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Fewer sensors! More sensors! 

Compromised? 

Aim 
Further optimize the current traffic control policies without high additional investments 



Number of lanes n, cell length c, lane length l 

P is the traffic light signal phase 

Existing Proposed State Spaces 
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Objective 
Demonstrate the controller’s learning capability in spite of limited sensory information 
in a gridlock setting 
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Traffic Gridlocks 
A traffic gridlock is a form of congestion state where queue 

length spillback propagates in a closed loop-resulting in a 

complete standstill 





Chula-Sathorn SUMO Simulator (Chula-SSS) 

Chaodit Aswakul, Sorawee Watarakitpaisarn, Patrachart Komolkiti, Chonti Krisanachantara, and Kittiphan Techakittiroj. Chula-SSS: Developmental Framework 

for Signal Actuated Logics on SUMO Platform in Over-Saturated Sathorn Road Network Scenario. In SUMO 2018- Simulating Autonomous and Intermodal 

Transport Systems, volume 2 of EPiC Series in Engineering, pages 67–81. EasyChair, 2018 

(a) Longdo Map (with granted usage permission from 

http://map.longdo.com/  

(b) Chula-SSS dataset in SUMO 

Figure 1: Comparison between actual map and Chula-SSS dataset in the Sathorn Road Area 

http://map.longdo.com/
http://map.longdo.com/


Figure [1]: Queue Length Spillback at Narinthorn Intersection 

[1] Piantanongkit, Pon. A Photograph of Narinthorn Intersection with Queue Length Spillback. MotoRival, Bike News, 21 Apr. 2017, 

https://www.motorival.com/sathorn-model-plan/. 
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Figure 3: Critical Routes in the Sathorn Network 
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Figure: Reinforcement Learning 



State Space 

The State is the Occupancy value of each E2 Detector (cell) and the Traffic Phase P  



Action Space 



Reward Function 

Vehicle throughput during time step t to t + 1 

Observed occupancy in the next time step 

Maximum cell capacity 

kept constant at 1; linear sequence from 0.04 to 0.16 in intervals of 0.04 



Agent Architecture: Ape-X Deep Q-Network (DQN) 

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and David Silver. Distributed Prioritized Experience 

Replay. arXiv e-prints, page arXiv:1803.00933, Mar 2018. 
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Experimental Setup 

OpenAI Gym Wrapper (RLlib Environment) 

Chula-SSS Dataset 

RISELab’s RLlib Algorithms 

RISELab’s RLlib Abstractions 

Ray Task and Actors 

libsumo 

Multiple Actors 

1 Episode: 6 AM to 9 AM  

3 hours 

10800 Simulation Steps 

250 Epochs:  

10.8M Simulated Steps 

~125 Simulated Days 

1 Epoch: 4 Episodes 

43200 Simulation Steps 

Training:  

Agent Step:  

10 Simulation Steps 



Results 
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Figure: Average Green Time of Phase 2 

All Agents give  

high importance 



Figure: Average Green Time of Phase 5  

All Agents are  

undecided but  

does not give high 

average green time 
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Figure: Average Green Time of Phase 4 

~18s Average Green Time 



Figure: Average Green Time of Phase 1 

~10s Average Green Time 

>20s Average Green Time 



2 Different  

Convergence 

~400m 

~700m 



Figure: Average Green Time of Phase 3 
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~20s 
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Figure: Average Green Time of Phase 8 



Conclusion and Future Works 

• Ablation studies on hyperparameters 

• Varying load of the extended flows 

• Varying agent’s discount factor 

• Varying types and number of sensory inputs 

• Exploring on different rewards 


