Benefit Assessment in TAMS

Dr. Meike Jipp, DLR
Introduction

Why conduct benefit assessments?
- Specification and quantification of potentials of new concepts and systems
- Early identification of new star products and services

Why within TAMS?
- TAMS offers an innovative concept for efficient, environmentally compatible mobility in today’s high-tech society
- Is TAMS one of these promising new products and services?
Methodology and Goal

Methodology
- Scientific to avoid judgment bias
- Well-established to ensure reliable and valid results
- Stakeholder-driven to guarantee relevance
 → European standard (E-OCVM*)

What is the potential of TAMS concerning
- capacity
- efficiency
- passenger comfort
- environment

* European Operational Concept Validation Methodology
System Configurations

Experimental manipulation of information flow

- **Baseline system**
 - Information on process completion delivered as soon as the process has ended (no A-CDM)
 - Ad-hoc information distribution

- **TAMS**
 - Coupling of air- and landside assistance systems from arrival to departure ("A-CDM++")

![Diagram with TAMS and Baseline compared on x-axis and number of coordinated processes on y-axis]

△ t (event – information)
System Configurations

Fully automated real-time computer simulations
Scenarios

Confrontation of both systems with realistic test scenarios

- Real four-hour flight plan
 - ~120 flights
 - ~12,500 passengers
- Airside bottlenecks (departure and arrival peaks exceeding capacity)
- Landside bottlenecks
- Variation of randomly selected flights to generate variance for statistical analyses
 - 4 scenarios with minor changes
Scenarios

648 flights used for analyses

Number of flights in 15 minute interval

3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM

Scenario 4

© 2012 Total Airport Management Suite
Barco – DLR – Inform – Siemens – Stuttgart Airport / associated ATRiCS
www.tams.aero
Scenarios

648 flights used for analyses

Scenario 1

Scenario 2

Scenario 3

Scenario 4
Airport Simulation Environment

Generic International Airport (GIA)

- Mid-sized, highly complex airport
 - 2 dependent crossing runways
 - 35 stands
 - 30 gates
 - 4 terminals

Simulation at DLR Airport and Control Centre Simulator
Simulation

Benefit assessment runs
- 2 system configurations
 - baseline system
 - TAMS
- 4 scenarios
 → 8 simulation runs

Measurement of relevant (key) performance indicators
- punctuality
- passenger missing rate
- waiting time at runway
- engine running time
- etc.
Results

Departure Punctuality

- TAMS reduces the number of delayed departures significantly.
 - 47% decrease in number of flights delayed for more than 15 min
 - $\chi^2(1) = 6.90, p = 0.01$

- TAMS reduces departure delay significantly.
 - Mean delay for each flight: 563 sec (baseline) vs. 417 sec (TAMS)
 - 26% delay reduction with TAMS

![Bar chart comparing baseline and TAMS mean departure delay]
Results

Passenger Missing Rate

- Percentage of passengers left behind
- TAMS reduces the percentage of passengers left behind significantly without increasing resource costs.
 - Mean rate per flight: 8.37% (baseline) vs. 3.10% (TAMS)
 - Reduction of 63%

\[F(1, 37) = 12.39 \]

\[p = 0.00 \]

\[\eta^2 = 0.25 \]
Results

Waiting Time at Runway

- Time between end-of-taxiing and take-off
- TAMS reduces mean waiting time at runway **significantly**.
 - Mean waiting time per flight: 172 sec (baseline) vs. 136 sec (TAMS)
 - 21% reduction of mean waiting time at runway with TAMS

\[F(1, 37) = 6.24 \]
\[p = 0.01 \]
\[\eta^2 = 0.14 \]
Results

Mean Engine Running Time

- Time engines run between off-block and take-off.
- TAMS reduces mean engine running time **significantly**.
 - Mean time per flight: 263 sec (baseline) vs. 231 sec (TAMS)
 - 12% reduction of mean engine running time

\[F(1, 37) = 4.34 \]
\[p = 0.02 \]
\[\eta^2 = 0.11 \]
Summary

TAMS Benefit Assessment

- Application of a sound methodology based on a well-established European standard
- Integration of passenger simulation
- Demonstration of TAMS potentials by means of computer-simulated benefit assessment runs
- Statistical data analyses have revealed a large number of significant effects generated by TAMS
Conclusions

What is the potential of TAMS?

- TAMS increases capacity. ✓
 - TAMS reduces average departure delay.
- TAMS increases efficiency. ✓
 - TAMS increases the number of punctual flights.
 - TAMS reduces mean engine running time.
- TAMS has a positive impact on the environment. ✓
 - TAMS reduces emissions by reducing waiting time at runway.
- TAMS increases passenger comfort. ✓
 - TAMS reduces the number of passengers left behind.
Yes, TAMS can!
Thank you for your attention!

Dr. Meike Jipp
German Aerospace Centre (DLR)
Institute of Flight Guidance
Human Factors Department
Phone: +49 531 295 3089
Email: meike.jipp@dlr.de
Copyright of pictures
- Slides 2-7: Stuttgart Airport
- Slide 7: DLR
- Slides 14: Stuttgart Airport / Hamburg Airport