Wohin fahren sie denn? Erfassung von Verkehrsteilnehmern und ihrer Interaktion an urbanen Straßenkreuzungen

Dr.-Ing. Marek Junghans



Inhalt

- Motivation
- Objekterkennung, -klassifizierung und Objekt-Tracking
- Erfassung von Kritikalität und Atypik am Forschungsbahnübergang
- Zusammenfassung & Ausblick

Ausgangssituation und übergeordnetes Ziel

Linksabbiegen führt zu 18 Schwerverletzten pro Tag in Deutschland, jeden zweiten Tag stirbt ein Mensch

Zusammen sind ca. **3.600 Menschen im Jahr** 2014 gestorben, mehr als **60.000 wurden schwerverletzt**.

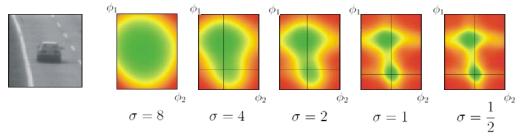
An den 45.000 Bahnübergängen in Deutschland treten jährlich ca. **200 Unfälle** auf, **jeder vierte ist tödlich.**

Ziele:

- Verkehrssituationen an Kreuzungen verschiedener Verkehre besser verstehen
- Grundlagen schaffen, um Anzahl und Schwere von Unfällen zu verringern
- Verkehrsteilnehmer an Kreuzungen verschiedener Verkehre unterstützen

Motivation

- Für Untersuchungen zu Zusammenhängen zwischen kritischen Situationen und Unfällen wird eine vollautomatische Verkehrserfassung benötigt.
- Grundproblem: sich stark verdeckende Objekte verschmelzen miteinander optisch
 - → Erhöhung des technischen Aufwandes (z.B. durch Redundanz)
- Entwicklung eines Verfahrens zur weiträumigen Verkehrserfassung, das Verdeckungen kompensieren kann
- Bestimmungen von kritischen und atypischen Situationen
- Erprobung auf der implementierten Anlage am AIM-Forschungsbahnübergang in Bienrode


Objekterkennung, Objektklassifizierung und Objekt-Tracking

Motivation

Verdeckungskompensation für Untersuchgen zur Verkehrssicherheit

Lösungsansatz Robuste Regression (→ Postersession)

- Transformation einer Bildsequenz in eine Kostenfunktion, deren Minima Bewegungshypothesen darstellen
- Bestimmung und Tracking der Minima auch dann, wenn eine Bewegungshypothese nicht dominant ist

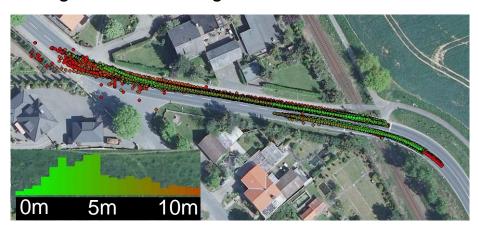
Verfolgung von Bewegungshypothesen im Parameterraum

Objekterkennung, Objektklassifizierung und Objekt-Tracking

Ergebnisse

• Tracking von Verkehrsobjekten am Forschungsbahnübergang von bis zu 120 m im Vergleich zu ca. 80 m mit einem Stand-der-Technik-Verfahren bei einem Verdeckungsgrad von bis 90% (→ Postersession)

Tracking-Sequenz am Forschungsbahnübergang in Bienrode


Objekterkennung, Objektklassifizierung und Objekt-Tracking

Trajektoriengenauigkeit der Verfahren am Forschungsbahnübergang im Vergleich

Stand der Technik-Implementierung

Eigene Entwicklung

Kennwerte	Stand der Technik-Implementierung	Eigene Entwicklung
Mittelwert Standardabweichung Median (Bewertung der "gemeinsamen" Bereiche)	3,37 m 1,69 m 3,12 m	2,36 m 2,46 m 1,70 m
Mittelwert Standardabweichung Median (Gesamtbewertung)	3,50 m 2,31 m 3,03 m	3,45 m 3,18 m 2,44 m

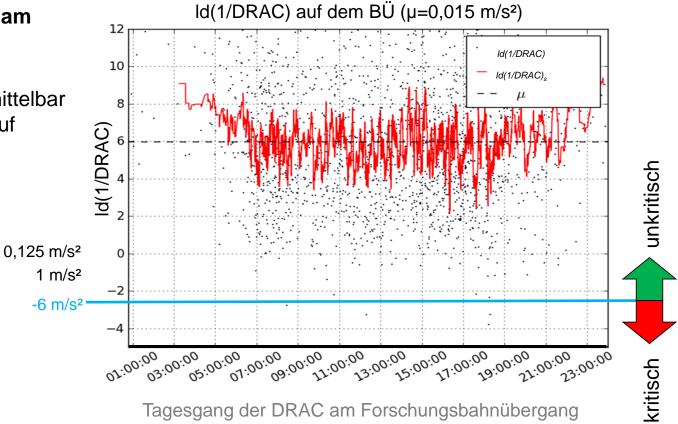
Atypisch ist das, was von der Normalität abweicht und i.d.R. unkritisch ist (z.B. U-Turns, Schlangenlinien, Einparken).

Zwei Verfahren entwickelt und miteinander verglichen (→ Postersession)

- Self Organising Feature Map (SOFM)
- Probability Density Map (PDMap)

Kritische Situationen sind Verkehrssituationen, in denen sich interagierende Verkehrsteilnehmer räumlich und zeitlich nahe sind (z.B. Auffahren bei hoher Geschwindigkeit, starkes Bremsen).

Kritische Situationen wurden über diese räumlich-zeitliche Nähe der interagierenden Verkehrsteilnehmer quantifiziert, in dem Kenngrößen der Verkehrskonflikttechnik bestimmt und weiterentwickelt wurden.



Kritische und atypische Situationen am Forschungsbahnübergang

 Kritische Situationen treten insb. unmittelbar auf bzw. hinter dem Bahnübergang auf

Kritische und atypische Situationen am Forschungsbahnübergang

- Kritische Situationen treten insb. unmittelbar auf bzw. hinter dem Bahnübergang auf
- Atypische Situationen k\u00f6nnen automatisiert wie folgt klassifiziert werden
 - Anhalten
 - Überholen
 - Starkes Bremsen bzw. Beschleunigen
 - Unangepasste Geschwindigkeit
 - (Fahrbahnrinnen)

PDMap der Positionen für beide Richtungen am BÜ

PDMap der Geschwindigkeiten für beide Richtungen am BÜ

Beispiel zur Bestimmung von Atypik am Forschungsbahnübergang:

- Überholvorgang
- Bestimmt werden Normalitätsmaße von
 - Position,
 - Geschwindigkeit,
 - Richtung und
 - Beschleunigung,

die zu einem Gesamtnormalitätsmaß zwischen 0 und 1 kombiniert werden

Überholen am Forschungsbahnübergang

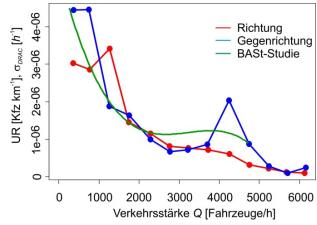
Beispiel zur Bestimmung von Atypik am Forschungsbahnübergang:

Automatisierte Bestimmung von atypischen Situationen am Beispiel des Forschungsbahnübergangs (normale Situationen: grün, atypische Situationen: rot)

Zusammenfassung & Ausblick

Zusammenfassung

- Entwicklung eines weiträumigen, robusten Verfahrens zur Detektion, Klassifizierung und Verfolgung von Verkehrsteilnehmern über ca.
 120m Meter mit hoher Genauigkeit im Bereich bis zu ca. 100 m
- Entwicklung und Erprobung mehrerer Verfahren zur Bestimmung von Atypik und Kritikalität von Verkehrssituationen


Ausblick

- Erweiterung des Verfahrens zur weiträumigen Detektion, Klassifizierung und Verfolgung von Verkehrsteilnehmern zur Anwendung an der Forschungskreuzung
- Untersuchung der Korrelation zwischen Unfällen und kritischen Situationen

