OptiSiLK-Abschlussveranstaltung

Prof. Dr.-Ing. Karsten Lemmer

OptiSiLK. Optimierung der Verkehrssicherheit und -leistung an Kreuzungen verschiedener Verkehre.

Motivation: Verbesserung der Sicherheit und Effizienz des Verkehrs

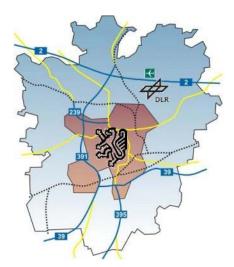
an Kreuzungen v.a. im städtischen Bereich

Herausforderung: hohe Komplexität des Verkehrs an Kreuzungen

unterschiedlicher Verkehrsteilnehmer

OptiSiLK-Beitrag:

- Methoden, Techniken und Werkzeuge zur Optimierung der Sicherheit und Leistungsfähigkeit an Schnittstellen unterschiedlicher Verkehrsträger
 - Erfassung hochgenauer Daten über das Verhalten einzelner Verkehrsteilnehmer
 - zur Entwicklung und Implementierung von Assistenz- und Sicherheitskonzepten an Kreuzungspunkten


Werkzeug zur Forschung im städtischen Verkehr: **Anwendungsplattform Intelligente Mobilität (AIM)**

Plattform für anwendungsorientierte Wissenschaft, Forschung und Entwicklung in der Dimension einer Stadt

Umfassendes Technologieportfolio:

- sensorische Erfassung und Analyse der Realität des Verkehrsumfelds
- Anwendung von Simulationen zur Ableitung tragfähiger Erkenntnisse für den realen Verkehrsablauf
- Beeinflussung des Verkehrsgeschehens durch
 - kommunikative Vernetzung von Infrastruktur und Verkehrsteilnehmern
 - Einbettung in vorhandene Teilsysteme des städtischen Verkehrsmanagements

Was ist das Besondere an AIM?

Konventionelle	е
Ansätze	

Kleinräumiges Testfeld

nicht öffentlich zugänglich

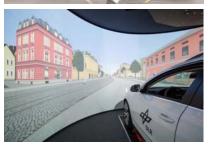
unimodal

Diskrepanz Simulation/Realität

"monolithische" Struktur

Betrieb im singulären Projekt

AIM-Plattform- Konzept	Vorteile
Stadt und Region Braunschweig	 Untersuchung von Einflüssen und Wechselwirkungen im Gesamtverkehrssystem
im öffentlichen Straßenraum	 realitätsnahe Forschung → Übertragbarkeit Transfer von Forschungsergebnissen in Produkte
Verkehrsträger- übergriff	Möglichkeit zur Untersuchung neuartiger intelligenter Mobilitätsdienste (Inter-/ Multimodalität)
Konvergenz Simulation/Realität	valide Ergebnisse vorzeitiger PrototypentestsPrognose zukünftigen Verkehrsgeschehens
Serviceorientierte Architektur	Risikoreduktion durch Einsatz getesteter Dienste Wiederverwendbarkeit (Kosten- und Zeitersparnis)
Betrieb bis > 2025	vorhandene verkehrsbehördliche GenehmigungenWiederverwendung vorh. Infrastruktur / Funktionen



Wie OptiSiLK AIM nutzt – und: Wie OptiSiLK AIM noch besser macht!

- Demonstration unterschiedlicher Nutzungsmöglichkeiten von AIM zum ausgewählten Thema "Kreuzungen":
 - Forschungsbahnübergang: z.B. Objekterkennung, Verhalten an Bahnübergängen
 - Forschungskreuzung: Untersuchung räumlicher Repräsentation
 - Virtual Reality Labor und Dynamischer Fahrsimulator: Fahrstudien
- breites Spektrum: Grundlagenforschung, Anwendungsentwicklung, technologische genauso wie psychologische Fragestellungen
- Optimierung der Großforschungsanlage AIM
 - weiträumiges Objekt-Tracking für die kamerabasierte Verkehrserfassung
 - automatisierte Erkennung von kritischen und atypischen Situationen
 - Ergänzung der Fusion von Mensch- und Fahrzeugdaten um Menschmodelle

Das erwartet Sie heute

Kurz-Vorträge zum Einstieg

- Links, rechts, geradeaus Motivation und Ansätze für kreuzende Verkehre im Projekt OptiSiLK im Überblick Dipl.-Ing. Sascha Knake-Langhorst, Projektleiter OptiSiLK
- Sehen, verstehen fahren! Mentale Repräsentation verschiedener Verkehrsteilnehmer an urbanen Straßenkreuzungen und ihre Unterstützung Dipl.-Ing. Robert Kaul
- Ja, wo fahren sie denn? Erfassung von Verkehrsteilnehmern und ihrer Interaktion an urbanen Straßenkreuzungen Dr.-Ing. Marek Junghans
- Der Zug hat Vorfahrt! Human Factors-Maßnahmen zur Wahrnehmungssteuerung von Autofahrern an Bahnübergängen Dipl.-Psych. M.Sc. Jan Grippenkoven
- Gutes noch besser! Optimierung der Anwendungsplattform Intelligente Mobilität (AIM) durch das Projekt OptiSiLK Prof. Dr. Frank Köster, Abteilungsleiter Automotive im DLR-Institut für Verkehrssystemtechnik

Das erwartet Sie heute

Vertiefende Demonstrationen und Poster-Ausstellung (ab 15:15 Uhr)

- Schematische Raumrepräsentationen in der Simulation (Virtual Reality Labor)
- Aufbau mentaler Raummodelle im Test (Dynamischer Fahrsimulator)
- Erkennung von kritischen und atypischen Situationen mittels weiträumiger Verkehrserfassung (Live-Demo, Studienergebnisse)
- Blicklenkung am Bahnübergang durch periphere Lichtreize (Live-Demo, Studienergebnisse)
- Wirksamkeit von Vorfahrtssymbolik am Bahnübergang (Studienergebnisse und Demo)

