

Investigation of the capacity of train stations in case of a large-scale emergency evacuation

MAY 15, 2019| Anna Tscherniewski, Mohcine Chraibi, Lukas Arnold

Background

- Nature and human made hazards:
- hurricanes, floods ...
- terroristic attacks, incidents in nuclear power plants ...
- Large-scale evacuations carried out with only private / road dependant vehicles:
- Many people have no access to private vehicles.
- Not enough bus drivers
- Limited road capacity
- Large congestions, lack of fuel, accidents ...
- 'AG Fukushima' recommends the use of trains for large-scale evacuations.
- Capacity of train stations for large-scale evacuations is unknown.
- Capacity = evacuees ${ }^{1}$ / hour

[^0]
Jülich Pedestrian Simulator - JuPedSim

- Developed at the Research Center Jülich
- Free software for pedestrian dynamics
- Before: Only buildings' evacuations
- New: Waiting areas for pedestrian movement in stations in case of a large-scale evacuation
- Pedestrians = agents
- Individual parameters (shoulder width, velocity ...)
- Modified floor field router
- Collision-free-speed model:
- No overlapping with other agents or walls
- Self-organisation phenomena like lane formation or clogging

Setup

Setup - Detail

Simulations

- Aim: finding critical bottlenecks and the capacity for the train station
- No daily business - only evacuation trains
- Particularities:
- Passengers carry a lot of luggage \rightarrow walking speed decreases, space increases
- Empty trains and huge number of passengers \rightarrow increased boarding times
- Limited capacity/space in the building and on the platforms \rightarrow inflow restrictions and waiting areas
- Departure only in specified direction \rightarrow limited tracks \rightarrow increased waiting times
- Assumption:
- Passengers act rational at any time
- No panic or similar occur
- Enough trains and train drivers for the evacuation

Simulations

- 5 setups with different operational options:

Setup	Waiting Areas	Train departure interval	Entrances	Specified goals
1 a	none	none	2	yes: $1 / 2$, no: $1 / 2$
1b	none	5 min	1	yes: $1 / 2$, no: $1 / 2$
2a	$\mathrm{w}_{\text {hall }}$: $60 \mathrm{~s}, \mathrm{wt}_{\text {tunnel }} 120 \mathrm{~s}$	5 min	1	all
2 b	$\mathrm{w}_{\text {hall: }}$: $60 \mathrm{~s}, \mathrm{wt}_{\text {tunnel }} 120 \mathrm{~s}$	10 min	1	all
2 c	$\mathrm{w}_{\text {hall }}$: $60 \mathrm{~s}, \mathrm{wt}_{\text {tunnel }}$: 0 s	10 min	1	all

Setup 1a

- No operational options
- 4400 agents:
- $1 / 2$ have a defined goal
- $1 / 2$ take the first / nearest train
- Random distribution in the station
- Distribution in the tunnel corresponds to the usage of both entrances
- Result:
- Bidirectional flow
- Congestion in the middle of the tunnel
\rightarrow takes 15 minutes to dissolve

Pedestrians: 4400 Time: 0 Sec

Setup 1b

- Back entrance closed
- 3200 agents (640 agents/train)
- $1 / 2$ have a defined goal
- $1 / 2$ take the first / nearest train
- Random distribution in the station
- More agents in the entrance hall
- Train departure interval of 5 minutes
- Result:
- Congestion between tunnel entrance and first platforms \rightarrow takes 4 minutes to dissolve
- Last boarding after 7 minutes

Setups 2a-c

- Operational options:
- Waiting areas in the entry hall and the tunnel
\rightarrow Barriers to regulate the inflow to the different sections
- Waiting areas on the platforms
\rightarrow Distribution of the agents at the platform edges
- Agents:
- 1600 agents distributed in the tunnel
- 1600 agents added with a frequency of 160 agents every 10 seconds
- 3200 agents added per interval (train arrival) with a frequency of 320 agents every 20 seconds
- All agents have a defined goal

Setups 2a-c

Setup	Waiting Areas	Train departure interval	Entrances	Specified goals
1a	none	none	2	yes: $1 / 2, \mathrm{no}: 1 / 2$
1b	none	5 min	1	yes: $1 / 2, \mathrm{no}: 1 / 2$
2 a	$\mathrm{wt}_{\text {hall }}: 60 \mathrm{~s}, \mathrm{wt}_{\text {tunnel }} 120 \mathrm{~s}$	5 min	1	all
2 b	$\mathrm{wt}_{\text {hall }}: 60 \mathrm{~s}, \mathrm{wt}_{\text {tunnel }} 120 \mathrm{~s}$	10 min	1	all
2 c	$\mathrm{wt}_{\text {hall }}: 60 \mathrm{~s}, \mathrm{wt}_{\text {tunnel }}: 0 \mathrm{~s}$	10 min	1	all

Setups 2a and 2b

Setups 2a and 2b

- Waiting times:
- $w t_{\text {hall }}=60 \mathrm{~s}$
- $\mathrm{wt}_{\text {tunnel }}=120 \mathrm{~s}$
- Train departure (2a) $=5$ minutes
- Train departure $(2 b)=10$ minutes
- Result:
- Congestion between tunnel entrance and first platforms is not dissolved when the next agents were added
\rightarrow To high waiting times, to short train departure interval

2b:

Setup 2c

2c:
Setup 2c

- Waiting times:
- $w t_{\text {hall }}=60 \mathrm{~s}$
- $\mathrm{wt}_{\text {tunnel }}=0 \mathrm{~s}$
- Train departure $=10$ minutes

- Result:

- No congestion
- Capacity $=19.000$ agents/hour

Conclusion and Outlook

Conclusion:

- Operational options are necessary
- Inflow restrictions in the entrance hall work good
- Barriers (waiting areas) in the tunnel hinder the flow and cause congestion

Outlook:

- Investigation of the influence of luggage and group behaviour like staying together (e.g. families)
- More detailed investigation of operational options like barriers and inflow restriction in and around a station:
\rightarrow Cooperation with the federal police: accompany operations like the risk football game (Dortmund-Schalke) two weeks ago or other operations, where a lot of people will use the train station and special barriers and other operational options will be used.
- Detailed modelling of trains

Questions?

Contact:

Anna Tscherniewski
Forschungszentrum Jülich GmbH
Institute for Advanced Simulation - Civil Safety Research (IAS-7)
52428 Jülich
a.tscherniewski@fz-juelich.de

[^0]: ${ }^{1}$ Evacuees $=$ people wholeave a threatened areaby train

