Air-to-Air Triathlon

ATRiCS

Barco Orthogon

INFORM

Joint What-If
Air-to-Air Triathlon

- **Triathlon:**
 Swimming, bicycling and marathon,
 three different areas of fitness – *one competition*.

- **TAMS Joint What-If:**
 ATC, Airport and Airline driven by safety and efficiency,
 three different stakeholders – *one Air-to-Air process*

- **Three solution providers, one integration**
Information instead of resources

Lindberg’s Spirit of St. Louis (1927)
- Fuel reserve to compensate lack of information

Fossett’s Global Flyer (2005)
- Satellite communication and navigation to compensate lack of fuel
What If …

What if I click “cancel”? That’s what killed Carl.

www.dilbert.com
Air-to-Air Triathlon

ATRiCS

Barco Orthogon

INFORM

Joint What-If
Company Introduction

ATRiCS provides: intelligent ATM solutions

Founded in 2002
Based at Freiburg Airport in Germany
20 highly educated employees
Software solutions and consulting services
Exclusive focus on Air Traffic Management
ISO 9001:2008 certified

ATRiCS provides:

- Tower Surface Management System
 - Jane's ATC Award for Innovation 2012
 - Runway Incursion Prevention and Detection
 - Pilot Conformance & ATC Clearance Monitoring
 - Routing, Guidance and Control
 - 4D Trajectory-Based Planning

- Airport Collaborative Decision Making
 - Traffic Event Detection
 - Advanced Taxi Time Calculation
 - Pre-Departure Sequencing
 - Sequence Analysis

- Simulations
 - Operational Concept Validation and ATCO Training
 - Benefit Assessment and System Verification Tests

© 2012 Total Airport Management Suite
Barco – DLR – Inform – Siemens – Stuttgart Airport / associated ATRiCS
www.tams.aero
Introduction

Major contribution to TAMS:

Surface Manager – the connector of air and ground

- Advanced taxi time calculation
- Pre-departure-, off-block and taxi-sequencing
- Automated guidance – “following the green”
- Situational Awareness
- Joint What If
Predict – Plan – Control

- **Prediction** – *gather Information*
 - Advanced taxi time calculation

- **Planning** – *take a decision*
 - Long Term:
 - Strategy: taxiway routing patterns
 - Short Term
 - PreDeparture, Off-Block and Taxi Sequencing

- **Controlling** - *carry the decision into execution*
 - Active routing and guidance – *following the green*
Advanced taxi time calculation

- **Static Tables**
 - Changes on…
 - Infrastructure
 - Traffic Situation
 - Input Datas
 - … has no impact

- **Advanced**
 - Real-time calculation
 - Differentiate between Unimpeded and Impeded times
 - Increase prediction quality while the process
 - Updates by sequencing results
 - Taking ground surveillance into account

Decision Opportunities

real Time
- SMAN automated planning and routing
- Collaborative planning of DMAN and SMAN
- SMAN parameters as part of different airport strategies

medium term
- individual guidance
- taxi sequencing
- pre departure sequencing
- taxiway routing patterns
- Stand coordination

very long term
- Impact of new

Relevant decision in an APOC

Piekert and Strasser: „Potential Impact of Data Variance on the Prediction of Key Performance Indicators (KPI) as a Decision Variable for Airport Pretactical Decision Making within a Total Airport Management (TAM) Airport Operations Center (APOC)“ Tokyo, Japan. EIWAC 2010
Taxiway routing patterns

Operative
Standard routing pattern

Predicted take off order: ATR1; ATR2; ATR0

What-If probing
Alternative routing pattern

Predicted take off order: ATR1; ATR0; ATR2
Taxi-Sequencing

- A startUp sequence is **not** a takeOff sequence

- Taxi Sequencing
 - Optimised take off order
 - Reduce stop and go traffic

- Individual guidiance
 - Control the planed taxi-sequence
Simulation Results

Inbound - EIBT

99% of predicted events

Flights arrived later than predicted

70% of predicted events

Outbound - EETT

Expected Value Median

Flights arrived earlier than predicted

30 min. before ALDT
15 min. before ALDT
0 min. before ALDT
2 min. before AIBT
45 min. before ASAT
5 min. before AOBT
0 min. before AOBT
2 min. before AETT
Simulation Results

Arrival Sequence

- 30 min. before ALDT
- 15 min. before ALDT
- 0 min. before ALDT
- 2 min. before AIBT

Surveillance taken into account

- 45 min. before ASAT
- 5 min. before AOBT

PreDeparture Sequence

- 0 min. before AOBT
- 2 min. before AETT

Outbound - EETT

- Inbound - EIBT
- Surveillance taken into account

© 2012 Total Airport Management Suite
Barco – DLR – Inform – Siemens – Stuttgart Airport / associated ATRiCS
www.tams.aero
Company Introduction

- Orthogon GmbH founded 1987 in Bremen
- since 2002 100% subsidiary of Barco N.V.
- specialized in software for ATC, Airlines and Airports
- approximately 75 employees
- World wide business with system integrators and ANSP
Major Contributions

- Major contribution to TAMS:
 - Airside Tactical Working Position
 - ODS Open Platform
 - Airside performance prediction and performance assessment
 - Coupled Arrival & Departure Management (incl. “What-if” probing)
 - Interfacing of ATC tools with airport infrastructure (i.e. AODB)
Airside Tactical Working Position (ATWP)

Operational Requirements

- Focus on collaborative airport planning in APOC
- ATC agent in APOC needs specialized working position (ATWP)
- ATWP displays relevant information for ATC agent
- ATWP provides interface to tactical planning tools (AMAN / DMAN / SMAN)
- ATWP provides collaborative decision support functionality

System Requirements

- Modular HMI Framework to provide information in different situations / for different roles
- New and adapted views to show aggregated information
- Adaptations and enhanced queue management functionalities
ODS Open Platform

- Integration of HMI components from different contributors
- Centralized data model
- Adaptable layout
- Interaction between HMI components (e.g. highlighting)
- Consistent presentation (e.g. pre-defined color schemes)
- Modular and open architecture
Airside Tactical Working Position (ATWP)

- Airspace surveillance
- Arrival and departure sequence
- Pre-departure sequence
- Aggregated milestones
- Tactical Joint What-If
- Air Traffic Flow and Key Performance Indicators
Airside Performance Prediction

- Collaborative Decision Making at airport operations center for airside processes
- Demand Prediction for runways as well as arrival & departure routes (SID/STAR)
- Performance prediction based on standardized¹ ATM Airport Key Performance Indicators (KPI):
 - Capacity (runway throughput)
 - Arrival punctuality
 - Departure punctuality
 - ATC slot compliance
 - Additional time for ASMA²
 - Additional time in the taxi-out phase

¹ Airport Key Performance Indicators according to:
 - ATM Airport Performance (ATMAP) Framework (Eurocontrol, December 2009),
 - Performance Scheme for Air Navigation Services (EU Regulation No 691/2010, July 2010).
² ASMA: Arrival Sequencing and Metering Area
Airside Process Optimization

- **Coupled Arrival & Departure Management** (AMAN/DMAN)
- Runway capacity utilization improved and balanced in accordance with predicted demand:
 - Gaps in arrival sequence to handle departure peaks
 - Runway balancing for multiple runway systems
 - Pre-Departure Sequencing compliant to Airport CDM concept
 - “What-If” probing to judge different strategies
Integration with Airport Infrastructure

- **AMAN / DMAN coupled with AODB** as an integral part of TAMS
- **Procedures** (information exchange) and solutions (system interfaces)
- **Tactical Joint What-If** supports collaborative decision making
- **VTTC** and **Taxi-Sequencing** integrated with DMAN and SMAN
Exploitation of TAMS Results

- **Follow-up project “META-CDM”**¹ (Kick-Off in July 2012) focuses on close discussion with airport stakeholders aiming for:
 - Promotion of current TAM R&D status
 - Roadmap to bring R&D results into operations
 - Follow-up R&D to provide further benefits

- **OSYRIS Queue Management Demonstration System**
 - Will Integrate TAMS developments
 - Will allow stakeholders at worldwide airports to assess benefits

- Further **collaboration with TAMS partners** envisaged to make use of R&D results for future product development

¹ META-CDM: “Multimodal, Efficient Transportation in Airports and Collaborative Decision Making”, (Coordination and support action within the EU Seventh Framework Programme)
Company Introduction

Swiss Post

Parcel Centers

Hamburg CTB: Germany's largest container terminal

• Optimized Hospital Logistics
• Transport of patients and goods

Atlanta: World's largest passenger hub
Company Introduction

- focus on Advanced Optimization Systems
- best-of-breed solutions
- established in 1969 (university spin-off)
- since 1985 on average **22% annual growth**
- organically growing, no external investors
- since 1985 always profitable
- internal ownership (directors, staff)
- today more than **300 employees**
- principal corporate objective: **long-term sustainability**
Major Contributions

Courcontations to TAMS:

- Airline and Ground-Handler Working Positions
- Target Offblock Time Prediction
- APOC HMI Design
- A-CDM Empowerment/ CSA Tool for 16 Milestones
- Airline Preferences Determination
- Joint What-if Design and Prototype
TMAN Turnaround Manager

![Flight List Screen](image)

Flight List

<table>
<thead>
<tr>
<th>Flight</th>
<th>Arrival</th>
<th>Departure</th>
<th>Aircraft</th>
<th>Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL 1518</td>
<td>08:10</td>
<td>08:15</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>SK 639</td>
<td>08:40</td>
<td>08:42</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>AF 1240</td>
<td>08:40</td>
<td>08:43</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>AF 7621</td>
<td>08:15</td>
<td>08:20</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>LG 1375</td>
<td>06:45</td>
<td>06:50</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>AB 9365</td>
<td>06:50</td>
<td>06:55</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>NW 68</td>
<td>07:35</td>
<td>07:40</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>KL 1952</td>
<td>08:40</td>
<td>08:40</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>KL 1850</td>
<td>08:10</td>
<td>08:10</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>AF 7773</td>
<td>08:50</td>
<td>08:52</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>BA 1475</td>
<td>08:30</td>
<td>08:33</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>IB 819</td>
<td>06:25</td>
<td>06:37</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>KL 1708</td>
<td>08:35</td>
<td>08:40</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>IB 6250</td>
<td>07:10</td>
<td>07:15</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>AF 2289</td>
<td>22:20</td>
<td>22:23</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>AA 174</td>
<td>07:00</td>
<td>07:32</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>IB 3721</td>
<td>06:40</td>
<td>06:47</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>AF 253</td>
<td>06:05</td>
<td>06:15</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>CX 59</td>
<td>05:50</td>
<td>05:55</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>OS 121</td>
<td>06:40</td>
<td>06:47</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
<tr>
<td>TR 5174</td>
<td>07:40</td>
<td>07:45</td>
<td>AONBLOCK</td>
<td>734</td>
</tr>
</tbody>
</table>

© 2012 Total Airport Management Suite
Barco – DLR – Inform – Siemens – Stuttgart Airport / associated ATRiCS
www.tams.aero
Integrated Airport Map
Joint What-If

- What-if capability
 - taking a time slice up to several hours in advance
 - real-time data basis, transferring it into a „sandbox“
 - keeping the real-time feed of events

- Joint What-If probing
 - across all tactical tools
 - immediate check of considered mitigations
 - mutual agreement on joint solution
JWI Data Flow

Operational AODB / Surveillance Data → comparing alternatives → Tactical Joint What-If SAODB

Operational / “Real World” XMAN

Create What-If Context:
- Flight Plans
- Monitoring
- State Transition

Join Joint What-If Context XMAN

Accept What-If Context
Joint What-If

Arrival and Departure Manager Live&What-if

Turn Around Manager Live&What-if

Surface Manager Live&What-if

Scenario AODB

Live AODB
What-If …..future extension?
Thank you for your attention ...

... Thank you very much....