

Investigation of the capacity of train stations in case of a large-scale emergency evacuation MAY 15, 2019 | Anna Tscherniewski, Mohcine Chraibi, Lukas Arnold

Member of the Helmholtz Association

Background

- Nature and human made hazards:
 - hurricanes, floods ...
 - terroristic attacks, incidents in nuclear power plants ...
- Large-scale evacuations carried out with only private / road dependant vehicles:
 - Many people have no access to private vehicles.
 - Not enough bus drivers
 - Limited road capacity
 - Large congestions, lack of fuel, accidents ...
- 'AG Fukushima' recommends the use of trains for large-scale evacuations.
- Capacity of train stations for large-scale evacuations is unknown.
- Capacity = evacuees¹ / hour

¹ Evacuees = people who leave a threatened area by train

May 15, 2019

Jülich Pedestrian Simulator - JuPedSim

- Developed at the Research Center Jülich
- Free software for pedestrian dynamics
- Before: Only buildings' evacuations
- New: Waiting areas for pedestrian movement in stations in case of a large-scale evacuation
- Pedestrians = agents
 - Individual parameters (shoulder width, velocity ...)
- Modified floor field router
- Collision-free-speed model:
 - No overlapping with other agents or walls
 - Self-organisation phenomena like lane formation or clogging

May 15, 2019

Setup

Member of the Helmholtz Association

May 15, 2019

Setup - Detail

Simulations

- Aim: finding critical bottlenecks and the capacity for the train station
- No daily business only evacuation trains
- Particularities:
 - Passengers carry a lot of luggage → walking speed decreases, space increases
 - Empty trains and huge number of passengers → increased boarding times
 - Limited capacity/space in the building and on the platforms → inflow restrictions and waiting areas
 - Departure only in specified direction → limited tracks → increased waiting times
- Assumption:
 - Passengers act rational at any time
 - No panic or similar occur
 - Enough trains and train drivers for the evacuation

May 15, 2019

Simulations

• 5 setups with different operational options:

Setup	Waiting Areas	Train departure interval	Entrances	Specified goals
1a	none	none	2	yes: ½, no: ½
1b	none	5 min	1	yes: ½, no: ½
2a	wt _{hall} : 60 s, wt _{tunnel:} 120 s	5 min	1	all
2b	wt _{hall} : 60 s, wt _{tunnel:} 120 s	10 min	1	all
2c	wt _{hall} : 60 s, wt _{tunnel:} 0 s	10 min	1	all

Member of the Helmholtz Association

May 15, 2019

Setup 1a

- No operational options
- 4400 agents:
 - 1/2 have a defined goal
 - 1/2 take the first / nearest train
- Random distribution in the station
- Distribution in the tunnel corresponds to the usage of both entrances
- Result:
 - Bidirectional flow
 - Congestion in the middle of the tunnel
 - \rightarrow takes 15 minutes to dissolve

May 15, 2019

Setup 1b

- Back entrance closed
- 3200 agents (640 agents/train)
 - $\frac{1}{2}$ have a defined goal
 - $\frac{1}{2}$ take the first / nearest train
- Random distribution in the station
- More agents in the entrance hall
- Train departure interval of 5 minutes
- Result:
 - Congestion between tunnel entrance and first platforms → takes 4 minutes to dissolve
 - Last boarding after 7 minutes

May 15, 2019

Setups 2a - c

- Operational options:
 - Waiting areas in the entry hall and the tunnel
 - → Barriers to regulate the inflow to the different sections
 - Waiting areas on the platforms
 - \rightarrow Distribution of the agents at the platform edges
- Agents:
 - 1600 agents distributed in the tunnel
 - 1600 agents added with a frequency of 160 agents every 10 seconds
 - 3200 agents added per interval (train arrival) with a frequency of 320 agents every 20 seconds
 - All agents have a defined goal

May 15, 2019

Setups 2a - c

Setup	Waiting Areas	Train departure interval	Entrances	Specified goals	
1a	none	none	2	yes: ½, no: ½	
1b	none	5 min	1	yes: ½, no: ½	
2a	wt _{hall} : 60 s, wt _{tunnel:} 120 s	5 min	1	all	
2b	wt _{hall} : 60 s, wt _{tunnel:} 120 s	10 min	1	all	
2c	wt _{hall} : 60 s, wt _{tunnel:} 0 s	10 min	1	all	

Member of the Helmholtz Association

May 15, 2019

Setups 2a and 2b

Setups 2a and 2b

- Waiting times:
 - wt_{hall} = 60 s
 - wt_{tunnel} = 120 s
- Train departure (2a) = 5 minutes
- Train departure (2b) = 10 minutes

• Result:

- Congestion between tunnel entrance and first platforms is not dissolved when the next agents were added
 - \rightarrow To high waiting times, to short train departure interval

2a:	Pede	strians	s: 2207	Tim	e: 523	3 Sec	
						• 🛛	B.N.N.
					-:	• 8	8 N 8
					- •	•	M M.
					;:		M M. a
	X						

May 15, 2019

Setup 2c

2c:

Pedestrians: 1607 Time: 1 Sec

<u>Setup 2c</u>	 			 	
Waiting times:					
• wt _{hall} = 60 s		123 (25)	- 1940 -		
• wt _{tunnel} = 0 s					
 Train departure = 10 minutes 					
			-		
Result:					
 No congestion 					
 Capacity = 19.000 agents/hour 					
Capacity = 10.000 agents/hour					

Member of the Helmholtz Association

May 15, 2019

Conclusion and Outlook

Conclusion:

- Operational options are necessary
- Inflow restrictions in the entrance hall work good
- Barriers (waiting areas) in the tunnel hinder the flow and cause congestion

Outlook:

- Investigation of the influence of luggage and group behaviour like staying together (e.g. families)
- More detailed investigation of operational options like barriers and inflow restriction in and around a station:
 - → Cooperation with the federal police: accompany operations like the risk football game (Dortmund-Schalke) two weeks ago or other operations, where a lot of people will use the train station and special barriers and other operational options will be used.
- Detailed modelling of trains

May 15, 2019

Questions?

Contact:

Anna Tscherniewski

Forschungszentrum Jülich GmbH Institute for Advanced Simulation - Civil Safety Research (IAS-7) 52428 Jülich

a.tscherniewski@fz-juelich.de

Member of the Helmholtz Association