing ratio 

or 0.3K in dew point. Dry synthetic air from a standard 200l gas bottle is used as 

‘carrier’ gas which is humidified by a Nafion permeation tube. The wide range of 

reachable humidity levels is achieved by combining several flow controllers with 

different ranges and a two-pressure system which separately controls the pressure 

inside the mixing and reference unit as well as of the device under test (DUT). To 
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avoid condensation inside the system the DUT pressure, temperature, flow and 

humidity are continuously monitored by the software. The system is fully computer 

controlled and runs autonomously. The calibration bench allows to simulate the 

whole troposphere and lower stratosphere regarding humidity (2..30000 ppmv) 

and pressure (1300..150 hPa).  

 

Error value 

The accuracy of the SHARC humidity measurement is estimated as a relative error 

of 5% with a lower limit of 1ppm. 

 

Error Application:  

The error contribution from the sensor calibration is added to the data in the 

humidity calculation procedures (Procedure scale_humvai in aircraft.pro and 

calc_sharc2 in aircraft.pro) 
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Attitude and Speed Measurement 

Unit concerned:   

BAHAMAS contains an experimental Inertial Reference System (IRS) AEROconrol 

III which is manufactured by the Ingenieur-Gesellschaft für Interfaces (IGI) in 

Kreuztal/Germany [3]. The system consists of a compact Inertial Measurement Unit 

(IMU-IIe) and a Sensor Management Unit (SMU) which contains the GNSS receiver. 

The required GNSS antennae are installed on the HALO upper fuselage. The SMU 

is part of the main BAHAMAS data acquisition system in the aircraft cabin. The 

IMU-IIe sensor head is certified for temperatures down to -55°C and altitudes of 

55,000ft and located very close to the nose boom [7].   
 

Error determined by:   

The error in the speed and attitude data of the IRS is specified by the manufacturer 

in the technical description of the system and displayed in Table 1.  

 

Position [m] 0.05 

Velocity [m/s] 0.005 

Roll/Pitch [deg] 0.003 

True Heading [deg] 0.007 

Max. data rate [Hz] 400 
 

Table 1: Performance of the AEROcontrol-III experimental IRS onboard 

HALO. The specified accuracies refer to postprocessed data. 

 

Calibration and functional tests are performed regularly to ensure the proper 

performance of the system and to detect any degradation of instrument 

components. Furthermore, the postprocessing applies sensible quality checks to 

the data which helps to detect technical problems very early.   

 

In the past there was an ongoing discussion about the error specification for the 

heading data and possible problems of the Kalman filter especially for long 



 

BAHAMAS Measurement Errors 

 

Titel: BAHAMAS Measurement Errors 

Version: 1.0 

Seite: 60  

Datum: 21.06.2022 

 

straight flight legs with no turns. Turns are important for the filter to work properly 

and to minimize the heading errors. The system performance stated in Table 1 

was only demonstrated for typical earth observation flight patterns which contain 

many heading changes. Therefore, HALO was upgraded in 2022 with a dual 

antenna GNSS option which provides an independent heading reference for the 

post processing.  

 

 
Figure 36: Aircraft flight track for the research flight #7 of the (AC)3 
campaign.    

As an example, we present data from a flight of the (AC)3 campaign [9] which 

took place in Kiruna, Sweden, in March and April 2022. Figure 36 shows the flight 

track of a 9-hour mission flight from March 20th 2022. As one can see the flight 

focused on a North Atlantic region between Iceland and Greenland. It contained 

long flight legs with constant heading and only a few turns between them. Figure 

37 compares the different heading data from BAHAMAS with a reference value 

which was calculated from the IGI data by using the new GNSS dual antenna 

heading reference.  
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Figure 37: Deviation of the different aircraft heading data sources from 
the reference value of the IGI IRS-system which was post processed using 
a GNSS heading reference from the dual antenna system on HALO. The 
data set represents the complete flight pattern shown in Figure 36. The 
roll angle is plotted in order to indicate turns in the aircraft track.  

 

The different heading data shown in Figure 37 are  

• the real time heading data from the IGI system which is available during 

flight and which is not subject to any kind of post processing 

• the IGI data which was subject to a “standard” post processing which did 

not use the GNSS dual antenna heading information 

• the heading which is provided by one of the three standard aircraft IRS 

systems (true heading) 

• the hybrid heading from the same aircraft IRS which is subject to an online 

Kalman filter 

 

As one can see the observed deviations from the reference heading are significant. 

Especially the standard IGI post processing solution shows relatively large 
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deviations (of up to 0.1°) from the reference data which clearly exceed the error 

limits from Table 1. The analysis of other (AC)3 flights confirmed this observation.  

The aircraft standard IRS is equipped with very accurate sensors (ring laser gyros 

und Q-flex quartz accelerometers) and uses a real time Kalman Filter which 

provides an excellent heading information (but worse timing characteristics than 

the IGI system). Figure 37 suggests that the IGI post processing solution which is 

based on the GNSS-heading reference can be seen as the best reference data.  

 

We can therefore conclude that the official IGI performance data in Table 1 can 

only be achieved for flights with many heading changes and that long straight 

flight legs require the additional GNSS heading reference which can only be 

provided by using a dual antenna configuration, i.e. the errors stated in Table 1 

are valid for this configuration only.   

 

Error value 

The accuracy of the above listed IRS units is given by absolute values according to 

Table 1. From this table the accuracy of the rotational rates is estimated to be 

0.005°/s.  

 

Error Application:  

The error contribution from the sensor calibration is added to the data directly 

after the scaling of data before the actual data processing starts. (Procedure 

init_noise in tools.pro) 
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Processing/Parameterization Errors 

Pressure: Static Source Error  

Unit concerned:   

Indicated static (𝑝𝑆,𝑖) and dynamic (𝑞𝑐𝑖) pressure  

 

Error determined by:   

The static source error (SEE) was determined during an inflight calibration 

experiment with a Trailing Cone. The error is parameterized as a function of the 

indicated Mach number. The complete experiment and the respective data are 

subject to a separate report [6]. Figure 38 shows the result and the error of the 

SSE correction.  

 

 
Figure 38: Result of the Static Source Error calibration on HALO from [6]. 
The data was acquired with a Trailing Cone  

 

The static source error determination assumes a constant total pressure in the 

aircraft environment. Therefore, the SSE is applied with a negative sign to the 

indicated static pressure  𝑝𝑆,𝑖 and added as a positive value to the dynamic pressure 

𝑞𝑐𝑖. This means that a systematic error of the SSE always acts in a correlated way 

on these two pressure values.   
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Error value 

The uncertainty of the SSE correction was determined in [6] with an absolute value 

of 8Pa.  

 

Error Application:  

The noise is added during the static source error correction (Procedure press_corr 

in aircraft.pro) as a correlated random noise to the indicated values of static and 

dynamic pressure.   

Pressure: Flow Angle Dependence 

Unit concerned:   

The indicated values of the static (𝑝𝑆,𝑖) and dynamic (𝑞𝑐𝑖) pressure are subject to 

a set of corrections which include static source error and additional 

aerodynamical effects. The flow angle dependence is one of these corrections 

and acts on an already corrected value of 𝑝𝑆,𝑖 and 𝑞𝑐𝑖. 

 

Error determined by:   

The dependence of the static pressure measurement on the flow angles was 

investigated during the inflight calibration of the nose boom mounted airflow 

sensor on HALO which is described in [7]. Figure 39 shows the result from this 

experiment for the angle of sideslip.  

Please note that the dependence of static pressure on the angle of attack is already 

contained in the static source error correction as explained in [7].  

 

Error value 

The accuracy of the static flow angle pressure correction is described by an 

absolute value of 8 Pa according to  [7]. The noise signal is applied as a correlated 

random noise to the indicated values of static and dynamic pressure.  
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Figure 39: Beta: flow angle static pressure correction from [7]. 

 

Error Application:  

The noise is added during the pressure correction routine which applies the 

different aerodynamic corrections to 𝑝𝑆,𝑖 and 𝑞𝑐𝑖. (Procedure press_corr in 

aircraft.pro).  

Flow Angle  

Unit concerned:   

The true flow angles “angle of attack” 𝛼 and “angle of sideslip” 𝛽 are calculated 

from their indicated values 𝛼𝑖 and 𝛽𝑖.  

 

 

 
Figure 40: Beta: Result of static flow angle calibration from  [7]. 
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Error determined by:   

The scaling of 𝛽 is based on the results of an inflight calibration which is described 

in [7]. Figure 40 shows the result from this report.  

 

The calculation of 𝛼 from 𝛼𝑖 is subject to a procedure which is described in detail 

in [7]. Two inflight calibration techniques are available for this calculation:  

• the static α calibration from regular flight data 

• the dynamic offset calibration 

Figure 41 shows the result from these two techniques for a single HALO flight.  

 

 
Figure 41: Alpha: Static calibration and dynamic offset calibration from 
regular flight data from  [7].  

 

Error value 

The error in the scaling of  𝛽 is described by an absolute value of 0.11° according 

to  [7].  

The estimation of the α calibration error is based on many years of experience in 

the processing of HALO data. Both evaluation techniques are applied to each flight 

and the final data processing is always based on a “best choice” between these 

two methods. The parameters found in the fit and in the α offset method are 

stored in a data base in order to determine the variability of these values and to 

check for drift effects or “conspicuous” results.  Based on these statistics the error 
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of the static α calibration from regular flight data is estimated to be 0.08° and 

chosen to be identical for the dynamic offset calibration method (best choice).   

Please note that the indicated flow angle values are already subject to the random 

noise contribution from the pressure sensors which are used to determine the 

indicated values.  

 

Error Application:  

The error signal is applied to the processed values of  𝛼 and 𝛽 after the scaling.  

The random noise is added after the flow angles are calculated from their 

indicated values (Procedure calc_alpha_beta in aircraft.pro) 

Flow Angle Dynamic Correction 

Unit concerned:   

The indicated flow angles at the 5-hole probe are subject to a correction which is 

based on an inflight calibration procedure that applies dynamic yaw and pitch 

maneuvers to the aircraft. Possible systematic errors concern the two correction 

factors kα and kβ for the indicated flow angles as well as the determination of a 

unit called the “trimmed alpha” (𝛼𝑖,𝑡𝑟𝑖𝑚).  

 

Error determined by:   

The flow angle dynamic correction was determined by inflight calibration using 

dynamic maneuvers. The exact procedure and the respective results for HALO are 

described in [7].  

The respective data processing corrects the deviations of the indicated flow angles  

𝛼𝑖 and 𝛽𝑖 from their “typical” values which are 0 for 𝛽𝑖 and a value called trimmed 

alpha (𝛼𝑖,𝑡𝑟𝑖𝑚) for 𝛼𝑖. These deviations are corrected with the two calibration 

factors kα and kβ which are parameterized as a function of the indicated Mach 

number 𝑀𝐶𝑖. Systematic errors in this correction concern the values of kα and kβ 

as well as the accuracy in the determination of 𝛼𝑖,𝑡𝑟𝑖𝑚.  

If the correction is not applied the error analysis has to estimate the resulting 

uncertainty.  
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Figure 42: Correction factor 𝒌𝜶 for the dynamic angle of attack correction 
from  [7].  

 

Error value 

The assumed error due to the dynamic calibration depends on the applied data 

calculation scheme:  

1. no dynamic correction is applied. This is in general the case for standard 

data processing with 10Hz, since it is impossible to determine a trimmed 

alpha 𝛼𝑖,𝑡𝑟𝑖𝑚 along the complete length of a flight. In this case the error 

amplitudes are determined according to:  

o  (kβ − 1) ∙ 𝛽𝑖,𝑆 where 𝛽𝑖,𝑆 is the indicated angle of sideslip which 

is smoothed over some seconds.  

o (kα − 1) ∙ (𝛼𝑖,𝑆 − 𝛼𝑖,𝑡𝑟𝑖𝑚,𝑡𝑐) where 𝛼𝑖,𝑆 is the smoothed indicated 

angle of attack and 𝛼𝑖,𝑡𝑟𝑖𝑚,𝑡𝑐 a parameterized value for the 

trimmed angle of attack from trailing cone flight data.  

2.  the dynamic correction is applied: In this case the uncertainties of the 

correction factors are determined from Figure 42 and Figure 43 as 

absolute errors:  

o kβ : 0.006 

o kα : 0.007  
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In this case an additional error for the uncertainty in the determination of 

𝛼𝑖,𝑡𝑟𝑖𝑚 from 𝑞𝑐𝑖 has to be considered. It is estimated as a relative error of 

5%.   

 

 
Figure 43: Correction factor 𝒌𝜷 for the dynamic angle of sideslip correction 

from  [7]  

 

Error Application:  

1. The error is applied directly after the calculation of the indicated flow 

angles before any other processing step is applied to the data (Procedure 

calc_alpha_beta in aircraft.pro) 

2. The errors of kα and kβ and 𝛼𝑖,𝑡𝑟𝑖𝑚 are applied directly to these units 

during the correction process. (Procedure calc_alpha_beta in aircraft.pro) 

Pressure: Flow Angle Dynamic Pressure Correction 

Unit concerned:   

Indicated static (𝑝𝑆,𝑖) and dynamic (𝑞𝑐𝑖) pressure during the pressure correction 

process.   

 

Error determined by:   

The respective error was determined by inflight calibration using dynamic 

maneuvers. The exact procedure and the respective results for HALO are described 

in [7].  
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Error value 

The natural variability of 𝛼 is largest inside a turbulent boundary layer. For the 

example of a boundary layer flight presented in [7] (EMeRGe intercomparison 

flight, 13.07.2017) we find a standard deviation of 0.6° for 𝛼𝑖 and 𝛽𝑖. According 

to Figure 44 and Figure 45 this corresponds to a static pressure uncertainty of   

 

• 5 Pa from  -variations 

• 3 Pa from β - variations 

 

Error Application:  

The noise is added during the pressure correction routine which applies the 

different aerodynamic corrections to 𝑝𝑆,𝑖 and 𝑞𝑐𝑖. (Procedure press_corr in 

aircraft.pro).  

 

 
Figure 44: Static Pressure dynamic flow angle correction from [7] for angle 

of attack . The dashed lines indicate the typical data range of 𝜶𝒊 caused 
by wind fluctuations during a flight in a turbulent boundary layer. 
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Figure 45: Static Pressure dynamic flow angle correction from [7] for angle 
of sideslip β. The dashed lines indicate the typical data range of 𝜷𝒊 caused 
by wind fluctuations during a flight in a turbulent boundary layer. 

Temperature: Recovery Correction and Deicing Error 

Unit concerned:   

The indicated temperature 𝑇𝑆,𝑖 in a Total Air Temperature (TAT) housing is 

subject to two corrections which concern  

1. the deviation of this temperature from the theoretical TAT (“recovery 

correction”) and  

2. the influence of the heating element inside the housing on the 

temperature measurement (the element prevents icing effects on the 

housing).  

 

Error determined by:   

The TAT housings which are used on HALO are known as Rosemount Type BW 

102 (Later: Goodrich Aerospace, today Collins Aerospace). They were subject to 

excessive wind tunnel testing by the manufacturer. The results from these 

experiments and the aerodynamical corrections which are necessary to determine 
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the static air temperature from the indicated temperature data are documented 

in the a report which is provided by the manufacturer [8]. 

According to this document the static temperature 𝑇𝑆  is calculated according to:  

 

 
𝑇𝑟

𝑇𝑆
= 1 + r ∙ (

𝛾−1

2
) ∙ 𝑀𝐶

2 Equation 15 

with 

r    : recovery factor 

𝛾   : ratio of specific heats 

𝑇𝑟  : recovery temperature 

 

 

The recovery temperature 𝑇𝑟 is the “adiabatic value of local air temperature on 

each portion of the aircraft surface due to incomplete recovery of the kinetic 

energy”. It is related to the measured temperature 𝑇𝑚(=  𝑇𝑆,𝑖) which is “the actual 

temperature as measured, which differs from 𝑇𝑟 because of heat transfer effects 

due to imposed environments”. One of these effects is the deicing error.  

 

As shown in [8] the recovery factor is given by:  

𝑟 = 1 − 𝜂 ∙ [1 +
2

(𝛾 − 1) ∙ 𝑀𝐶
2] Equation 16 

with 

𝜂  : recovery correction 
 

 From Equation 15 and Equation 16 we find   

𝑇𝑆 =
𝑇𝑟

(1 − 𝜂) ∙ [1 +
𝛾 − 1

2 ∙ 𝑀𝐶
2]

 
Equation 17 
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The recovery correction 𝜂 has to be determined by wind tunnel experiments. The 

results from these tests are also provided by [8]. Figure 46 shows the results.  

 

 
Figure 46: Recovery correction 𝜼 with error bars from wind tunnel data 
(Model 102, configuration b) from [8]. 

 

The relation between 𝑇𝑟 and 𝑇𝑆,𝑖 is described by the deicing correction which is a 

function of the parameter Z that can be calculated according to:  

   

𝑍 = 𝑀𝐶,1 ∙
𝜌1

𝜌0
 Equation 18 

with 

𝑀𝐶,1  : Mach number at sensor inlet 

𝜌0      : air density at standard conditions  

𝜌1      : air density at sensor inlet 

 

 

Since air density and Mach number cannot be measured at the sensor inlet during 

flight the parameter Z is calculated from the free stream values.  
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The deicing correction itself was determined by wind tunnel testing. The result 

and the respective error bars can be seen in Figure 47 which is taken from [8]. 

 

 
Figure 47: Deicing heat errors for Model 102 sensors with error bars 
(Model 102, single mandrel construction) from [8]. 

 

Error value 

The error bars used for the recovery correction 𝜂 and the deicing correction are 

taken directly from the plots in Figure 46 and Figure 47.  

 

It is clear that these error values also have to cover the known variability in: 

• the shape of the TAT housings within the manufacturing tolerances. These 

differences become obvious when comparing single housings with each 

other.  

• the design of the temperature sensor itself which concerns the heat shield 

and the sensor element shape. Different sensor designs have been 

available by the manufacturer in the past.  

• the power consumption of the deicing heater element and the exact 

location of this element in the housing 
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Therefore, the above errors of the temperature measurement represent a worst-

case scenario. First inflight investigations of the deicing effect on HALO indicate 

that the real values are smaller than the numbers presented in the TAT report.  

One way to obtain smaller errors for a single housing would be an individual 

determination of both effects either in a wind tunnel or by inflight trials. Both 

possibilities are presently discussed. The effect of a smaller error is also addressed 

in the final error analysis.   

 

Error Application:  

The error is applied in the routine which calculates  𝑇𝑆 from 𝑇𝑆,𝑖 and performs the 

deice correction (Procedure temp_corr in aircraft.pro). 

Sensor Random Noise  

A “natural” error contribution to the measured basic data on HALO is the random 

noise which generated by the different BAHAMAS sensors and the data 

acquisition. For the proposed error propagation method this error is automatically 

contained in the final error which is determined by the ACV.  We conclude that 

the final result of this error propagation method is always the combination of 

statistical and systematic errors.  

However, as shown above the random noise is generally very small for BAHAMAS 

signals. Therefore, the final error mostly represents the systematic error 

contributions to the measurement.  
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Error Analysis for HALO BAHAMAS Data  

As shown above most inputs to the BAHAMAS error calculation depend on flight 

parameters like speed and aircraft altitude as well as on atmospheric parameters 

like the pressure or temperature of the atmosphere around the aircraft.   

In order to provide representative results, we selected three different flight 

scenarios which mainly differ in the aircraft altitude (“low”, “mid”, “high”).  

Additionally, we want to investigate the effect of changing error inputs caused by 

two different scenarios:  

• The first case concerns a scenario with an improved temperature 

measurement where recovery correction and deice correction are better 

understood (“improved temperature”). In this case we assume that the 

respective error inputs (for recovery and anti-ice corrections) are only 50% 

of the present values.  

• A second scenario investigates the effect of a heading information which 

is less accurate than the values stated in Table 1 (“bad heading”).  In this 

case the heading error input is increased by a factor of 10. 

The respective results of the error calculation are always listed in comparison with 

the original results (“standard”) which uses the error inputs described above. The 

following error analysis is always based on 10Hz data and all error specifications 

represent 1 𝜎 data.  

The error investigation was performed for a research flight from the CAFE-EU 

campaign which took place on June 9th 2020 above southern France and Spain. 

The flight covered a lot of different flight states with respect to aircraft altitude 

and speed. Figure 48 shows the aircraft flight track while Figure 49 plots the most 

important flight parameters and the selected time intervals for the error analysis.  

The result of the error calculation for the different flight scenarios is displayed in 

Table 2, Table 3 and Table 4.  

The “standard” error analysis assumes that the aircraft heading data is the result 

of post processed IGI data which uses a GNSS Heading reference from a dual 

antenna configuration and that the accuracies stated in Table 1 are valid.  
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Figure 48: Flight track for the CAFÉ-EU flight from June 9th 2020.  
 

 
Figure 49: Overview on the CAFÉ-EU flight from June 9th 2020 with the 
selected time intervals (“low”, “mid”, “high”) for the error analysis.  
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Low Altitude 

"Low Altitude" Unit 
Mean 

Value 

standard error input 
"improved 

temperature" 
"bad-heading" 

Absolute 

Error 

Relative 

Error  

[%] 

Absolute 

Error 

Change 

of 

Absolute 

Error  

[%] 

Absolute 

Error 

Change 

of 

Absolute 

Error  

[%] 

Static Pressure  hPa 915.27 0.15 0.02 0.15 0 0.15 0 

Dynamic Pressure hPa 72.48 0.16 0.2 0.16 0 0.16 0 

Pressure Altitude m 849.5 1.4 0.2 1.4 0 1.4 0 

Machnumber  0.3318 0.0004 0.1 0.0004 0 0.0004 0 

Calculated True Airspeed m/s 112.14 0.13 0.1 0.13 -3 0.14 0 

Angle of Attack deg 3.83 0.09 2.3 0.09 0 0.09 0 

Angle of Sideslip deg 0.00 0.11 - 0.11 0 0.11 0 

Static Air Temperature °C 10.02 0.22 - 0.14 -34 0.26 0 

Static Air Temperature (#2) °C 10.02 0.21 - 0.14 -35 0.25 0 

Total Air Temperature °C 16.26 0.22 - 0.14 -34 0.26 0 

Potential Temperature °C 17.28 0.22 - 0.15 -34 0.26 0 

Virtual Potential Temperature °C 18.45 0.23 - 0.16 -31 0.27 0 

Virtual Temperature °C 11.17 0.23 - 0.16 -31 0.27 0 

Wind Vector East Component m/s -1.37 0.21 15.1 0.21 0 0.24 15 

Wind Vector North Component m/s -4.21 0.16 3.7 0.15 -2 0.17 7 

Wind Vector Vertical Component m/s 0.35 0.17 - 0.17 0 0.17 0 

Horizontal Windspeed m/s 4.44 0.14 3.1 0.13 -3 0.14 1 

Horizontal Wind Direction deg 17.86 2.90 - 2.90 0 3.39 17 

H2O Mass Mixing Ratio kg/kg 0.00670 0.00034 5.1 0.00034 0 0.00034 0 

Rel. Humidity (with resp. to water) % 79.0 4.1 5.2 4.0 -2 4.2 0 

Absolute Humidity kg/m3 0.00747 0.00038 5.1 0.00038 0 0.00038 0 

Dewpoint Temperature °C 6.5 0.7 - 0.7 0 0.7 0 
 

Table 2: Result of HALO error propagation calculation for the “low 
altitude” flight leg of the CAFÉ-EU flight from June 9th 2020 (10:23:54-
10:27:28 UTC). The error analysis also shows the impact of the 
“improved temperature” and “bad heading” scenarios. The mean 
aircraft heading during this leg is 205.5°. The presented accuracies 

represent 1   errors.  
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Mid Altitude 

"Mid Altitude" Unit 
Mean 

Value 

standard error input 
"improved 

temperature" 
"bad-heading" 

Absolute 

Error 

Relative 

Error  

[%] 

Absolute 

Error 

Change 

of 

Absolute 

Error  

[%] 

Absolute 

Error 

Change 

of 

Absolute 

Error  

[%] 

Static Pressure  hPa 447.65 0.15 0.03 0.15 0 0.15 0 

Dynamic Pressure hPa 104.81 0.15 0.1 0.15 0 0.15 0 

Pressure Altitude m 6381.5 2.4 0.0 2.4 0 2.4 0 

Machnumber  0.5565 0.0004 0.1 0.0004 0 0.0004 0 

Calculated True Airspeed m/s 176.24 0.15 0.1 0.14 -9 0.15 0 

Angle of Attack deg 2.19 0.08 3.6 0.08 0 0.08 0 

Angle of Sideslip deg -0.03 0.11 - 0.11 0 0.11 0 

Static Air Temperature °C -23.69 0.24 - 0.15 -38 0.24 0 

Static Air Temperature (#2) °C -23.68 0.24 - 0.15 -39 0.24 0 

Total Air Temperature °C -8.23 0.26 - 0.16 -39 0.26 0 

Potential Temperature °C 40.71 0.30 - 0.19 -38 0.30 0 

Virtual Potential Temperature °C 40.81 0.30 - 0.19 -38 0.30 0 

Virtual Temperature °C -23.61 0.24 - 0.15 -38 0.24 0 

Wind Vector East Component m/s 6.89 0.34 4.9 0.34 0 0.40 18 

Wind Vector North Component m/s -11.82 0.16 1.4 0.15 -9 0.16 2 

Wind Vector Vertical Component m/s -0.04 0.24 - 0.24 0 0.24 0 

Horizontal Windspeed m/s 13.70 0.24 1.8 0.24 -2 0.28 14 

Horizontal Wind Direction deg 329.78 1.20 - 1.19 -1 1.39 16 

H2O Mass Mixing Ratio kg/kg 0.000529 0.000027 5.1 0.000027 0 0.000027 0 

Rel. Humidity (with resp. to water) % 41.8 2.4 5.6 2.2 -5 2.4 0 

Absolute Humidity kg/m3 0.000330 0.000017 5.1 0.000017 0 0.000017 0 

Dewpoint Temperature °C -33.1 0.5 - 0.5 0 0.5 0 
 

Table 3: Result of HALO error propagation calculation for the “mid 
altitude” flight leg of the CAFÉ-EU flight from June 9th 2020 (11:16:41-
11:21:46 UTC). The error analysis also shows the impact of the 
“improved temperature” and “bad heading” scenarios. The mean 
aircraft heading during this leg is 187.4°. The presented accuracies 

represent 1   errors. 
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High Altitude 

"High Altitude" Unit 
Mean 

Value 

standard error input 
"improved 

temperature" 
"bad-heading" 

Absolute 

Error 

Relative 

Error  

[%] 

Absolute 

Error 

Change 

of 

Absolute 

Error  

[%] 

Absolute 

Error 

Change 

of 

Absolute 

Error  

[%] 

Static Pressure  hPa 178.57 0.15 0.1 0.15 0 0.15 0 

Dynamic Pressure hPa 81.87 0.15 0.2 0.15 0 0.15 0 

Pressure Altitude m 12502.8 5.3 0.0 5.3 0 5.3 0 

Machnumber  0.7545 0.0008 0.1 0.0008 0 0.0008 0 

Calculated True Airspeed m/s 227.35 0.29 0.1 0.25 -8 0.29 0 

Angle of Attack deg 2.21 0.15 6.8 0.15 0 0.15 0 

Angle of Sideslip deg 0.10 0.11 - 0.11 0 0.11 0 

Static Air Temperature °C -47.19 0.39 - 0.22 -38 0.39 0 

Static Air Temperature (#2) °C -47.41 0.38 - 0.21 -39 0.38 0 

Total Air Temperature °C -21.47 0.43 - 0.23 -40 0.43 0 

Potential Temperature °C 96.51 0.63 - 0.35 -40 0.63 0 

Virtual Potential Temperature °C 96.51 0.63 - 0.35 -40 0.63 0 

Virtual Temperature °C -47.19 0.39 - 0.22 -38 0.39 0 

Wind Vector East Component m/s -7.03 0.31 4.3 0.26 -7 0.31 3 

Wind Vector North Component m/s 8.66 0.43 4.9 0.43 0 0.51 19 

Wind Vector Vertical Component m/s -0.43 0.60 - 0.60 0 0.60 0 

Horizontal Windspeed m/s 11.17 0.42 3.7 0.41 0 0.49 18 

Horizontal Wind Direction deg 140.98 1.65 - 1.46 -5 1.75 6 

H2O Mass Mixing Ratio kg/kg 3.05E-06 6.38E-07 20.9 6.38E-07 0 6.38E-07 0 

Rel. Humidity (with resp. to water) % 1.00 0.21 21.2 0.21 0 0.21 0 

Absolute Humidity kg/m3 8.40E-07 1.76E-07 20.9 1.76E-07 0 1.76E-07 0 

Dewpoint Temperature °C -81.7 1.4 - 1.4 0 1.4 0 
 

Table 4: Result of HALO error propagation calculation for the “high 
altitude” flight leg of the CAFÉ-EU flight from June 9th 2020 (14:35:02-
14:40:08 UTC). The error analysis also shows the impact of the 
“improved temperature” and “bad heading” scenarios. The mean 
aircraft heading during this leg is 74.3°.  The presented accuracies 

represent 1   errors. 
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Influence of Heading Relatively to Wind Direction 

The determination of the wind vector from aircraft data is described in detail in  

[7]. It is based on two measurements:  

• the motion of the airflow sensor relatively to the earth and  

• the motion of the air relatively to the airflow sensor 

The overall quality of this measurement depends mostly on the accuracy of the 

airflow vector data. The reason for this is the high accuracy of the post processed 

ground speed and attitude data from the experimental IRS (Table 1). This means 

that the airflow measurement usually limits the accuracy of an airborne wind 

vector measurement. 
 

 
Figure 50: Subset of the CAFÉ-EU flight from June 9th 2020 with the 
selected time intervals which were used for the investigation on the 
influence of the relative wind direction (“along”, “across” the aircraft 
track) on the accuracy of the wind data. The respective time intervals are 
10:23:54-10:27:28 UTC (along) and 10:45:31-10:51:15 UTC (across).  
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The wind direction relatively to the aircraft axis has an impact on the accuracy of 

the wind measurement. This can easily be explained for the horizontal wind 

component: If the aircraft flies along the wind direction the horizontal wind 

measurement is almost completely based on the true air speed determination: the 

difference between 𝑇𝐴𝑆 and the ground speed is the mean wind and horizontal 

wind fluctuations can be seen in the dynamic pressure from the airflow sensor 

which points directly into the flow. For a crosswind scenario the case is different: 

TAS is more or less constant and the wind can be seen in the drift angle (mean 

wind) and the angle of sideslip (fluctuations).  

Since the accuracy of angles and pressures from the airflow probe cannot be 

compared directly it is clear that the two scenarios must result in data with 

different accuracies.  

The vertical wind vector is approximately given by TAS ∙ sin (α) where α is the angle 

of attack. This means that the accuracy of the vertical wind speed w is correlated 

with the accuracy in the determination of TAS.  

In order to investigate these effects, we selected 2 time intervals from the same 

CAFÉ-EU flight as above. The flight data from the two intervals can be seen in 

Figure 50. Both time intervals are part of the lowermost flight leg in Figure 49 

which was flown with constant flight altitude and speed but with different 

orientations relatively to the wind. The two selected time intervals represent an 

“along wind” (difference of heading (hdg) and wind speed (ws): hdg-ws=188°) 

and “cross wind” scenario (hdg-ws=-94°). The “along” wind scenario is identical 

to the “low” altitude interval which was analyzed in the preceding section of this 

document.  

Table 5 compares the result of the error propagation calculation for the two 

relative wind orientations. The table also includes the “bad heading” case in order 

to demonstrate the sensitivity to this angle in the “across” wind scenario.    
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relative wind 
direction 

Unit 

along wind across wind 

standard error input 
"bad 

heading" 
standard error input 

"bad 
heading" 

Mean 
Value 

Absolute 
Error  

Absolute 
Error  

Mean 
Value 

Absolute 
Error  

Absolute 
Error  

Static Pressure hPa 915.27 0.15 0.15 915.28 0.15 0.15 

Dynamic Pressure hPa 72.48 0.16 0.16 72.47 0.23 0.23 

Pressure Altitude m 849.5 1.4 1.4 849.4 1.4 1.4 

Machnumber  0.3318 0.0004 0.0004 0.3317 0.0005 0.0005 

Calculated True Airspeed m/s 112.14 0.13 0.14 111.80 0.18 0.18 

Angle of Attack deg 3.83 0.09 0.09 3.77 0.11 0.11 

Angle of Sideslip deg 0.00 0.11 0.11 -0.01 0.13 0.13 

Static Air Temperature °C 10.02 0.22 0.26 8.38 0.22 0.22 

Backup of Static Air Temperature °C 10.02 0.21 0.25 8.41 0.23 0.23 

Total Air Temperature °C 16.26 0.22 0.26 14.57 0.23 0.23 

Potential Temperature °C 17.28 0.22 0.26 15.59 0.23 0.23 

Virtual Potential Temperature °C 18.45 0.23 0.27 16.73 0.24 0.24 

Virtual Temperature °C 11.17 0.23 0.27 9.49 0.23 0.23 

Wind Vector East Component m/s -1.37 0.21 0.24 5.91 0.23 0.26 

Wind Vector North Component m/s -4.21 0.16 0.17 -3.75 0.20 0.21 

Wind Vector Vertical Component m/s 0.35 0.17 0.17 0.33 0.21 0.21 

Horizontal Windspeed m/s 4.44 0.14 0.14 7.02 0.25 0.28 

Horizontal Wind Direction deg 17.86 2.90 3.39 302.47 1.51 1.52 

H2O Mass Mixing Ratio kg/kg 0.00670 0.00034 0.00034 0.00654 0.00033 0.00033 

Rel. Humidity (with resp. to water) % 79.0 4.1 4.2 86.4 4.5 4.5 

Absolute Humidity kg/m3 0.00747 0.00038 0.00038 0.00734 0.00037 0.00037 

Dewpoint Temperature °C 6.5 0.7 0.7 6.2 0.7 0.7 
 

Table 5: Result of HALO error propagation calculation for the different 
relative wind direction scenarios (“along”, “across”) with respect to the 
aircraft axis. The mean aircraft headings during these legs are 205.5° 
(“along”) and 208.2° (“across”). The presented accuracies represent 1   
errors. 
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Discussion 

Result of error calculation 

The result of the error calculations are displayed in Table 2, Table 3, Table 4 

(different altitude/speed scenarios) and Table 5 (influence of wind direction). The 

analysis includes the impact of an improved temperature measurement and of 

heading data with a lower accuracy than stated in Table 1.  

From the data we draw the following conclusions: 

 

• in general, the errors increase with the flight altitude (speed) of the 

aircraft. This is a consequence of the error specifications:  

o an absolute error in the pressure measurement leads to an 

increasing relative error at lower pressures / higher altitudes.  

o For an identical wind vector larger aircraft speeds at higher 

altitudes (see Figure 49) will result in smaller deviations of the 

airflow from the main 𝑇𝐴𝑆⃗⃗⃗⃗⃗⃗⃗⃗  direction. In this case the same absolute 

error in the flow angle determination will also lead to increasing 

errors in the wind vector measurement. 

• The accuracy of the wind measurement on HALO is mainly limited by the 

airflow measurement with the 5-hole probe on the nose boom. This is a 

consequence of the extreme accuracy of the attitude and speed data from 

the experimental IRS. Any further improvement of wind measurements on 

this aircraft can only be achieved by more accurate measurements of 

pressure, true air speed and flow angles.  

• The improved accuracy of IRS heading data which uses a GNSS heading 

reference from a dual antenna system represents an important 

contribution to the overall data quality especially during long and straight 

flight legs with only few turns. The error analysis for the CAFÉ-EU flight 

demonstrates that a heading error in the order of 0.1° will result in an 

increase of the absolute error for the horizontal wind of up to 20%.  
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Figure 51: Vertical profile of static air temperature and relative 
humidity from the descent of the CAFÉ-EU flight from June 9th 2020. 
Both profiles clearly indicate that the highest leg (“high”) of this flight 
with a pressure altitude of 12500m took place inside the stratosphere. 
Relative humidities above 100% at lower altitudes indicate liquid 
water or ice crystals which enter the instrument and evaporate.  

 

• The quality of horizontal wind data on HALO depends on the relative wind 

direction: measurements along the wind vector are more accurate than 

cross wind scenarios due to the high accuracy of the TAS measurement.  

• Better temperature data leads to an increased accuracy of TAS. Especially 

for flight legs along the wind direction this automatically results in better 

wind data. However, the impact of “better temperature data” on relative 

humidity is below 10%.  

• The large humidity error in the highest flight leg of the CAFÉ-EU flight is 

caused by the fact that this portion of the flight took place in the 

stratosphere where humidity is extremely low. In this case the 1ppm 

minimum accuracy of SHARC results in large relative errors. The increase 
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of static air temperature and the obvious drop of relative humidity at a 

pressure height of about 10km in Figure 51 clearly indicate the 

Tropopause at this altitude.  

 

The errors shown in this report can be treated as “typical errors” for the respective 

height and speed ranges. However, a precise error analysis for a single flight 

requires an individual investigation due to the possible deviations from the above 

results caused by different  

• flight conditions  

• meteorological parameters  

• different instrument input errors as determined by the latest calibrations 

The presented error propagation and analysis method is available as a module in 

the RAMSES software and provides an error analysis for any short flight segment 

(a few minutes length) of a HALO research flight.  

 

The data analysis also proves that the precision of HALO data is very high. The 

time series of primary and secondary data do not contain significant white noise 

contributions. This means that the secondary data time series of meteorological 

units still contain useful information about atmospheric structures with amplitudes 

below the error limits as determined by the error propagation calculation. As a 

consequence, a flux measurement using the Eddy Correlation Method will 

probably work even for small amplitudes and high frequencies. The same 

assumption is presumably true for studies of the atmospheric structure from 

almost all meteorological parameters. However, it will always be a challenge to 

distinguish between real atmospheric data and systematic instrument errors 

caused by drift effects or artificial data fluctuations from instrument electronics 

especially when analyzing data over longer time periods. 
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Possible Improvements 

It is an obvious question how the quality of HALO data can be further increased. 

From the results above we can conclude that respective investigations have to 

focus on improvements in pressure, flow and temperature measurements. 

Possible issues concern the instrument itself (choice of sensor and location), the 

primary sensor calibration in the laboratory, the proper parameterization of sensor 

properties and the improvement of the required inflight calibration procedures 

and their evaluation. The preceding HALO reports [6], [7] have already addressed 

most of these issues and we draw the following conclusions for future 

improvements:  

Pressure 

Instrumentation 

The HALO pressure measurement instrumentation is very close to an optimum: A 

nose boom mounted pitot static tube as part of a five-hole probe represents a very 

powerful sensor configuration. The boom helps to minimize the static source error 

as well as the static pressure dependency on flow angles. Placing the required 

pressure sensor right behind the flow angle sensor inside the boom reduces 

resonance and dampening effect to a minimum.   

The accuracy of pressure sensors is critical and their sensitivity to temperature is 

the biggest challenge. On HALO minor optimizations of this temperature 

dependency are still possible. Presently, the issue is addressed in a modification of 

the thermal concept which includes the electronic temperature control and the 

overall thermal design of the sensor. However, the possible improvement will be 

smaller than 0.1hPa.  

 

Primary Sensor Calibration 

The Ruska 7750i Air Data Test Set still represents one of the best available pressure 

transfer standards. Therefore, no significant improvement can be achieved by 

changing this reference instrument.  
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Parameterizations and inflight calibration 

The dominant pressure corrections in the data processing concern the static source 

error and the pressure dependency on flow angles. The respective flight trials are 

documented in [6] and [7]. The investigation has shown that the trailing cone itself 

is an extremely precise reference if one applies the new calibration strategies as 

described in the reports. Therefore, we presently do not see a better alternative 

to this reference.  

However, improvements of the pressure corrections are possible by regularly 

repeating the respective calibration procedures. This helps to confirm the existing 

results and to acquire additional calibration data which will be used to:  

• get better statistics (smaller errors) in the available calibration data 

• get additional test points in the aircraft flight envelope by choosing other 

test points 

• detect any trends and drifts in the data caused by the sensors or by 

different aircraft configurations 

Therefore, periodic flight trials would help to achieve and maintain best data 

quality.   

Temperature 

Instrumentation 

For a permanently installed and robust temperature measurement on an aircraft 

there is presently no alternative to the Rosemount BW102 TAT housings. Wind 

tunnel data from the manufacturer suggests that the “configuration B” of these 

housings provide the smallest errors in the data evaluation.  

For the sensing elements the case is different. The original open wire PRT sensors 

(Pt100) are not available anymore and the operators of atmospheric research 

aircraft worldwide have different strategies how to replace the original 

instrumentation. DLR uses copies of the original sensor which are built in 

cooperation with an external partner. Other aircraft operators run alternative 

sensors like thermistors or miniature PRTs from other manufacturers. In case of 
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HALO there are plans to redesign the original Rosemount PRT sensor using 

different materials for the sensor carrier and to achieve smaller tolerances in the 

production.  

The original Rosemount signal conditioning units are excellent. It is recommended 

to place them in an environment which is not exposed to extreme temperature 

variations in order to avoid errors from temperature dependency of the analog 

electronics. However, no significant error reduction (< 0.1K) is expected from 

these measures.  

 

Primary Sensor Calibration 

The error from the calibration of the temperature sensors with the existing 

calibration bath is mostly limited by the reference thermometer (transfer standard) 

in the bath. A weak point is the question how often the reference thermometer 

in the calibration bath should be calibrated by the external laboratory since the 

benefit from a new calibration is foiled by the danger to damage the sensitive PRT 

during the transport between the labs. Therefore, the calibration bath will be 

equipped with a tripel cell in order to get a permanent control about the absolute 

accuracy of this thermometer.  

 

Parameterizations and inflight calibration 

The largest contributions to the temperature measurement error are caused by 

the recovery and anti-ice corrections which have to be applied during the data 

evaluation. The respective parameterizations were determined from wind tunnel 

experiments by the manufacturer. The relatively large errors of these results are 

caused by the fact that the TAT housings and sensors show manufacturing 

tolerances which become visible when comparing individual housings with each 

other. Furthermore, there are also obvious differences between the available 

sensors for these housings.  

Therefore, it is planned to reduce these errors in determining individual recovery 

and anti-ice corrections for a single housing in order to use it as an inflight 

reference. However, the determination of such an individual parameterization 
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requires a large effort. First inflight calibration experiments have shown that it is 

difficult to achieve the desired accuracy. For this reason, it is an ongoing discussion 

whether it is possible to determine such individual characterizations by wind 

tunnel experiments for an individual housing-sensor combination.  

The achievable accuracy is estimated to be 50% of the present error bars from the 

manufacturer which is identical to the “improved temperature” scenario in the 

error determination above.  

Flow 

Instrumentation 

Similar to the statement for the pressure measurement above we think that a unit 

of 5-hole probe and pressure sensors mounted on the tip of a nose boom is 

presently the best possible instrumentation for airflow measurements on an 

aircraft. The simultaneous measurement of pressure and flow at one single 

location ahead of the aircraft nose represents the optimum instrument 

configuration for this kind of measurement. The requirement for a stiff boom and 

aeroelastic considerations limit the maximum length of the boom which results in 

a still significant static source error and airflow deflection. However, we have 

shown in [7] that this problem can be handled with a proper inflight calibration. 

Therefore, we presently do not see a way to further improve this instrumentation.  

 

There are initiatives to use optical methods for flow measurements [2] which use 

the Doppler-effect to determine the air speed along the line of sight. This method 

offers in principle many advantages when compared to the traditional method 

with an in-situ flow sensor. However, these initiatives still face a lot of problems 

and have not reached the accuracies and time resolution of a pressure-based 

airflow sensor yet. Especially at high altitudes it is still a challenge to achieve similar 

performance parameters. It will be an exciting question whether these sensors will 

be able to replace the traditional method in the future and which accuracies can 

be achieved.  
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Primary Sensor Calibration 

Concerning the calibration of the pressure sensors which are required for the 5-

hole probe the above statement on the Ruska transfer standard also applies here.  

 

Parameterizations and inflight calibration 

The proper parameterization of the necessary correction terms for the airflow 

measurement requires excessive inflight calibrations. As already mentioned above 

a periodic repetition of these experiments helps to reduce the statistical errors, to 

enlarge the range of available test points and to detect possible problems of the 

instrumentation. In case of HALO a dynamic calibration with pitch and yaw 

maneuvers is performed during each experiment which plans to evaluate 

“turbulent wind data” i.e. fast airflow measurements with increased accuracy. 

The evaluation of turbulence data requires the dynamic correction which is 

described in [7].   
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Summary 

This report is based on two preceding publications [6], [7]. While the first two 

publications investigated the accuracy of pressure and flow data from the German 

research aircraft HALO this report uses the obtained results to determine the total 

accuracy of HALO data after it was processed with the RAMSES-2 software.  

The work presents an innovative and complete error propagation method for 

aircraft data from the basic data system BAHAMAS. This method uses white noise 

contributions to the data time series in order to propagate the associated 

amplitudes through the complete processing into the final result where they can 

be detected and quantified by means of an the autocovariance function (ACV). 

The procedure can treat error contributions in the primary data as well as all other 

error sources along the complete data processing path. It can handle different 

error parameterizations like absolute errors, relative errors or errors which depend 

on other parameters. The method allows for error propagation investigations in 

very complex data evaluation schemes as long as they do not contain any kind of 

data averaging which would prevent the necessary ACV analysis in the result. The 

error determination can be performed for relatively short time intervals (<1 min) 

throughout a complete research flight on HALO.  

 

The presented error propagation method offers many interesting features:  

• It is possible to selectively activate single error sources in order to quantify 

the impact of a certain parameter on the total error.  

• The method allows for the implementation of correlated errors like the 

static source error which applies with the same amplitude but different 

signs to the static and the dynamic pressures.  

• The solution can handle a wide variety of error definitions like constant 

errors, relative errors or errors which depend on other units. However, the 

result always includes existing white noise in the data. In case of HALO 

this contribution is mostly negligible.  
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• The presented error propagation works even for very complex and highly 

non-linear processing schemes 

• It does not contain any kind of simplification like the linearization of 

processing steps as known from the traditional error propagation 

calculation. Therefore, the method represents a true error propagation.   

• Today, the error propagation method is established as a module in the 

RAMSES-2 data evaluation software. It allows to systematically analyze 

and provide error bars for BAHAMAS data from all future flights on HALO. 

 

Based on this error evaluation scheme the report presents the accuracy of 

BAHAMAS data for some selected HALO flight scenarios. It also investigates the 

impact of measurement scenarios where the input errors for aircraft heading and 

for the temperature sensor corrections differ from the assumed standard values.  

 

The data analysis proves that the measurement of meteorological parameters 

becomes more challenging with increasing aircraft altitude and speed. The 

investigation also showed that the quality of final data can be influenced by a 

proper measurement strategy. One example is the alignment of aircraft heading 

with the wind direction for a more accurate wind measurement.  

The limiting systematic errors for basic meteorological units usually originate from 

the parameterization of aerodynamic corrections for primary air data. Therefore, 

any improvement of the data quality (accuracy) mainly depends on advancements 

in inflight calibration techniques and wind tunnel testing of the respective 

instrumentation.   

However, the data analysis also indicates that there is presently only limited 

potential for further improvements on the accuracy of meteorological data from 

BAHAMAS. The report recommends three main measures:  

1. Periodic repetitions of inflight calibrations in order to achieve better 

statistics for the parameterizations which are used by RAMSES-2 in the 

data processing  
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2. Determination of an individual anti ice and recovery correction for a single 

TAT + sensor combination which can then be used as a reference sensor 

in flight.  

3. Permanent monitoring for alternative instrumentation and measurement 

principles with better accuracies and the potential to replace the 

traditional methods. 
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